TY - THES A1 - Esterlechner, Jasmina T1 - Role of the DREAM complex in mouse embryonic stem cells and identification of ZO-2 as a new LIN9 interacting protein T1 - Die Rolle des DREAM-Komplexes in embryonalen Stammzellen der Maus und Identifikation von ZO-2 als neues LIN9- interagierendes Protein N2 - The DREAM complex plays an important role in regulation of gene expression during the cell cycle. It was previously shown that the DREAM subunits LIN9 and B-MYB are required for early embryonic development and for the maintenance of the inner cell mass in vitro. In this work the effect of LIN9 or B-MYB depletion on embryonic stem cells (ESC) was examined. It demonstrates that LIN9 and B-MYB knock down changes the cell cycle distribution of ESCs and results in an accumulation of cells in G2 and M and in an increase of polyploid cells. By using genome-wide expression studies it was revealed that the depletion of LIN9 leads to downregulation of mitotic genes and to upregulation of differentiation-specific genes. ChIP-on chip experiments determined that mitotic genes are direct targets of LIN9 while lineage specific markers are regulated indirectly. Importantly, depletion of LIN9 does not alter the expression of the pluripotency markers Sox2 and Oct4 and LIN9 depleted ESCs retain alkaline phosphatase activity. I conclude that LIN9 is essential for proliferation and genome stability of ESCs by activating genes with important functions in mitosis and cytokinesis. The exact molecular mechanisms behind this gene activation are still unclear as no DREAM subunit features a catalytically active domain. It is assumed that DREAM interacts with other proteins or co-factors for transcriptional activation. This study discovered potential binding proteins by combining in vivo isotope labeling of proteins with mass spectrometry (MS) and further analysed the identified interaction of the tight junction protein ZO-2 with DREAM which is cell cycle dependent and strongest in S-phase. ZO-2 depletion results in reduced cell proliferation and decreased G1 gene expression. As no G2/M genes, typical DREAM targets, are affected upon ZO-2 knock down, it is unlikely that ZO-2 binding is needed for a functional DREAM complex. However, this work demonstrates that with (MS)-based quantitative proteomics, DREAM interacting proteins can be identified which might help to elucidate the mechanisms underlying DREAM mediated gene activation. N2 - Der DREAM Komplex spielt eine bedeutende Rolle in der Genregulation im Verlauf des Zellzyklus. Es wurde gezeigt, dass die DREAM Untereinheiten LIN9 und B-MYB für die frühe Embryogenese und den in vitro Erhalt der inneren Zellmasse erforderlich sind. In der vorligenden Arbeit wurde die Auswirkung von LIN9 und B-MYB Depletierung auf embryonale Stammzellen untersucht. Es zeigt sich, dass Depletion von LIN9 und B-MYB die Zellzyklus-Verteilung von embryonalen Stammzellen beeinflusst, zur Akkumulation der Zellen in G2 und M Phase und zu erhöhter Polyploidie führt. Genomweite Expressionsstudien ergaben, dass die Verringerung von LIN9 in der Runterregulierung von mitotischen und in der Hochregulierung von differenzierungsspezifischen Genen resultiert. ChIP-on-chip Experimente ermittelten, dass LIN9 Mitosegene als direkte Ziele hat, wohingegen entwicklungslinienspezifische Marker indirekt reguliert werden. Wesentlich ist, dass LIN9 Depletion nicht die Expression der Pluripotenzgene Oct4 oder Sox2 beeinflusst und embryonale Stammzellen ihre Alkaline Phosphatase Aktivität behalten. Daraus lässt schließen, dass LIN9 essentiell für die Proliferation und genomische Stabilität von embryonalen Stammzellen ist, in dem es Gene aktiviert, die wichtige Funktionen in Mitose und Zytokinese ausüben. Der exakte Mechanismus hinter der Genaktivierung ist noch nicht geklärt, da keine DREAM Untereinheit eine katalytisch aktive Domäne aufweist. Vermutlich ist die Interaktion mit weiteren Proteinen oder Co-Faktoren für die Genaktivierung vonnöten. Diese Studie entdeckte mit in vivo Isotop-Markierung von Proteinen und Massenspektrometrie (MS) potentielle Bindungspartner und untersuchte die identifizierte Bindung mit dem Tight Junction Protein ZO-2 genauer. Diese Bindung ist zellzyklus-abhängig und ist am stärksten während der S-Phase. ZO-2 Depletion führt zu reduzierter Zellproliferation und verringerter G1-Genexpression. Da keine G2/M Gene, typische DREAM Ziele, von einer ZO-2 Depletion beeinflusst werden, ist es unwahrscheinlich, dass die ZO-2 Bindung für einen funktionellen DREAM Komplex benötigt wird. Jedoch demonstriert diese Studie, dass mit (MS)-basierender, quantitativer Proteomik DREAM interagierende Proteine identifiziert werden können. Dies ist hilfreich um die Mechanismen hinter der DREAM vermittelten Genaktivierung aufzuklären. KW - Zellzyklus KW - cellcycle KW - Stammzelle KW - Maus KW - stem cells KW - DREAM KW - Genregulation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90440 ER - TY - THES A1 - Fackler, Marc T1 - Biochemical characterization of GAS2L3, a target gene of the DREAM complex T1 - Biochemische Charakterisierung von GAS2L3, ein Zielgen des DREAM Komplex N2 - GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment. N2 - GAS2L3 wurde vor kurzem als Zielgen des DREAM Komplex identifiziert (Reichert et al., 2010; Wolter et al., 2012). Es konnte gezeigt werden, dass die Expression von GAS2L3 Zellzyklus abhängig reguliert wird und dass Depletion des Proteins zu Fehlern in der Zytokinese und genomischer Instabilität führt (Wolter et al., 2012). Hauptziel dieser Doktorarbeit war es, GAS2L3 hinsichtlich seiner biochemischen Eigenschaften und physiologischer Funktion näher zu charakterisieren. Unter Verwendung verschiedener in vitro Experimente konnte gezeigt werden, dass GAS2L3 sowohl F-Aktin als auch Mikrotubuli binden, bündeln und quervernetzen kann. In vitro und in vivo Protein-Protein Interaktionsexperimente zeigten, dass GAS2L3 mit dem „chromosomal passenger complex“ (CPC), einem wichtigen Mitose- und Zytokineseregulator, interagiert und dass diese Interaktion durch die GAR Domäne von GAS2L3 und den C-Terminus von Borealin beziehungsweise den N-terminus von Survivin vermittelt wird. Phosphorylierungsexperimente zeigten deutlich, dass GAS2L3 kein Substrat des CPC ist, jedoch von CDK1 phosphoryliert wird. Zellbiologische Experimente belegten, dass Depletion von GAS2L3 mittels shRNA die Proteinstabilität und Aktivität des CPC beeinflusst. Experimente mit einem chemischen Aurora B Inhibitor dokumentierten, dass die verringerte CPC Aktivität nicht die Ursache der beobachteten Zytokinesefehler nach GAS2L3 Depletion ist. Immunfluoreszenzexperimente machten deutlich, dass GAS2L3 mit Hilfe des CPC an der Abschnürungszone lokalisiert wird und dass die Lokalisation abhängig von der GAR Domäne erfolgt. Mit Hilfe von SILAC in Kombination mit Tandem-Affinitätsaufreinigung und anschließender massenspektrometrischer Auswertung wurden neue Proteininteraktoren von GAS2L3 identifiziert. Protein-Protein Interaktionsexperimente bestätigten die massenspektrometrisch ermittelten Daten. Um die physiologische Funktion von GAS2L3 in vivo näher analysieren zu können, wurden verschiedene Knockout Mauslinien etabliert. Die nicht-konditionelle Mauslinie zeigte erhöhte Sterblichkeit vor dem Absetzalter wahrscheinlich verursacht durch Herzversagen. Die genaue physiologische Funktion von GAS2L3 und der Grund für den beobachteten Herzphänotyp sind momentan noch unbekannt. KW - Zellzyklus KW - Zellteilung KW - Cytoskeleton Chromosomal Passenger Complex Interaction GAR Domain KW - Regulation KW - Molekulargenetik KW - GAS2L3 KW - Chromosomal Passenger Complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103394 ER - TY - THES A1 - Kumari, Geeta T1 - Molecular Characterization of the Induction of Cell Cycle Inhibitor p21 in Response to Inhibition of the Mitotic Kinase Aurora B T1 - Untersuchungen zur Induktion des Zellzyklusinhibitors p21 nach Inhibition der Mitotischen Kinase Aurora B N2 - Aurora B ist eine mitotische Kinase, die entscheidende Funktionen in der Zellteilung ausübt. Aurora B ist außerdem in einer Vielzahl von Krebsarten mutiert oder überexprimiert. Daher ist die Aurora B Kinase ein attraktives Ziel für die Tumortherapie. Gegenwärtig werden Aurora B-Inhibitoren zur Behandlung von soliden Tumoren und Leukämien in verschiedenen klinischen Studien getestet. Es fehlen jedoch Informationen, welche molekularen Mechanismen den beschriebenen Phänotypen wie Zellzyklusarrest, Aktivierung des Tumorsuppressors p53 und seines Zielgens p21 nach Aurora B-Hemmung zugrunde liegen. Hauptziel dieser Arbeit war es die Mechanismen der p21-Induktion nach Hemmung von Aurora B zu untersuchen. Es konnte gezeigt werden, dass nach Hemmung von Aurora B die p38 MAPK phosphoryliert und somit aktiviert wird. Experimente mit p38-Inhbitoren belegen, dass p38 für die Induktion von p21 und den Zellzyklusarrest benötigt wird. Die Stabilisierung von p53 nach Aurora B-Inhibition und die Rekrutierung von p53 an den p21-Genpromotor erfolgen jedoch unabhängig vom p38-Signalweg. Stattdessen ist p38 für die Anreicherung der elongierenden RNA-Polymerase II in der kodierenden Region des p21-Gens und für die Bildung des p21 mRNA Transkripts notwendig. Diese Daten zeigen, dass p38 transkriptionelle Elongation des p21-Gens nach Aurora B Hemmung fördert. In weiteren Untersuchungen konnte ich zeigen, dass die Aurora B-Hemmung zu einer Dephosphorylierung des Retinoblastoma-Proteins führt und dadurch eine Abnahme der E2F-abhängigen Transkription bewirkt. Dies löst indirekt einen Zellzyklusarrest aus. Weiterhin konnte mit Hilfe von synchronisierten Zellen gezeigt werden, dass p21 nach Durchlaufen einer abnormalen Mitose induziert wird, jedoch nicht nach Aurora B-Hemmung in der Interphase. Interessanterweise werden p38, p53 und p21 schon bei partieller Inhibition von Aurora B aktiviert. Die partielle Inhibition von Aurora B führt zu chromosomaler Instabilität aber nicht zum Versagen der Zytokinese und zur Bildung polyploider Zellen. Damit korreliert die Aktivierung des p38-p53-p21-Signalweges nicht mit Tetraploidie sondern mit vermehrter Aneuploidie. Die partielle Hemmung von Aurora B führt außerdem zur vermehrten Entstehung von reaktive Sauerstoffspezies (ROS), welche für die Aktivierung von p38, p21 und für den Zellzyklusarrest benötigt werden. Basierend auf diesen Beobachtungen kann folgendes Modell postuliert werden: Die Hemmung von Aurora B führt zu Fehlern in der Chromosomenverteilung in der Mitose und damit zu Aneuploidie. Dies führt zu vermehrter Produktion von ROS, möglicherweise durch proteotoxischer Stress, hervorgerufen durch die Imbalanz der Proteinbiosynthese in aneuploiden Zellen. ROS bewirkt eine Aktivierung der p38 MAPK und trägt damit zur Induktion von p21 und dem resultierenden Zellzyklusarrest bei. Aneuploidie, proteotoxischer und oxidativer Stress stellen Schlüsselmerkmale von Tumorkrankungen dar. Anhand der Ergebnisse dieser Arbeit könnte die Kombination von Aurora B-Hemmstoffen mit Medikamenten, die gezielt aneuploide Zellen angreifen, in Tumorerkrankungen therapeutisch wirksam sein. N2 - Aurora B is a mitotic kinase that is essential for cell division. Because it is mutated or overexpressed in a range of cancer types, it has been suggested as a novel therapeutic target. Currently chemical inhibitors against Aurora B are in various phases of clinical trials for treatment of solid tumors and leukemia. Information regarding the molecular requirements for the reported phenotypes of Aurora B inhibition such as cell cycle arrest, activation of the tumor suppressor p53 and its target p21 are not well understood. In this study, I investigated the requirements for p21 induction after Aurora B inhibition. I found that p38 is phosphorylated and activated when Aurora B is inhibited. Experiments with chemical inhibitors against p38 indicate that p38 is required for p21 induction and cell cycle arrest in response to Aurora B inhibition. p53 induction after impairment of Aurora B function and the recruitment of p53 to its binding site in the p21 gene promoter occur independently of p38 signaling. Instead, I found that p38 is required for the enrichment of the elongating RNA Polymerase II in the coding region of the p21 gene. Furthermore, p38 is required for formation of the full-length p21 mRNA transcript. These data indicate that p38 promotes the transcriptional elongation of p21 gene in response to Aurora B inhibition. In further experiments I could show that the p21 causes cell cycle arrest due to a decrease in E2F-dependent transcription by promoting the dephosphorylation of the retinoblastoma protein. Using synchronized cells I could show that the induction of p21 in response to Aurora B inhibition requires transition through an aberrant mitosis and does not occur in cells that are arrested in interphase. Interestingly, p38, p53 and p21 are already induced by partial inhibition of Aurora B, which results in aneuploidy but not in cytokinesis failure and in tetraploidy. This supports the notion that activation of p38-p53-p21 signaling correlates with aneuploidy but not with tetraploidy or binucleation. Partial inhibition of Aurora B also leads to increased generation of reactive oxygen species (ROS), which are required for the activation of p38, p21 and cell cycle arrest. Based on these observations I propose the following model: Inhibition of Aurora B leads to chromosome missegregation resulting in aneuploidy. This results in increased generation of ROS (reactive oxygen species) possibly through proteotoxic stress caused by an imbalance of protein synthesis in aneuploid cells. ROS triggers the activation of p38, which then stimulates the transcriptional elongation of p21 resulting in cell cycle arrest. Aneuploidy, proteotoxic stress and oxidative stress are hallmarks of cancer cells. Based on my results reported in this study, I suggest that the combination of Aurora B inhibitors with drugs that specifically target aneuploid cells might be a novel strategy for cancer therapy, as this is a lethal combination for proliferation of cancer cells. KW - Zellzyklus KW - Biomedicine KW - Inhibitor KW - Cell Cycle KW - Aneuploidy KW - Aurora B Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101327 ER - TY - THES A1 - Wolter, Patrick T1 - Characterization of the mitotic localization and function of the novel DREAM target GAS2L3 and Mitotic kinesins are regulated by the DREAM complex, often up-regulated in cancer cells, and are potential targets for anti-cancer therapy T1 - Charakterisierung der mitotischen Lokalisation und Funktion von GAS2L3, eines kürzlich gefundenen Zielgens des DREAM Komplexes und Mitotische Kinesine werden vom DREAM Komplex reguliert, sind in Krebszellen häufig hochreguliert und sind potentielle Zielle für die Krebstherapie N2 - The recently discovered human DREAM complex (for DP, RB-like, E2F and MuvB complex) is a chromatin-associated pocket protein complex involved in cell cycle- dependent gene expression. DREAM consists of five core subunits and forms a complex either with the pocket protein p130 and the transcription factor E2F4 to repress gene expression or with the transcription factors B-MYB and FOXM1 to promote gene expression. Gas2l3 was recently identified by our group as a novel DREAM target gene. Subsequent characterization in human cell lines revealed that GAS2L3 is a microtubule and F-actin cross-linking protein, expressed in G2/M, plays a role in cytokinesis, and is important for chromosomal stability. The aim of the first part of the study was to analyze how expression of GAS2L3 is regulated by DREAM and to provide a better understanding of the function of GAS2L3 in mitosis and cytokinesis. ChIP assays revealed that the repressive and the activating form of DREAM bind to the GAS2L3 promoter. RNA interference (RNAi) mediated GAS2L3 depletion demonstrated the requirement of GAS2L3 for proper cleavage furrow ingression in cytokinesis. Immunofluorescence-based localization studies showed a localization of GAS2L3 at the mitotic spindle in mitosis and at the midbody in cytokinesis. Additional experiments demonstrated that the GAS2L3 GAR domain, a putative microtubule- binding domain, is responsible for GAS2L3 localization to the constriction zones in cytokinesis suggesting a function for GAS2L3 in the abscission process. DREAM is known to promote G2/M gene expression. DREAM target genes include several mitotic kinesins and mitotic microtubule-associated proteins (mitotic MAPs). However, it is not clear to what extent DREAM regulates mitotic kinesins and MAPs, so far. Furthermore, a comprehensive study of mitotic kinesin expression in cancer cell lines is still missing. Therefore, the second major aim of the thesis was to characterize the regulation of mitotic kinesins and MAPs by DREAM, to investigate the expression of mitotic kinesins in cancer cell line panels and to evaluate them as possible anti-cancer targets. ChIP assays together with RNAi mediated DREAM subunit depletion experiments demonstrated that DREAM is a master regulator of mitotic kinesins. Furthermore, expression analyses in a panel of breast and lung cancer cell lines revealed that mitotic kinesins are up-regulated in the majority of cancer cell lines in contrast to non-transformed controls. Finally, an inducible lentiviral-based shRNA system was developed to effectively deplete mitotic kinesins. Depletion of selected mitotic kinesins resulted in cytokinesis failures and strong anti-proliferative effects in several human cancer cell lines. Thus, this system will provide a robust tool for future investigation of mitotic kinesin function in cancer cells. N2 - Der vor kurzem entdeckte humane DREAM Komplex (für DP,RB ähnlich, E2F und MuvB Komplex) ist ein Chromatin bindender Pocket-Protein-Komplex involviert in Zellzyklusphase abhängiger Genregulation. DREAM besteht aus fünf Kernproteinen, die entweder zusammen mit dem Pocket-Protein p130 und dem Transkriptionsfaktor E2F4 die Genexpression reprimieren oder zusammen mit den Transkriptionsfaktoren B-MYB und FOXM1 die Genexpression fördern. GAS2L3 wurde vor kurzem als neues Zielgen des DREAM Komplexes identifiziert. Eine anschließende Charakterisierung in humanen Zelllinien offenbarte, dass GAS2L3 in der Lage ist, das F-Aktin und das Mikrotubuli Cytoskelett zu binden und zu vernetzen. Außerdem ist GAS2L3 speziell während der G2/M Phase exprimiert, spielt eine Rolle in der Cytokinese und ist wichtig für die genomische Integrität. Der erste Teil der Arbeit hatte zum Ziel zu ergründen in welcher Art und Weise DREAM GAS2L3 reguliert. Außerdem sollte das Verständnis der Rolle von GAS2L3 in der Cytokinese erweitert werden. Hierzu durchgeführte ChIP Analysen zeigten, dass sowohl der reprimierende als auch der aktivierende DREAM Komplex an den Promoter von GAS2L3 bindet. Experimente, in denen GAS2L3 durch RNA-Interferenz (RNAi) depletiert wurde, demonstrierten, dass GAS2L3 in der Cytokinese am Prozess der Einschnürung der Teilungsfurche beteiligt ist. Anschließende auf Immunfluoreszenzmikroskopie basierende Lokalisationsstudien zeigten, dass GAS2L3 an der mitotischen Spindel in der Mitose und am Midbody in der Cytokinese lokalisiert ist. Weiterführende Studien zeigten, dass die GAR Domäne von GAS2L3, eine mutmaßliche Mikrotubuli- Bindedomäne, für die Lokalisierung von GAS2L3 in der für die Abszission wichtigen Konstriktionszone verantwortlich ist. Dieses Ergebnis lässt vermuten, dass GAS2L3 eine Rolle in diesem Prozess spielt. Der DREAM Komplex ist bekannt dafür G2/M Genexpression zu fördern. G2/M Zielgene des Komplexes sind unter anderem mehrere mitotische Kinesine und mitotische Mikrotubuli-Bindeproteine. Bisher ist die Art und Weise und das Ausmaß der Regulierung dieser Proteingruppen durch DREAM aber nur ungenügend untersucht worden. Des Weiteren fehlt bisher eine umfassende Charakterisierung der Expression von mitotischen Kinesinen in Krebszellen. Deswegen befasste sich der zweite Teil der Arbeit mit der Charakterisierung der Regulation von mitotischen Kinesinen und Mikrotubuli-Bindeproteinen durch DREAM, untersuchte die Expression dieser beiden Proteingruppen in Krebszelllinien und evaluierte diese anschließend als potentielle Ziele für die Krebstherapie. Eine Kombination aus ChIP Analysen und RNAi Experimenten zeigte, dass DREAM eine zentrale Rolle in der Regulierung von mitotischen Kinesinen spielt. Expressions- analysen deckten auf, dass mitotische Kinesine in der Mehrheit der Krebszelllinien hochreguliert sind im Gegensatz zu den nicht entarteten Kontrollzelllinien. Schließlich wurde ein auf Lentiviren basierendes induzierbares shRNA System etabliert, welches mitotische Kinesine effektiv herunterregulieren konnte. Depletion ausgewählter mitotischer Kinesine führte zu Fehlern in der Cytokinese und hatte starke Auswirkungen auf das Wachstumsverhalten von mehreren Krebszelllinien. Aufgrund dieser Erkenntnisse wird das lentivirale System eine solide Ausgangsbasis für zukünftige Untersuchungen von mitotischen Kinesinen in Krebszellen bilden. KW - Zellzyklus KW - GAS2L3 KW - B-MYB KW - DREAM KW - cytokinesis KW - mitosis KW - kinesin KW - cancer KW - FOXM1 KW - regulation KW - Zellteilung KW - Regulation KW - Krebs KW - Biologie / Zellbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122531 ER - TY - THES A1 - Iltzsche, Fabian T1 - The Role of DREAM/MMB-mediated mitotic gene expression downstream of mutated K-Ras in lung cancer T1 - Die Rolle DREAM/MMB-vermittelter mitotischer Genexpression unterhalb von mutiertem K-Ras in Lungenkrebs N2 - The evolutionary conserved Myb-MuvB (MMB) multiprotein complex has an essential role in transcriptional activation of mitotic genes. MMB target genes as well as the MMB associated transcription factor B-Myb and FoxM1 are highly expressed in a range of different cancer types. The elevated expression of these genes correlates with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. Although MMB has been extensively characterized biochemically, the requirement for MMB to tumorigenesis in vivo remains largely unknown and has not been tested directly so far. In this study, conditional knockout of the MMB core member Lin9 inhibits tumor formation in vivo in a mouse model of lung cancer driven by oncogenic K-Ras and loss of p53. The incomplete recombination observed within tumors points towards an enormous selection pressure against the complete loss of Lin9. RNA interference (RNAi)-mediated depletion of Lin9 or the MMB associated subunit B-Myb provides evidence that MMB is required for the expression of mitotic genes in lung cancer cells. Moreover, it was demonstrated that proliferation of lung cancer cells strongly depends on MMB. Furthermore, in this study, the relationship of MMB to the p53 tumor suppressor was investigated in a primary lung cancer cell line with restorable p53 function. Expression analysis revealed that mitotic genes are downregulated after p53 re-expression. Moreover, activation of p53 induces formation of the repressive DREAM complex and results in enrichment of DREAM at mitotic gene promoters. Conversely, MMB is displaced at these promoters. Based on these findings the following model is proposed: In p53-negative cells, mitogenic stimuli foster the switch from DREAM to MMB. Thus, mitotic genes are overexpressed and may promote chromosomal instability and tumorigenesis. This study provides evidence that MMB contributes to the upregulation of G2/M phase-specific genes in p53-negative cells and suggests that inhibition of MMB (or its target genes) might be a strategy for treatment of lung cancer. N2 - Der evolutionär konservierte Myb-MuvB (MMB) Multiproteinkomplex hat eine wesentliche Rolle in der transkriptionellen Aktivierung mitotischer Gene. Zielgene des MMB sowie die MMB assoziierten Transkriptionsfaktoren B-Myb und FoxM1 sind hoch exprimiert in einer Bandbreite verschiedener Krebsarten. Die erhöhte Expression dieser Gene korreliert mit einem fortgeschrittenen Tumorstadium und einer geringen Prognose. Das weißt auf darauf hin, dass MMB an der Tumorentstehung beteiligt sein könnte indem es die Überexpression mitotischer Gene fördert. Obwohl MMB biochemisch eingehend untersucht wurde, ist die Erfordernis von MMB zur Tumorentstehung in vivo weitestgehend unbekannt und wurde bisher nicht direkt getestet. In dieser Studie hemmt der konditionale Knockout der MMB Kerneinheit Lin9 die Tumorbildung in vivo in einem Lungenkrebs-Mausmodell angetrieben durch onkogenes K-Ras und den Verlust von p53. Die unvollständige Rekombination welche in Tumoren beobachtet wurde deutet auf einen starken Selektionsdruck gegen den kompletten Verlust von Lin9 hin. Die Verminderung von Lin9 und der MMB- assoziierten Untereinheit B-Myb durch RNAi-Interferenz (RNAi) liefert Beweise dafür, dass MMB für die Expression mitotischer Gene in Lungenkrebszellen notwendig ist. Zudem wurde gezeigt, dass das Zellwachstum von Lungenkrebszellen stark von MMB abhängig ist. Weiterhin wurde der Zusammenhang zwischen MMB und dem p53-Tumorsuppressor in einer primären Lungenkrebszelllinie mit wiederherstellbarer p53-Funktion untersucht. Expressionsanalysen zeigen, dass mitotische Gene nach Re-expression von p53 runterreguliert werden. Außerdem induziert die Aktivierung von p53 die Bildung des repressiven DREAM-Komplexes und führt zu einer Anreicherung von DREAM an Promotoren mitotischer Gene. Im Gegenzug wird MMB an den Promotoren verdrängt. Basierend auf den Ergebnissen wird das folgende Model vorgeschlagen: In p53- negativen Zellen begünstigen mitogene Reize den Wechsel von DREAM zu MMB. Dadurch werden mitotische Gene überexprimiert und können so chromosomale Instabilität und Tumorentstehung fördern Diese Studie liefert Hinweise, dass MMB an der Hochregulation G2/M- Phasenspezifischer Gene in p53-negativen Zellen beteiligt ist und dass die Hemmung von MMB (oder seiner Zielgene) eine Strategie zur Behandlung von Lungenkrebs sein könnte. KW - Nicht-kleinzelliges Bronchialkarzinom (NSCLC) KW - Lungenkrebs KW - lung cancer KW - DREAM complex KW - MMB KW - K-Ras KW - mitotic gene expression KW - Mitose Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154108 ER - TY - THES A1 - Simon, Katja T1 - Identifying the role of Myb-MuvB in gene expression and proliferation of lung cancer cells T1 - Identifizierung der Rolle des Myb-MuvB in der Genexpression und der Proliferation von Lungenkrebszellen N2 - The evolutionary conserved Myb-MuvB (MMB) multiprotein complex is a transcriptional master regulator of mitotic gene expression. The MMB subunits B-MYB, FOXM1 as well as target genes of MMB are often overexpressed in different cancer types. Elevated expression of these genes correlates with an advanced tumor state and a poor prognosis for patients. Furthermore, it has been reported that pathways, which are involved in regulating the mitotic machinery are attractive for a potential treatment of cancers harbouring Ras mutations (Luo et al., 2009). This suggest that the MMB complex could be required for tumorigenesis by mediating overactivity of mitotic genes and that the MMB could be a useful target for lung cancer treatment. However, although MMB has been characterized biochemically, the contribution of MMB to tumorigenesis is largely unknown in particular in vivo. In this thesis, it was demonstrated that the MMB complex is required for lung tumorigenesis in vivo in a mouse model of non small cell lung cancer. Elevated levels of B-MYB, NUSAP1 or CENPF in advanced tumors as opposed to low levels of these proteins levels in grade 1 or 2 tumors support the possible contribution of MMB to lung tumorigenesis and the oncogenic potential of B-MYB.The tumor growth promoting function of B-MYB was illustrated by a lower fraction of KI-67 positive cells in vivo and a significantly high impairment in proliferation after loss of B-Myb in vitro. Defects in cytokinesis and an abnormal cell cycle profile after loss of B-Myb underscore the impact of B-MYB on proliferation of lung cancer cell lines. The incomplete recombination of B-Myb in murine lung tumors and in the tumor derived primary cell lines illustrates the selection pressure against the complete loss of B-Myb and further demonstrats that B-Myb is a tumor-essential gene. In the last part of this thesis, the contribution of MMB to the proliferation of human lung cancer cells was demonstrated by the RNAi-mediated depletion of B-Myb. Detection of elevated B-MYB levels in human adenocarcinoma and a reduced proliferation, cytokinesis defects and abnormal cell cycle profile after loss of B-MYB in human lung cancer cell lines underlines the potential of B-MYB to serve as a clinical marker. N2 - Der evolutionär konservierte Myb-MuvB (MMB) Multiproteinkomplex ist ein transkriptionaler Meisterregulator der mitotischen Genexpression. Die MMB Untereinheiten B-MYB, FOXM1 und ihre Zielgene sind oft überexprimiert in verschiedenen Krebsarten. Die erhöhte Expression dieser Gene korreliert mit einem fortgeschrittenen Tumorstadium und einer schlechten Prognose für Patienten. Außerdem wurde berichtet, dass Signalwege, die die Mitosemaschinerie betreffen, reizvoll sind als mögliches Target für die Behandlung von Ras mutierten Krebsarten (Lao et al., 2009). Dies weißt auf darauf hin, dass der MMB Komplex an der Tumorentstehung beteiligt sein könnte, indem er die Überexpression mitotischer Gene fördert und damit ein geeignetes Target zur Behandlung von Krebs darstellen könnte. Obwohl der MMB biochemisch eingehend untersucht wurde, ist die Beteiligung des MMB an der Tumorgenese weitestgehend unbekannt speziell in vivo. In dieser Doktorarbeit wurde anhand eines NSCLC Mausmodells gezeigt, dass der MMB für die Lungentumorgenese in vivo erforderlich ist. Erhöhte Level von B-MYB, NUSAP1 oder CENPF in fortgeschrittenen Tumoren und im Gegenzug niedrigen Leveln in Grad 1 und 2 Tumoren unterstreichen die mögliche Beteiligung des MMB an der Lungentumorgenese und das onkogene Potential von B-MYB. Die Tumorwachstum-fördernde Funktion von B-MYB wurde veranschaulicht durch eine geringere Anzahl an KI-67 positiven Zellen in vivo und einem signifikant hohen Beeinträchtigung der Proliferation nach dem Verlust von B-MYB in vitro. Defekte in der Zytokinese und ein abnormales Zellzyklusprofil nach dem Verlust von B-MYB heben den Einfluss von B-Myb auf die Proliferation von Lungenkrebszelllinien hervor. Die unvollständige Rekombination von B-Myb in murinen Lungentumoren und den daraus hergestellten primären Tumorzelllinien veranschaulichen den Selektionsdruck auf den kompletten Verlust von B-MYB und zeigen zusätzlich, dass B-MYB ein für den Tumor essentielles Gen ist. Im letzten Teil der Doktorarbeit konnte die Beteiligung des MMB auf die Proliferation auf Lungenkrebszellen gezeigt werden durch den Verlust von B-MYB durch RNAi-Interferenz (RNAi). Detektion erhöhter B-Myb Level in humanen Adenokarzinomen und eine verminderte Proliferation, Zytokinese-Defekte und ein abnormales Zellzyklusprofil nach B-MYB Verlust in humanen Lungenkrebszelllinien unterstreichen das Potential von B-MYB als klinischer Marker zu fungieren. KW - Lungenkrebs KW - MMB KW - B-MYB KW - K-RAS KW - lung cancer KW - Mitose KW - Nicht-kleinzelliges Bronchialkarzinom Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161814 ER - TY - THES A1 - Weinstock [geb. Pattschull], Grit T1 - Crosstalk between the MMB complex and YAP in transcriptional regulation of cell cycle genes T1 - Interaktion zwischen dem MMB-Komplex und YAP bei der transkriptionellen Regulation von Zellzyklusgenen N2 - The Myb-MuvB (MMB) multiprotein complex is a master regulator of cell cycle-dependent gene expression. Target genes of MMB are expressed at elevated levels in several different cancer types and are included in the chromosomal instability (CIN) signature of lung, brain, and breast tumors. This doctoral thesis showed that the complete loss of the MMB core subunit LIN9 leads to strong proliferation defects and nuclear abnormalities in primary lung adenocarcinoma cells. Transcriptome profiling and genome-wide DNA-binding analyses of MMB in lung adenocarcinoma cells revealed that MMB drives the expression of genes linked to cell cycle progression, mitosis, and chromosome segregation by direct binding to promoters of these genes. Unexpectedly, a previously unknown overlap between MMB-dependent genes and several signatures of YAP-regulated genes was identified. YAP is a transcriptional co-activator acting downstream of the Hippo signaling pathway, which is deregulated in many tumor types. Here, MMB and YAP were found to physically interact and co-regulate a set of mitotic and cytokinetic target genes, which are important in cancer. Furthermore, the activation of mitotic genes and the induction of entry into mitosis by YAP were strongly dependent on MMB. By ChIP-seq and 4C-seq, the genome-wide binding of MMB upon YAP overexpression was analyzed and long-range chromatin interaction sites of selected MMB target gene promoters were identified. Strikingly, YAP strongly promoted chromatin-association of B-MYB through binding to distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. Together, the findings of this thesis provide a so far unknown molecular mechanism by which YAP and MMB cooperate to regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways. N2 - Der Myb-MuvB (MMB) Multiproteinkomplex spielt eine wichtige Rolle in der Expression Zellzyklus abhängiger Gene, welche erhöhte Expressionsraten in verschiedenen Krebsarten aufweisen und Teil der sogenannten chromosomalen Instabilitätssignatur (CIN) von Lungen-, Gehirn- und Brusttumoren sind. In dieser Arbeit konnte gezeigt werden, dass die Deletion von LIN9, einer zentralen Untereinheit des MMB-Komplexes, in primären Lungenkarzinomzellen der Maus zu starken Proliferationsdefekten und Anomalitäten des Zellkerns führt. Analysen des gesamten Transkriptoms mit Hilfe von RNA-Seq ergaben, dass der MMB-Komplex die Expression einer Gruppe von Genen reguliert, die mit dem Voranschreiten des Zellzyklus, der Mitose und der Trennung der Chromosomen in Verbindung stehen. Die Regulation dieser Gene erfolgt durch direkte Bindung des MMB-Komplexes an die dazugehörigen Promotoren, wie die Analyse der genomweiten DNA-Bindung des MMB-Komplexes durch ChIP-Seq erkennbar werden ließ. Weiterhin wurde in dieser Arbeit eine neuartige Interaktion zwischen MMB und YAP, einem transkriptionellen Co-Aktivator und Effektorprotein des Hippo-Signalweges, gefunden. Die Dysregulation von Hippo/YAP ist an der Entstehung verschiedener Tumorentitäten beteiligt. Die Ergebnisse dieser Arbeit zeigen, dass YAP mit Untereinheiten von MMB interagiert und dass beide Signalwege ein überlappendes Set von Zielgenen, die für die Entstehung von Tumoren relevant sind, regulieren. Es konnte außerdem nachgewiesen werden, dass YAP den MMB-Komplex benötigt, um die Expression mitotischer Gene zu aktivieren und dass der durch YAP induzierte Eintritt in die Mitose vom MMB-Komplex abhängig ist. In einem weiteren Teil der Arbeit wurden mittels ChIP-Seq und 4C-Seq Chromatin-Interaktionen von Promotoren der MMB-Zielgene mit weiter entfernt liegenden Bereichen des Genoms identifiziert. Hierbei konnte festgestellt werden, dass YAP die Bindung der MMB-Untereinheit B-MYB an die Promotoren der MMB-Zielgene verstärkt, indem es an weiter entfernte Enhancer bindet. Diese von YAP gebundenen Enhancer interagieren über Schleifenbildung des Chromatins mit den Promotoren MMB-regulierter Gene. Zusammengefasst konnten die Ergebnisse dieser Arbeit einen bisher unbekannten molekularen Mechanismus für die gemeinsame Regulation von Genen durch den MMB Komplex und YAP enthüllen und somit einen Zusammenhang zwischen zwei krebsrelevanten Signalwegen aufdecken. KW - Krebs KW - Zellteilung KW - Genexpression KW - MMB complex KW - Hippo pathway KW - mitosis KW - cytokinesis KW - mitotic gene expression KW - Lungenkrebs KW - Mitose Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170866 ER - TY - THES A1 - Gründl, Marco T1 - Biochemical characterization of the MMB-Hippo crosstalk and its physiological relevance for heart development T1 - Biochemische Charakterisierung des MMB-Hippo Signalweges und dessen physiologische Rolle in der Herzentwicklung N2 - The Myb-MuvB (MMB) complex plays an essential role in the time-dependent transcriptional activation of mitotic genes. Recently, our laboratory identified a novel crosstalk between the MMB-complex and YAP, the transcriptional coactivator of the Hippo pathway, to coregulate a subset of mitotic genes (Pattschull et al., 2019). Several genetic studies have shown that the Hippo-YAP pathway is essential to drive cardiomyocyte proliferation during cardiac development (von Gise et al., 2012; Heallen et al., 2011; Xin et al., 2011). However, the exact mechanisms of how YAP activates proliferation of cardiomyocytes is not known. This doctoral thesis addresses the physiological role of the MMB-Hippo crosstalk within the heart and characterizes the YAP-B-MYB interaction with the overall aim to identify a potent inhibitor of YAP. The results reported in this thesis indicate that complete loss of the MMB scaffold protein LIN9 in heart progenitor cells results in thinning of ventricular walls, reduced cardiomyocyte proliferation and early embryonic lethality. Moreover, genetic experiments using mice deficient in SAV1, a core component of the Hippo pathway, and LIN9-deficient mice revealed that the correct function of the MMB complex is critical for proliferation of cardiomyocytes due to Hippo-deficiency. Whole genome transcriptome profiling as well as genome wide binding studies identified a subset of Hippo-regulated cell cycle genes as direct targets of MMB. By proximity ligation assay (PLA), YAP and B-MYB were discovered to interact in embryonal cardiomyocytes. Biochemical approaches, such as co-immunoprecipitation assays, GST-pulldown assays, and µSPOT-based peptide arrays were employed to characterize the YAP-B-MYB interaction. Here, a PY motif within the N-terminus of B-MYB was found to directly interact with the YAP WW-domains. Consequently, the YAP WW-domains were important for the ability of YAP to drive proliferation in cardiomyocytes and to activate MMB target genes in differentiated C2C12 cells. The biochemical information obtained from the interaction studies was utilized to develop a novel competitive inhibitor of YAP called MY-COMP (Myb-YAP competition). In MY-COMP, the protein fragment of B-MYB containing the YAP binding domain is fused to a nuclear localization signal. Co-immunoprecipitation studies as well as PLA revealed that the YAP-B-MYB interaction is robustly blocked by expression of MY-COMP. Adenoviral overexpression of MY-COMP in embryonal cardiomyocytes suppressed entry into mitosis and blocked the pro-proliferative function of YAP. Strikingly, characterization of the cellular phenotype showed that ectopic expression of MY-COMP led to growth defects, nuclear abnormalities and polyploidization in HeLa cells. Taken together, the results of this thesis reveal the mechanism of the crosstalk between the Hippo signaling pathway and the MMB complex in the heart and form the basis for interference with the oncogenic activity of the Hippo coactivator YAP. N2 - Der Myb-MuvB Komplex spielt eine essenzielle Rolle in der transkriptionellen Aktivierung von Zellzyklusgenen. Unser Labor hat kürzlich einen bis dahin unbekannten Mechanismus zwischen dem MMB-Komplex und Hippo-YAP Signalweg, der zur Aktivierung von Mitosegenen beiträgt, identifiziert. Der Hippo-YAP Signalweg ist beteiligt an der Gewebehomöostase und am Wachstum von Organen. So reguliert der Hippo-YAP Signalweg zum Beispiel während der Herzentwicklung die Proliferation von Herzmuskelzellen. Der exakte Mechanismus wie YAP die Zellteilung von Kardiomyozyten aktiviert, ist jedoch bisher nicht bekannt. In der vorliegenden Doktorarbeit wird das Zusammenspiel zwischen dem Hippo-Signalweg und dem MMB-Komplex im Herzen untersucht. Außerdem wird die Interaktion zwischen YAP und B-MYB biochemisch charakterisiert, um einen Inhibitor zu entwickeln, der die Aktivität von YAP vermindert. Die Ergebnisse dieser Doktorarbeit zeigen, dass der Verlust der zentralen Untereinheit des MMB-Komplexes, LIN9, in Vorläuferzellen der Kardiomyozyten zu einer Reduktion der Herzwand sowie zu einer niedrigeren Proliferationsrate von Herzmuskelzellen und einer erhöhten Embryonalsterblichkeit führt. Außerdem wurde in genetischen Experimenten mit Hippo- und LIN9-defizienten Mäusen gezeigt, dass der MMB-Komplex wichtig für die Aktivierung der Proliferation in Hippo-defizienten Kardiomyozyten ist. Eine globale Analyse der Transkription und Chromatinbindung von YAP und LIN9 im Herzen zeigte, dass eine Untergruppe von Zellzyklusgenen, die nach Inaktivierung des Hippo-Signalwegs vermehrt exprimiert werden, gleichzeitig den MMB-Komplex am Promoter gebunden haben. Durch Interaktionsstudien konnte gezeigt werden, dass YAP und B-MYB in embryonalen Kardiomyozyten miteinander interagieren. Die Bindung der beiden Transkriptionsfaktoren wurde durch Co-Immunpräzipitation, GST-Pulldown-Analysen und Peptid-Arrays biochemisch untersucht. Dabei wurde gezeigt, dass ein PY-Motiv im N-terminus von B-MYB direkt an die WW-Domänen von YAP bindet. Im Umkehrschluss wurde festgestellt, dass die WW-Domänen von YAP essenziell sind, um sowohl die Proliferation in Herzmuskelzellen als auch die Expression von Mitosegenen in differenzierten C2C12 Zellen zu aktivieren. Letztendlich wurden die Ergebnisse der Interaktionsstudie genutzt, um einen neuartigen kompetitiven Inhibitor von YAP zu entwickeln. Für MY-COMP (Myb-YAP Competition) wurde der Proteinabschnitt von B-MYB, der die YAP Bindedomäne enthält, mit einer Kernlokalisierungssequenz fusioniert. Bindestudien zeigten, dass MY-COMP die Interaktion zwischen YAP und B-MYB effektiv blockiert. Eine durch Adenoviren vermittelte Überexpression von MY-COMP in embryonalen Herzmuskelzellen resultierte in einer verminderten Anzahl von mitotischen Zellen. Somit wird durch Expression von MY-COMP, die proliferative Fähigkeit von YAP vermindert. Interessanterweise wurden in HeLa Zellen, die mit MY-COMP behandelt wurden, vermehrt Abnormalitäten der Zellkerne, polyploide Zellen sowie ein Wachstumsdefizit beobachtet. Zusammengefasst verdeutlichen die Ergebnisse dieser Doktorarbeit die Bedeutung des Zusammenspiels zwischen dem MMB-Komplex und dem Hippo-YAP-Signalweg für die Herzentwicklung und bilden die Grundlage, für die effektive Inhibierung der onkogenen Eigenschaften des Hippo-Coaktivators YAP. KW - Zellzyklus KW - Heart development KW - Hippo pathway KW - Myb-MuvB complex KW - Cardiomyocyte Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213328 ER - TY - THES A1 - Kalb, Jacqueline T1 - The role of BRCA1 and DCP1A in the coordination of transcription and replication in neuroblastoma T1 - Die Rolle von BRCA1 und DCP1A in der Koordination von Transkription und Replikation im Neuroblastom N2 - The deregulation of the MYC oncoprotein family plays a major role in tumorigenesis and tumour maintenance of many human tumours. Because of their structure and nuclear localisation, they are defined as undruggable targets which makes it difficult to find direct therapeutic approaches. An alternative approach for targeting MYC-driven tumours is the identification and targeting of partner proteins which score as essential in a synthetic lethality screen. Neuroblastoma, an aggressive entity of MYCN-driven tumours coming along with a bad prognosis, are dependent on the tumour suppressor protein BRCA1 as synthetic lethal data showed. BRCA1 is recruited to promoter regions in a MYCN-dependent manner. The aim of this study was to characterise the role of BRCA1 in neuroblastoma with molecular biological methods. BRCA1 prevents the accumulation of RNA Polymerase II (RNAPII) at the promoter region. Its absence results in the formation of DNA/RNA-hybrids, so called R-loops, and DNA damage. To prevent the accumulation of RNAPII, the cell uses DCP1A, a decapping factor known for its cytoplasmatic and nuclear role in mRNA decay. It is the priming factor in the removal of the protective 5’CAP of mRNA, which leads to degradation by exonucleases. BRCA1 is necessary for the chromatin recruitment of DCP1A and its proximity to RNAPII. Cells showed upon acute activation of MYCN a higher dependency on DCP1A. Its activity prevents the deregulation of transcription and leads to proper coordination of transcription and replication. The deregulation of transcription in the absence of DCP1A results in replication fork stalling and leads to activation of the Ataxia telangiectasia and Rad3 related (ATR) kinase. The result is a disturbed cell proliferation to the point of increased apoptosis. The activation of the ATR kinase pathway in the situation where DCP1A is knocked down and MYCN is activated, makes those cells more vulnerable for the treatment with ATR inhibitors. In summary, the tumour suppressor protein BRCA1 and the decapping factor DCP1A, mainly known for its function in the cytoplasm, have a new nuclear role in a MYCN-dependent context. This study shows their essentiality in the coordination of transcription and replication which leads to an unrestrained growth of tumour cells if uncontrolled. N2 - Die MYC Onkoproteine spielen in einer Vielzahl humaner Tumore eine entscheidende Rolle und sind in fast allen Fällen dereguliert. Aufgrund ihrer Struktur und Lokalisation im Zellkern gelten sie für die Arzneimittelentwicklung als therapeutisch schwer angreifbar. Der Ansatz der synthetischen Lethalität ist es, Partnerproteine zu finden, die gerade für MYC-getriebene Tumore essenziell sind und diese zu inhibieren. Neuroblastome, die in einer besonders aggressiven Entität durch eine MYCN-Amplifikation getrieben sind und damit mit einer schlechten Prognose einhergehen, sind abhängig vom Tumorsupressor BRCA1, wie Daten zur synthetischen Lethalität zeigten. BRCA1 wird in Abhängigkeit von MYCN zu Promotoren rekrutiert. Diese Arbeit diente daher der Charakterisierung der Funktionalität von BRCA1 im Neuroblastom. BRCA1 verhindert die Akkumulation von RNA Polymerase II (RNAPII) in der Promoterregion. Ist BRCA1 nicht präsent, führt dies zur Bildung von DNA/RNA-Hybriden, sogenannten R-loops, und zu DNA Schäden. Um die Akkumulation von RNAPII zu verhindern, nutzt die Zelle DCP1A, einen Decapping Faktor, der sowohl im Cytoplasma als auch im Nukleus eine Rolle im mRNA Abbau spielt. DCP1A entfernt den schützenden 5’CAP der mRNA, wodurch diese von Exonukleasen abgebaut wird. BRCA1 ist notwendig für die Chromatin Bindung von DCP1A und die Rekrutierung zu RNAPII. Zellen mit einer akuten Aktivierung des MYCN Onkoproteins zeigen eine erhöhte Abhängigkeit von DCP1A. DCP1A verhindert eine Deregulation der Transkription, um Transkription mit Replikation erfolgreich zu koordinieren. Andernfalls führt dies beim Verlust von DCP1A zur Blockierung von Replikationsgabeln und der Aktivierung der Ataxia telangiectasia and Rad3 related (ATR) Kinase führt. In der Folge ist das Zellwachstum gestört und Zellen gehen vermehrt in Apoptose. Die Aktivierung des ATR Signalweges beim Verlust von DCP1A und MYCN Aktivierung verhindert vorerst den Zelltod, wodurch diese Zellen jedoch sensitiver auf die Inhibition von ATR reagieren. Zusammenfassend lässt sich sagen, dass BRCA1 als Tumorsupressor und DCP1A als Decapping Faktor, hauptsächlich beschrieben als cytoplasmatisches Protein, eine entscheidende nukleäre Rolle in der Situation einer akuten Aktivierung von MYCN spielen. Dort sind sie essenziell um Transkription mit Replikation zu koordinieren und damit zu einem ungebremsten Wachstum der Tumorzellen beizutragen. KW - Neuroblastom KW - N-Myc KW - Gen BRCA 1 KW - Transkription KW - neuroblastoma KW - BRCA1 KW - Decapping KW - MYCN KW - transcription/replication conflicts Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248711 ER - TY - THES A1 - Jiménez Martín, Ovidio Manuel T1 - Analysis of MYCN and MAX alterations in Wilms Tumor T1 - Analyse von MYCN- und MAX-Verändungen im Wilms Tumor N2 - Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. The proto-oncogene MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools. These mutations have been reported in several other cancers and remain to be functionally characterized. In order to further describe these events in WT, we screened both mutations in a large cohort of unselected WT patients, to check for an association of the mutation status with certain histological or clinical features. MYCN P44L and MAX R60Q revealed frequencies of 3 % and 0.9 % and also were significantly associated to higher risk of relapse and metastasis, respectively. Furthermore, to get a better understanding of the MAX mutational landscape in WT, over 100 WT cases were analyzed by Sanger sequencing to identify other eventual MAX alterations in its coding sequence. R60Q remained the only MAX CDS alteration described in WT to date. To analyze the potential functional consequences of these mutations, we used a doxycycline-inducible system to overexpress each mutant in HEK293 cells. This biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. However, we could identify a number of novel N-MYC partner proteins, several of these known for their oncogenic potential. Their correlated expression in WT samples suggested a role in WT oncogenesis and they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT. N2 - Der Wilms Tumor (WT) ist der im Kindesalter am häufigsten auftretende Nierentumor. Neben anderen genetischen Veränderungen, wurden MYCN-Kopienzahlgewinn und der MYCN P44L- und MAX R60Q-Mutationen in WT identifiziert. Das Proto-Onkogen MYCN kodiert einen Transkriptionsfaktor, der eine Dimerisierung mit MAX erfordert, um die Transkription zahlreicher Zielgene zu aktivieren. Der MYCN-Gewinn wurde mit einer negativen Prognose assoziiert. Die MYCN P44L- und MAX R60Q-Mutationen, die sich entweder in der transaktivierenden oder in der basischen Helix-Loop-Helix-Domäne befinden, wurden durch verschiedene pathogene Vorhersage-Werkzeuge als schädigend prognostiziert. Über diese Mutationen wird bei mehreren anderen Krebsformen berichtet, doch sie wurden noch nicht umfassend biochemisch charakterisiert. Um diese Vorgänge in WT weitergehend zu charakterisieren, untersuchten wir beide Mutationen in einer großen Gruppe zufällig ausgewählter WT-Patienten mit dem Ziel, einen Zusammenhang zwischen dem Mutationsstatus und gewissen histologischen und klinischen Eigenschaften zu überprüfen. MYCN P44L und MAX R60Q ergaben eine Frequenz von 3 % bzw. 0,9 % in WT und wurden jeweils mit einem signifikant höheren Rückfall- und Metastasierungsrisiko assoziiert. Um ein besseres Verständnis der MAX-Mutationsszenarien in WT zu erlangen, wurden darüber hinaus mehr als einhundert WT-Fälle durch Sanger-Sequenzierung analysiert, mit dem Ziel, andere mögliche Veränderungen in der MAX-Kodierungssequenz zu identifizieren. R60Q blieb dabei die einzige bis heute beschriebene Veränderung der MAX-Kodierungssequenz in WT. Um die potentiellen funktionalen Folgen dieser Mutationen zu untersuchen, nutzten wir ein Doxycyclin-induziertes System, um eine Überexprimierung jedes Mutanten in HEK293-Zellen zu erzielen. Diese biochemische Charakterisierung identifizierte ein reduziertes Transkriptionsaktivierungspotential für MAX R60Q, während die MYCN P44L-Mutation das Aktivierungspotential oder die Proteinstabilität nicht veränderte. Das N-MYC Interaktom wurde während der Massenspektrometrie-Analyse von gereinigten N-MYC-Komplexen ebenfalls nicht verändert. Jedoch konnten wir eine Anzahl von neuartigen N-MYC Partnerproteinen bestimmen, von denen einige für ihr onkogenes Potenzial bekannt sind. Deren korrelierte Expression in WT-Proben deuteten auf eine Rolle bei der WT Onkogenese hin und erweitern die Auswahl potentieller Biomarker für die Stratifizierung von WTs und Gentargeting, insbesondere bei Hochrisiko-WTs. KW - Nephroblastom KW - Genmutation KW - Wilms Tumor KW - MYCN KW - MAX KW - Mutation KW - Protein interactor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242919 ER -