TY - THES A1 - Lux, Thomas Joachim T1 - Characterization of Junctional Proteins in the Dorsal Root Ganglion of Rats with Traumatic Nerve Injury T1 - Charakterisierung von Junktionsproteinen im Spinalganglion von Ratten mit traumatischer Nervenverletzung N2 - In my thesis, I characterized aGPCRs Adgrl1 and Adgrl3, tight junction proteins and the blood-DRG-barrier in rats’ lumbar dorsal root ganglions after traumatic neuropathy. In contrast to the otherwise tightly sealed barriers shielding neural tissues, the dorsal root ganglion’s neuron rich region is highly permeable in its healthy state. Furthermore, the DRG is a source of ectopic signal generation during neuropathy; the exact origin of which is still unclear. I documented expression of Adgrl1 and Adgrl3 in NF200 + , CGRP + and IB4 + neurons. One week after CCI, I observed transient downregulation of Adgrl1 in non-peptidergic nociceptors (IB4+). In the context of previous data, dCirl deletion causing an allodynia-like state in Drosophila, our research hints to a possible role of Adgrl1 nociceptive signal processing and pain resolution in neuropathy. Furthermore, I demonstrated similar claudin-1, claudin-12, claudin-19, and ZO-1 expression of the dorsal root ganglion’s neuron rich and fibre rich region. Claudin-5 expression in vessels of the neuron rich region was lower compared to the fibre rich region. Claudin-5 expression was decreased one week after nerve injury in vessels of the neuron rich region while permeability for small and large injected molecules remained unchanged. Nevertheless, we detected more CD68+ cells in the neuron rich region one week after CCI. As clinically relevant conclusion, we verified the high permeability of the neuron rich regions barrier as well as a vessel specific claudin-5 downregulation after CCI. We observed increased macrophage invasion into the neuron rich region after CCI. Furthermore, we identified aGPCR as potential target for further research and possible treatments for neuropathy, which should be easily accessible due to the blood-DRG-barriers leaky nature. Its precise function in peripheral tissues, its mechanisms of activation, and its role in pain resolution should be evaluated further. N2 - Die vorliegende Arbeit charakterisiert die aGPCR Adgrl1 und Adgrl3, repräsentative Tight Junction Proteine, sowie die Blut-Spinalganglion-Schranke in lumbalen Spinalganglien von Ratten mit und ohne traumatische Neuropathie. Die hohe Permeabilität der zellulären, neuronenreichen Region von Spinalganglien in naiven Tieren ist eine der wenigen Ausnahmen der sonst sehr dichten Barrieren des Nervensystems. Ich konnte die Expression von Adgrl1 und Adgrl3 in NF200+ , CGRP+ und IB4+ Neuronen nachweisen. Eine Woche nach CCI war die Adgrl1 Expression in nicht-peptidergen Nozizeptoren (IB4+ ) vorübergehend herabreguliert. Zusätzlich konnten wir eine ähnliche Expression von Claudin-1, Claudin-12, Claudin-19 und ZO-1 in der neuronenreichen sowie der faserreichen Region zeigen. Claudin-5 ist in Gefäßen der neuronenreichen Region niedriger exprimiert als in Gefäßen der faserreichen Region. Nach Nervenläsion war die Claudin-5 Immunoreaktivität in Gefäßen der neuronenreichen Region reduziert, die Permeabilität für große und kleine Moleküle jedoch unverändert. Allerdings konnten wir nach traumatischer Nervenverletzung vermehrt Makrophagen in der neuronenreichen Region nachweisen. Weiterhin haben wir einen neuen endogenen antinozizeptiven Rezeptor, Adrlg1, ähnlich den Opioidrezeptoren, als potenzielles, und aufgrund der permeablen Blut-Spinalganglion-Schranke therapeutisch gut erreichbares, Target für die antineuropathische Therapie identifiziert. KW - Neuropathy KW - Neuropathic Pain KW - Claudin KW - Latrophilin KW - Tight Junction Proteins KW - Dorsal Root Ganglion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251926 ER - TY - THES A1 - Dannhäuser, Sven T1 - Function of the Drosophila adhesion-GPCR Latrophilin/CIRL in nociception and neuropathy T1 - Funktionelle Rolle des Drosophila aGPCR Latrophilin/CIRL in Nozizeption und Neuropathie N2 - Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology. Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family – not only in classical mechanosensory structures. This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function. The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons – a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology. N2 - Der Tastsinn ist die Fähigkeit, mechanische Reize wahrzunehmen, die für essentielle Verhaltensweisen notwendig sind. Dazu gehören die Vermeidung von Gewebsschädigungen, die Wahrnehmung der Umwelt und soziale Interaktion, aber auch die Propriozeption und das Hören. Daher bleibt die Forschung an Rezeptoren, die mechanische Reize in sensorischen Neuronen in elektrische Signale umwandeln, ein aktueller Forschungsschwerpunk. Die zugrundeliegenden molekularen Mechanismen für die mechanometabotrope Signalübertragung sind trotz der wesentlichen Rolle des Tastsinns in allen Bereichen der Physiologie weitgehend unbekannt. Adhäsions G-Protein gekoppelte Rezeptoren (aGPCRs), eine große Molekülfamilie mit über 30 Vertretern im Menschen, sind an einer Vielzahl von physiologischen Prozessen beteiligt. Demzufolge wird ein Zusammenhang zwischen diesen Rezeptoren und verschiedenen Erkrankungen des Menschen, wie z. B. Entwicklungsstörungen, Defekte des Nervensystems, Allergien und Krebs, angenommen. Mehrere aGPCRs wurden kürzlich mit mechanosensitiven Funktionen in Verbindung gebracht, was darauf hindeutet, dass die Verarbeitung mechanischer Reize ein gemeinsames Merkmal dieser Rezeptorfamilie ist – nicht nur in klassischen mechanosensorischen Strukturen. In diesem Projekt wurde Drosophila melanogaster verwendet, um die Funktion des aGPCR-Latrophilin/dCIRL in der mechanischen Nozizeption in vivo zu analysieren. Zu diesem Zweck konzentriert sich diese Arbeit auf mechano-sensorische Neurone (Typ II Klasse IV) der Fruchtfliegenlarve, um die molekularen Mechanismen der dCIRL-Aktivität zu untersuchen. Hierzu wurden noxische mechanische Reize in Kombination mit optogenetischen Werkzeugen, zur Manipulation der Second-Messenger-Signalübertragung, herangezogen. Zusätzlich wurde ein Neuropathie-Modell etabliert, um eine Beteiligung des aGPCRs dCIRL am beeinträchtigten peripheren Nervensystem zu testen. Zu diesem Zweck untersucht und charakterisiert diese Studie das nozizeptive Verhalten in dCirl-Nullmutanten (dCirlKO) und die RNA-Interferenz (RNAi) Methode, um zellspezifische Manipulationen auszuführen. Die Ergebnisse zeigen, dass dCirl in spezifischen peripheren sensorischen Neuronen (C4da) transkribiert wird - ein Zelltyp, der Nozizeptoren in Säugern strukturell ähnlich ist und verschiedene nozizeptive sensorische Modalitäten vermittelt. Darüber hinaus zeigen dCirlKO-Larven ein erhöhtes nozizeptives Verhalten, welches mittels zellspezifischer Reexpression gerettet werden kann. Die Expression von bPAC (bakterielle photoaktivierbare Adenylatcyclase) in diesen nozizeptiven Neuronen ermöglichte es, intrazelluläre Signalkaskaden von CIRL zu untersuchen, welche durch lichtinduzierte Erhöhung von cAMP angeregt werden. Dieser Versuch zeigt, dass dCIRL durch die Modulation nozizeptiver Neuronen eine Herabregulation des nozizeptiven Verhaltens bewirkt. Angesichts der klinischen Relevanz dieses Ergebnisses wurde die dCirl-Funktion in einem chemisch induzierten Neuropathie-Modell getestet. Dabei stellte sich heraus, dass zellspezifische Überexpression von dCirl eine ausgeprägte Hyperalgesie reduziert, morphologische Schädigungen hingegen nicht gerettet werden konnten. KW - Drosophila KW - Fluoreszenzmikroskopie KW - Nozizeption KW - Neuropathie KW - nociception KW - neuropathy KW - adhesion-GPCR KW - aGPCR KW - dCIRL KW - Latrophilin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201580 ER - TY - THES A1 - Wäldchen, Sina T1 - Super-Resolution-Mikroskopie zur Visualisierung und Quantifizierung von Glutamatrezeptoren und ADHS-assoziierten Proteinen T1 - Super-resolution microscopy for visualization and quantification of Glutamate receptors and ADHD-associated proteins N2 - Die Entwicklung hochauflösender Fluoreszenzmikroskopiemethoden hat die Lichtmikroskopie revolutioniert. Einerseits ermöglicht die höhere erzielte räumliche Auflösung die Abbildung von Strukturen, die deutlich unterhalb der beugungsbedingten Auflösungsgrenze liegen. Andererseits erhält man durch Einzelmoleküllokalisationsmikroskopiemethoden wie dSTORM (Direct Stochastic Optical Reconstruction Microscopy) Informationen, welche man für quantitative Analysen heranziehen kann. Aufgrund der sich dadurch bietenden neuen Möglichkeiten, hat sich die hochauflösende Fluoreszenzmikroskopie rasant entwickelt und kommt mittlerweile zur Untersuchung einer Vielzahl biologischer und medizinischer Fragestellungen zum Einsatz. Trotz dieses Erfolgs ist jedoch nicht zu verleugnen, dass auch diese neuen Methoden ihre Nachteile haben. Dazu zählt die Notwendigkeit relativ hoher Laserleistungen, welche Voraussetzung für hohe Auflösung ist und bei lebenden Proben zur Photoschädigung führen kann. Diese Arbeit widmet sich sowohl dem Thema der Photoschädigung durch Einzelmoleküllokalisationsmikroskopie, als auch der Anwendung von dSTORM und SIM (Structured Illumination Microscopy) zur Untersuchung neurobiologischer Fragestellungen auf Proteinebene. Zur Ermittlung der Photoschädigung wurden lebende Zellen unter typischen Bedingungen bestrahlt und anschließend für 20−24 h beobachtet. Als quantitatives Maß für den Grad der Photoschädigung wurde der Anteil sterbender Zellen bestimmt. Neben der zu erwartenden Intensitäts- und Wellenlängenabhängigkeit, zeigte sich, dass die Schwere der Photoschädigung auch von vielen weiteren Faktoren abhängt und dass sich Einzelmoleküllokalisationsmikroskopie bei Berücksichtigung der gewonnenen Erkenntnisse durchaus mit Lebendzellexperimenten vereinbaren lässt. Ein weiteres Projekt diente der Untersuchung der A- und B-Typ-Glutamatrezeptoren an der neuromuskulären Synapse von Drosophila melanogaster mittels dSTORM. Dabei konnte eine veränderte Anordnung beider Rezeptortypen infolge synaptischer Plastizität beobachtet, sowie eine absolute Quantifizierung des A-Typ-Rezeptors durchgeführt werden. Im Mittelpunkt eines dritten Projekts standen Cadherin-13 (CDH13) sowie der Glucosetransporter Typ 3 (GluT3), welche beide mit der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung in Verbindung gebracht werden. CDH13 konnte mittels SIM in serotonergen Neuronen, sowie radiären Gliazellen der dorsalen Raphekerne des embryonalen Mausgehirns nachgewiesen werden. Die Rolle von GluT3 wurde in aus induzierten pluripotenten Stammzellen differenzierten Neuronen analysiert, welche verschiedene Kopienzahlvariation des für GluT3-codierenden SLC2A3-Gens aufwiesen. Die Proteine GluT3, Bassoon und Homer wurden mittels dSTORM relativ quantifiziert. Während die Deletion des Gens zu einer erwartenden Verminderung von GluT3 auf Proteinebene führte, hatte die Duplikation keinen Effekt auf die GluT3-Menge. Für Bassoon und Homer zeigte sich weder durch die Deletion noch die Duplikation eine signifikante Veränderung. N2 - The emergence of super-resolution microscopy techniques caused a revolution of light microscopy. On the one hand, the higher achieved structural resolution allows for the visualization of structures below the diffraction limit. On the other hand, single molecule localization microscopy methods like dSTORM (Direct Stochastic Optical Reconstruction Microscopy) provide information that can be used for quantitative analysis. The new possibilities, offered by these approaches, lead to rapid development of the same and by now they are applied to investigate a broad range of biological and medical questions. Besides this success, it can’t be denied, that these methods also have some disadvantages like the necessity of relative high laser intensities that are needed for the high resolution and might cause photodamage in living samples. This work deals with the issue of photodamage induced by single molecule localization microscopy methods as well as the examination of neurobiological problems on protein level by the usage of dSTORM and SIM (Structured Illumination Microscopy). To identify photodamage, living cells were irradiated at typical conditions and were observed for 20−24 h afterwards. As a quantitative measure for the severity of photodamage, the fraction of dying cells was determined. Besides the expected dependency on intensity and wavelength, a lot of other factors showed to affect the severity. It could be demonstrated that single molecule localization microscopy can be combined with live-cell imaging if one takes those results into account. Another project aimed for the investigation of A- and B-type Glutamate receptors at the neuromuscular junction of Drosophila melanogaster via dSTORM. Thus, an altered arrangement of both receptor types could be observed and A-type receptors could be quantified absolutely. A third project focused on cadherin-13 (CDH13) and glucose transporter 3 (GluT3), which are connected with attention deficit hyperactivity disorder. CDH13 could be detected in serotonergic neurons and radial glial cells of dorsal raphe in embryonic mouse brains using SIM. The role of GluT3 was analyzed in neurons, differentiated from induced pluripotent stem cells, which possessed different copy-number variations of the gene SLC2A3, which codes for GluT3. Proteins GluT3, Bassoon and Homer were quantified relatively using dSTORM. While the deletion of the gene resulted in an expected decrease of GluT3 at the protein level, the duplication didn’t affect the amount of GluT3. In the case of Homer and Bassoon, neither the deletion, nor the duplication caused any significant changes. KW - Mikroskopie KW - Einzelmolekülmikroskopie KW - Quantitative Mikroskopie KW - Glutamatrezeptor KW - Aufmerksamkeitsdefizit-Syndrom KW - dSTORM KW - Photoschädigung KW - Neuromuskuläre Synapse KW - Glucosetransporter Typ3 KW - Cadherin-13 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192834 ER - TY - THES A1 - Grotemeyer, Alexander T1 - Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\) T1 - Charakterisierung und Anwendung neuer optogenetischer Werkzeuge in \(Drosophila\) \(melanogaster\) N2 - Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the ‘classical’ Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions. N2 - Seit dem Channelrhodopsine das erste Mal beschrieben und erfolgreich in lebende Tiere eingebracht wurden (Nagel et al., 2003 und 2005), kam es zu einem beträchtlichen Fortschritt in diesem interessanten Gebiet der Neurowissenschaften. In der nachfolgenden Zeit wurden viele verschiedene optogenetische Werkzeuge beschrieben und zur Bearbeitung neurowissenschaftlicher Fragestellungen angewandt. Des Weiteren haben neben dem „klassischen“ Channelrhodopsin-2 (ChR2), ein im Wesentlichen Kation selektiver Kanal, auch modifizierte ChR2 Abkömmlinge, Anion selektive Kanäle und Licht sensitive metabotrope Proteine, die opotogenetische Werkzeugkiste erweitert. Dennoch greifen die meisten Wissenschaftler trotz der Vielfalt an optogenetischen Werkzeugen meist noch zu Channelrhodopsin-2, da seine Wirkungseigenschaften sehr gut erforscht sind. In der nachfolgenden Arbeit wird ein weiterentwickeltes Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), beschrieben. Aufgrund seiner vielfältigen Eigenschaften stellt es ein vielversprechendes Werkzeug dar, vor allem für zukünftige neurowissenschaftliche Forschungsarbeiten. Hierbei wurde ChR2XXM eingesetzt, um zu untersuchen welche Auswirkungen das Fehlen von Latrophilin im Chordotonal Organ von Drosophilalarven hat. Schließlich wurde noch die Funktionalität von GtACR an der neuromuskulären Endplatte der Drosophila überprüft. Für die umfassende Charakterisierung wurden elektrophysiologische und verhaltensbasierte Experimente an Larven durchgeführt. Es konnte gezeigt werden, dass ChR2XXM aufgrund einer erhöhten Affinität zu dem Chromophore Retinal, im Vergleich zu ChR2 ein besseres zelluläres Expressionsmuster, eine bessere zeitliche Auflösung und eine erheblich höhere Lichtsensitiviät aufweist. Durch den Einsatz von ChR2XXM konnte, aufgrund der hohen Lichtsensitiviät, mit nur minimalen Nebeneffekten, wie z.B. mögliche Wärmeaktivierung des Chordotonalorgans, der Einfluss von Latrophilin (dCIRL) auf die Signaltransmission im Chordotonalorgan, aufgeklärt werden. Ferner führte eine optogenetische, in vivo, Aktivierung des Chordotonalorgans zu Verhaltensänderungen. Zusätzlich konnte gezeigt werden, dass GtACR1 zwar effektiv motoneuronale Erregung inhibieren kann, dies aber von unerwarteten Nebeneffekten begleitet wird. Diese Ergebnisse zeigen auf, dass weitere Forschung und Verbesserungen im Bereich der optogenetischen Werkzeuge sehr wertvoll und notwendig ist, um Wissenschaftlern zu erlauben das am besten geeignetste optogenetische Werkzeug für ihre wissenschaftlichen Fragestellungen auswählen zu können. KW - Optogenetik KW - Taufliege KW - Elektrophysiologie KW - Channelrhodopsin-2 KW - optogenetics KW - Drosophila melanogaster KW - Channelrhodopsin KW - Electrophysiology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178793 ER -