TY - THES A1 - Schenk [née Wolf], Mariela T1 - Timing of wild bee emergence: mechanisms and fitness consequences T1 - Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen N2 - Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. N2 - Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können. KW - wild bees KW - timing KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161565 ER - TY - THES A1 - Joschinski, Jens T1 - Is the phenology of pea aphids (\(Acyrthosiphon\) \(pisum\)) constrained by diurnal rhythms? T1 - Wird die Phänologie der Erbsenblattlaus (\(Acyrthosiphon\) \(pisum\)) durch Tag-/Nachtrhythmik limitiert? N2 - The rotation of the earth leads to a cyclic change of night and day. Numerous strategies evolved to cope with diurnal change, as it is generally advantageous to be synchronous to the cyclic change in abiotic conditions. Diurnal rhythms are regulated by the circadian clock, a molecular feedback loop of RNA and protein levels with a period of circa 24 hours. Despite its importance for individuals as well as for species interactions, our knowledge of circadian clocks is mostly confined to few model organisms. While the structuring of activity is generally adaptive, a rigid temporal organization also has its drawbacks. For example, the specialization to a diurnal pattern limits the breadth of the temporal niche. Organisms that are adapted to a diurnal life style are often poor predators or foragers during night time, constraining the time budget to only diurnal parts of the day/night cycle. Climate change causes shifts in phenology (seasonal timing) and northward range expansions, and changes in season or in latitude are associated with novel day length – temperature correlations. Thus, seasonal organisms will have some life history stages exposed to novel day lengths, and I hypothesized that the diurnal niche determines whether the day length changes are beneficial or harmful for the organism. I thus studied the effects of day length on life-history traits in a multi-trophic system consisting of the pea aphid Acyrthosiphon pisum and predatory larvae of Chrysoperla carnea (common green lacewing) and Episyrphus balteatus (marmalade hoverfly). In order to identify the mechanisms for phenological constraints I then focused on diurnal rhythms and the circadian clock of the pea aphid. Aphids reacted to shorter days with a reduced fecundity and shorter reproductive period. Short days did however not impact population growth, because the fitness constraints only became apparent late in the individual’s life. In contrast, E. balteatus grew 13% faster in the shorter day treatment and preyed on significantly more aphids, whereas C. carnea grew 13% faster under longer days and the elevation of predation rates was marginally significant. These results show that day length affects vital life-history traits, but that the direction and effect size depends on species. I hypothesized that the constraints or fitness benefits are caused by a constricted or expanded time budget, and hence depend on the temporal niche. E. balteatus is indeed night-active and C. carnea appears to be crepuscular, but very little data exists for A. pisum. Hence, I reared the pea aphid on an artificial diet and recorded survival, moulting and honeydew excretion. The activity patterns were clearly rhythmic and molting and honeydew excretion were elevated during day-time. Thus, the diurnal niche could explain the observed, but weak, day length constraints of aphids. The diurnal niche of some organisms is remarkably flexible, and a flexible diurnal niche may explain why the day length constrains were relatively low in A. pisum. I thus studied its circadian clock, the mechanism that regulates diurnal rhythms. First, I improved an artificial diet for A. pisum, and added the food colorant Brilliant Blue FCF. This food colorant stained gut and honeydew in low concentration without causing mortalities, and thus made honeydew excretion visible under dim red light. I then used the blue diet to raise individual aphids in 16:08 LD and constant darkness (DD), and recorded honeydew excretion and molting under red light every three hours. In addition, we used a novel monitoring setup to track locomotor activity continuously in LD and DD. Both the locomotor rhythm and honeydew excretion of A. pisum appeared to be bimodal, peaking in early morning and in the afternoon in LD. Both metabolic and locomotor rhythm persisted also for some time under constant darkness, indicating that the rhythms are driven by a functional circadian clock. However, the metabolic rhythm damped within three to four days, whereas locomotor rhythmicity persisted with a complex distribution of several free-running periods. These results fit to a damped circadian clock that is driven by multiple oscillator populations, a model that has been proposed to link circadian clocks and photoperiodism, but never empirically tested. Overall, my studies integrate constraints in phenological adaptation with a mechanistic explanation. I showed that a shorter day length can constrain some species of a trophic network while being beneficial for others, and linked the differences to the diurnal niche of the species. I further demonstrated that a flexible circadian clock may alleviate the constraints, potentially by increasing the plasticity of the diurnal niche. N2 - Die Rotation der Erde bedingt den zyklischen Wechsel von Tag und Nacht. Verschiedene Anpassungen an den täglichen Wechsel evolvierten, da es generell von Vorteil ist, mit der abiotischen Umwelt synchron zu sein. Die Tagesrhythmik wird von der circadianen Uhr reguliert, einem molekularen Rückkopplungsmechanismus auf RNA- und Protein- Ebene mit einer Periode von etwa 24 Stunden. Trotz der Bedeutung der circadianen Uhr, sowohl für Individuen als auch für Wechselwirkungen mit anderen Arten, ist unser Wissen auf wenige Modellorganismen beschränkt. Während die Strukturierung von Aktivitätsmustern im Wesentlichen adaptiv ist, kann eine strenge zeitliche Organisation auch Nachteile mit sich bringen. Zum Beispiel limitiert die Spezialisierung auf ein Aktivitätsmuster die Breite der zeitlichen Nische. So können tagaktive Organismen häufig nur schlecht in Dunkelheit Nahrung finden, so dass das Zeitbudget von der Tageszeit begrenzt wird. Der Klimawandel führt zu Veränderungen der Phänologie (saisonales Timing) und zur Ausbreitung der Arten Richtung Norden, und Veränderungen in der Phänologie oder im Breitengrad sind mit neuen Korrelationen von Tageslänge und Temperatur verknüpft. Daher werden einige Stadien im Lebenszyklus saisonaler Organismen neuen Tageslängen ausgesetzt. Ich habe die Hypothese aufgestellt, dass die zeitliche Nische bestimmt, ob Veränderungen in der Tageslänge für den Organismus von Vorteil oder von Nachteil sind. Daher untersuchte ich die Effekte von Tageslängen auf den Lebenszyklus von Arten in einem multi-trophischen System, bestehend aus der Erbsenblattlaus, Acyrthosiphon pisum und räuberisch lebenden Larven von Chrysoperla carnea (Gemeine Florfliege) und Episyrphus balteatus (Hainschwebfliege). Um die Mechanismen der Einschränkungen in der Phänologie zu verstehen, untersuchte ich anschließend die Tagesrhythmik und die circadiane Uhr der Erbsenblattlaus. Die Blattläuse haben auf Kurztagbedingungen mit einer niedrigeren Fruchtbarkeit und kürzerer Reproduktionsspanne reagiert. Kurze Tage haben jedoch nicht das Populationswachstum beeinflusst, da die Leistungseinbußen erst spät im Leben des Individuums in Erscheinung traten. Im Gegensatz zur Erbsenblattlaus entwickelte sich E. balteatus 13 % schneller unter Kurztagbedingungen und erbeutete signifikant mehr Blattläuse, während C. carnea sich 13% schneller unter Langtagbedingungen entwickelte und marginal höhere Prädationsraten erreichte. Diese Ergebnisse verdeutlichen, dass die Tageslänge wichtige Aspekte der Biologie von Organismen beeinflusst, aber dass die Richtung und Bedeutung von Art zu Art unterschiedlich ist. Ich nahm an, dass die Einschränkungen oder Vorteile durch ein verkleinertes oder vergrößertes Zeitbudget bestimmt werden und daher von der zeitlichen Nische abhängen. E. balteatus ist tatsächlich nachtaktiv, während C. carnea dämmerungsaktiv zu sein scheint. Für A. pisum existieren hingegen nur unzureichende Daten. Daher züchtete ich A. pisum auf künstlichem Futter und nahm Überlebensraten, Häutung und Honigtau-Exkretion auf. Die Aktivitätsmuster waren deutlich rhythmisch, und Häutung und Honigtau-Exkretion waren tagsüber erhöht. Daher kann die Einnischung auf Tagaktivität die beobachteten (aber schwachen) Nachteile kurzer Tage erklären. Die zeitliche Nische einiger Organismen ist überraschend flexibel, und eine flexible zeitliche Nische könnte erklären warum der Effekt der Tageslänge relativ niedrig in A. pisum war. Daher untersuchte ich die circadiane Uhr der Erbsenblattlaus, da dieser Mechanismus die Aktivitätsmuster reguliert. Zunächst verbesserte ich das künstliche Futter von A. pisum, und fügte den Lebensmittelfarbstoff Brilliant Blue FCF hinzu. Dieser Farbstoff färbte sowohl Magen als auch Honigtau in niedriger Konzentration ohne die Mortalität zu erhöhen, und machte dadurch die Exkretion von Honigtau unter schwachem Rotlicht sichtbar. Ich nutzte anschließend das blaue Futter, um Blattläuse einzeln in 16:08 LD und konstanter Dunkelheit (DD) aufzuziehen und dabei Honigtau-Exkretion und Häutungen alle drei Stunden zu notieren. Zusätzlichen nutzten wir ein neues Überwachungssystem um Aktivitätsmuster in Lokomotion kontinuierlich in LD und DD aufzuzeichnen. Sowohl Lokomotionsrhythmik als auch Honigtau-Exkretion von A. pisum schienen bimodal zu sein und erreichten früh morgens und nachmittags ihre Maximalwerte in LD. Beide Rhythmen bestanden auch unter konstanter Dunkelheit einige Zeit fort, was aufzeigt, dass die Rhythmen von einer funktionierenden inneren Uhr gesteuert werden. Die Rhythmik im Metabolismus dämpfte jedoch innerhalb von drei bis vier Tagen aus, während die Lokomotionsrhythmik mit einer komplexen Verteilung verschiedener free-running-Perioden fortbestand. Diese Ergebnisse passen zu einer gedämpften circadianen Uhr, die aus mehreren Oszillatorgruppen besteht. Ein solches Modell wurde vorgeschlagen, um circadiane Uhren mit Messungen der Photoperiode zu verknüpfen, aber nie empirisch überprüft. Insgesamt verbinden meine Versuche die Einschränkungen phänologischer Anpassung mit einer mechanistischen Erklärung. Ich zeigte, dass kürzere Tage einigen Arten eines trophischen Netzwerks Vorteile, anderen jedoch Nachteile verschafften, und habe diese Unterschiede auf die zeitliche Nische der Arten zurückgeführt. Ich habe weiterhin gezeigt, dass eine flexible circadiane Uhr die Nachteile lindern kann, möglicherweise weil sie die Plastizität der zeitlichen Nische erhöht. KW - Tagesrhythmus KW - Phänologie KW - pea aphid KW - artificial diet KW - Acyrthosiphon pisum Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148099 ER - TY - THES A1 - Leidinger, Ludwig Klaus Theodor T1 - How genomic and ecological traits shape island biodiversity - insights from individual-based models T1 - Einflüsse genomischer und ökologischer Arteigenschaften auf die Biodiversität von Inseln - Erkenntnisse aus individuenbasierten Modellen N2 - Life on oceanic islands provides a playground and comparably easy\-/studied basis for the understanding of biodiversity in general. Island biota feature many fascinating patterns: endemic species, species radiations and species with peculiar trait syndromes. However, classic and current island biogeography theory does not yet consider all the factors necessary to explain many of these patterns. In response to this, there is currently a shift in island biogeography research to systematically consider species traits and thus gain a more functional perspective. Despite this recent development, a set of species characteristics remains largely ignored in island biogeography, namely genomic traits. Evidence suggests that genomic factors could explain many of the speciation and adaptation patterns found in nature and thus may be highly informative to explain the fascinating and iconic phenomena known for oceanic islands, including species radiations and susceptibility to biotic invasions. Unfortunately, the current lack of comprehensive meaningful data makes studying these factors challenging. Even with paleontological data and space-for-time rationales, data is bound to be incomplete due to the very environmental processes taking place on oceanic islands, such as land slides and volcanism, and lacks causal information due to the focus on correlative approaches. As promising alternative, integrative mechanistic models can explicitly consider essential underlying eco\-/evolutionary mechanisms. In fact, these models have shown to be applicable to a variety of different systems and study questions. In this thesis, I therefore examined present mechanistic island models to identify how they might be used to address some of the current open questions in island biodiversity research. Since none of the models simultaneously considered speciation and adaptation at a genomic level, I developed a new genome- and niche-explicit, individual-based model. I used this model to address three different phenomena of island biodiversity: environmental variation, insular species radiations and species invasions. Using only a single model I could show that small-bodied species with flexible genomes are successful under environmental variation, that a complex combination of dispersal abilities, reproductive strategies and genomic traits affect the occurrence of species radiations and that invasions are primarily driven by the intensity of introductions and the trait characteristics of invasive species. This highlights how the consideration of functional traits can promote the understanding of some of the understudied phenomena in island biodiversity. The results presented in this thesis exemplify the generality of integrative models which are built on first principles. Thus, by applying such models to various complex study questions, they are able to unveil multiple biodiversity dynamics and patterns. The combination of several models such as the one I developed to an eco\-/evolutionary model ensemble could further help to identify fundamental eco\-/evolutionary principles. I conclude the thesis with an outlook on how to use and extend my developed model to investigate geomorphological dynamics in archipelagos and to allow dynamic genomes, which would further increase the model's generality. N2 - Inseln sind nützliche Modellsysteme für das Verständnis von Biodiversität im Allgemeinen. Dies wird verstärkt durch den Umstand, dass Flora und Fauna auf Inseln eine Vielzahl einzigartiger Phänomene aufweisen: von endemischen Arten über Artenradiationen bis hin zu außergewöhnlichen Arteigenschaften. Bisherige Theorien der Inselbiogeographie berücksichtigen jedoch nicht alle Faktoren, die nötig wären, um solche Phänomene zu erklären. Derzeitige Bemühungen zielen daher darauf ab, Arteigenschaften systematisch mit bestehenden Theorien zu vereinen. Trotz dieser Entwicklung werden genomische Arteigenschaften bislang in solch einer funktionalen Inselbiogeographie weitestgehend ignoriert, obwohl es Hinweise darauf gibt, dass genomische Faktoren einige der faszinierenden Diversifizierungsmuster einschließlich Artenradiationen erklären könnten. Die Erforschung dieser Faktoren gestaltet sich aufgrund des Mangels an umfangreichen, aussagekräftigen Daten jedoch als schwierig. Selbst unter Zuhilfenahme von paläontologischen Daten und substituierten Daten aus vergleichbaren Systemen lassen sich Unvollständigkeiten in den Daten und das Problem fehlender Kausalzusammenhänge schwer überwinden. Eine vielversprechende Alternative stellen mechanistische Modelle dar, von denen einige bereits für eine Vielzahl von Systemen und Forschungsprojekten eingesetzt wurden. In dieser Dissertation wurden daher mechanistische Inselmodelle untersucht, um herauszufinden, inwiefern sich diese für derzeitige offene Fragen in der Inselbiogeographie eignen würden. Da keines der untersuchten Modelle gleichzeitig Artbildung and Anpassung unter Berücksichtigung von genomischen Faktoren abbildet, wurde ein neues genom- und nischenexplizites, individuenbasiertes Modell entwickelt. Dieses wurde benutzt, um drei verschiedene Phänomene im Kontext der Inselbiogeographie zu untersuchen: die Anpassung an Umweltvariation, Artenradiationen und Invasionen durch exotische Arten. Mit diesem neuentwickeltem Modell konnte gezeigt werden, dass kleinere Arten mit flexiblen Genomen unter variablen Umwelteigenschaften erfolgreicher sind, dass eine komplexe Kombination aus Ausbreitungsfähigkeiten, Fortpflanzungsstrategien und genomischen Arteigenschaften das Entstehen von Artenradiationen beeinflussen und dass Invasionen vor allem von der Einführungsintensität und den Arteigenschaften exotischer Arten getrieben sind. Diese Ergebnisse demonstrieren, wie die Berücksichtigung funktionaler Arteigenschaften dabei helfen kann, einige bislang wenig untersuchte Phänomene der Inselbiogeographie zu verstehen. Die Ergebnisse dieser Dissertation stehen beispielhaft für die Allgemeingültigkeit integrativer, auf Grundzusammenhängen aufbauender Modelle. Dies wird durch die Aufdeckung diverser Biodiversitätsmuster und -dynamiken im Rahmen der Bearbeitung verschiedener komplexer Fragestellungen hervorgehoben. Weitere Modelle, wie das hier beschriebene, könnten sogar in einem Modellensemble kombiniert werden, um öko-evolutionare Grundprinzipien zu identifizieren. Abschließend wird ein Ausblick auf die Möglichkeit gewährt, das Modell weiterzunutzen und zu erweitern, um beispielsweise geomorphologische Archipeldynamiken oder dynamische Genome abzubilden, und damit die Allgemeingültigkeit des Modells noch zu erweitern. KW - Inselbiogeografie KW - Simulation KW - Biodiversität KW - Genetik KW - Mikroevolution KW - island biogeography KW - mechanistic models KW - genetic architecture KW - eco-evolutionary feedbacks Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207300 ER - TY - THES A1 - Sieger, Charlotte Sophie T1 - Potential evolutionary responses to landscape heterogeneity and systematic environmental trends T1 - Mögliche evolutionäre Reaktionen auf Landschaftsheterogenität und systemische Umwelttrends N2 - Over the course of the last century, humans have witnessed drastic levels of global environmental change that endangered both, the survival of single species as well as biodiversity itself. This includes climate change, in both environmental means and in variance and subsequently frequent extreme weather events, as well as land use change that species have to cope with. With increasing urbanization, increasing agricultural area and increasing intensification, natural habitat is not only lost, but also changes its shape and distribution in the landscape. Both aspects can heavily influence an individual's fitness and therefore act as a selective force promoting evolutionary change. This way climate change influences individuals' niches and dispersal. Local adaptation and dispersal are not independent of each other. Dispersal can have two opposite effects on local adaptation. It can oppose local adaptation, by promoting the immigration of maladapted indi- viduals or favor local adaptation by introducing better adapted genotypes. Which of those effects of dispersal on local adaptation emerges in a population depends on the dispersal strategies and the spatial structure of the landscape. In principle an adaptive response can include adjustment of the niche optimum as well as habitat tolerance (niche width) or (instead) ecological tracking of adequate conditions by dispersal and range shifting. So far, there has been no extensive modeling study of the evolution of the environmental niche optimum and tolerance along with dispersal probability in complex landscapes. Either only dispersal or (part of ) the environmental niche can evolve or the landscapes used are not realistic but rather a very abstract representation of spatial structures. I want to try and disentangle those different effects of both local adaptation and dispersal during global change, as well as their interaction, especially considering the separation between the effects of increasing mean and increasing variance. For this, I implemented an individual based model (IBM), with escalating complexity. I showed that both on a temporal as well as on a spatial scale, variation can be more influential then mean conditions. Indeed, the actual spatial configuration of this heterogeneity and the relationship between spatial and temporal heterogeneity affect the evolution of the niche and of dispersal probability more than temporal or spatial mean conditions. I could show that in isolated populations, an increase of an environmental attribute's mean or variance can lead to extinction, under certain conditions. In particular, increasing variance cannot be tracked forever, since increasing tolerance has distinct limits of feasibility. Increasing mean conditions can also occur too fast to be tracked, especially from generalist individuals. When expanding the model to the metapopulation level without a temporal environmental trend, the degree of spatial vs.temporal heterogeneity influenced the evolution of random dispersal heavily. With increasing spatial heterogeneity, individuals from extreme and rare patches evolve from being philopatric to dispersive, while individuals from average patches switch in the opposite direction. With the last expansion to a different set of landscapes with varying degrees of edge density, I could show that edge effects are strong in pseudo-agricultural landscapes, while in pseudo-natural habitats they were hardly found, regardless of emigration strategy. Sharp edges select against dispersal in the edge patches and could potentially further isolate populations in agricultural landscapes. The work I present here can also be expanded further and I present several suggestions on what to do next. These expansions could help the realism of the model and eventually shed light on its bearing on ecological global change predictions. For example species distribution models or extinction risk models would be more precise, if they included both spatial and temporal variation. The current modeling practices might not be suffcient to describe the possible outcomes of global change, because spatio-temporal heterogeneity and its influence on species' niches is too important to be ignored for longer. N2 - Mögliche evolutionäre Reaktionen auf Landschaftsheterogenität und systemische Umwelttrends KW - Theoretical Ecology KW - Evolution KW - Dispersal KW - Spatial heterogeneity KW - Temporal heterogeneity KW - Individual based model (IBM) Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216690 ER - TY - THES A1 - Lakovic, Milica T1 - Evolution of animal dispersal: Putting timing in perspective T1 - Evolution von Ausbreitungsstrategien: Die Fitnesskonsequenzen des Zeitpunkts von Emigration N2 - Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal. N2 - Emigration und die daraus resultierende Ausbreitung („dispersal“) ist ein wichtiges Ereignis im Lebenszyklus von Insekten, mit grundlegenden öko-evolutionären Folgen. Fortschreitender globaler Wandel hinterlässt viele Arten in stark fragmentierten Habitaten; der Verbreitungsstrategie kommt deshalb eine Schlüsselrolle im Fortbestehen von Populationen zu. Insekten sind besonders anfällig gegenüber Habitatzerstörungen, da viele von ihnen Spezialisten sind und daher z.B. stark von Präsenz bestimmter Wirtsarten und deren Verteilung abhängen. Zum Schutz dieser Arten ist es folglich entscheidend die Ursachen und Folgen verschiedener Ausbreitungsstrategien zu verstehen. Zudem können Arten mit unterschiedlichen Lebenszyklen spezifische Ausbreitungsstrategien aufweisen. Natale Emigration („natal dispersal“) ist definiert als das Verlassen des Ortes der Geburt, um an einem neuen Ort zu reproduzieren, während „breeding dispersal“ Ausbreitung zwischen zwei aufeinanderfolgenden Paarungen bedeutet. Natal dispersal kann während des Larval- und Adultstadiums stattfinden, breeding dispersal nur während des Adultstadiums. Weiterhin ist der Zeitpunkt der Verpaarung, entweder vor oder nach Ausbreitung, besonders wichtig für Weibchen, die nicht nur die eigenen Gene transportieren, sondern eventuell auch die eines verpaarten Männchens. Es ist eindeutig, dass sich Genfluss und ökoevolutionäre Dynamik zwischen diesen Ausbreitungsstrategien unterscheiden. Schließlich erhielt nformationsverarbeitung durch Insekten und dessen Rolle in emigrationsbezogenen Entscheidungen in jüngster Zeit viel Aufmerksamkeit. Dennoch wurde der Zeitraum der Informationsbeschaffung (z.B. während des Larven- oder Adultstadiums) und folglich die Verfügbarkeit von Information zum Zeitpunkt der Emigration von Theoretikern und Empirikern größtenteils nicht beachtet. Meine Doktorarbeit liefert theoretische Einsichten in den optimalen Zeitpunkt der Emigration, des Zeitpunktes der Paarung (in Relation zu Emigration) und die Rolle von Informationsbeschaffung in Insekten- Metapopulationen. Mit Individuen basierten Modellen analysierte ich zuerst die Evolution des Emigrationszeitpunktes in Metapopulationen, gefolgt von der Evolution des (optimalen) Emigrations- und Paarungszeitpunktes in Metapopulationen von Insekten. Abschließend untersuchte ich, wie sich die Investition von Zeit in das Sammeln von Informationen auf den Zeitpunkt und die Häufigkeit von Emigration auswirkt. Ergebnisse meiner Thesis zeigen, dass die Vermeidung von Konkurrenz innerhalb der Art eine entscheidende Rolle in der Evolution des Zeitpunktes der Emigration einnimmt; weiterhin konnte ich zeigen, dass Insekten Informationen über die Populationsdichte nutzen können, um daran angepasst Entscheidungen bezüglich ihrer Emigration zu treffen; in heterogener Umwelt bestimmt die Toleranz gegenüber der Habitate die Evolution der Ausbreitungsstrategie und des Paarungszeitpunktes, was folglich die lokal Anpassung innerhalb ganzer Landschaften bestimmt. Meine Thesis bietet neue Einsichten in die Evolution von Ausbreitung, insbesondere auf den richtigen Zeitpunkt und die Reihenfolge von Emigration, Verpaarung und dem Sammeln von Informationen. Dieser Aspekt des Timings wurde bisher von theoretischen und empirischen Ökologen größtenteils ignoriert. Um die Populationsdynamik und die Ausbreitung einer Art verstehen zu können, ist es essentiell den Lebenszyklus und die Zeitpunkte der wichtigsten Lebensereignisse (Verbreitung, Reproduktion) zu kennen. Dies ist zwingend nötig, wenn eine erfolgreiche Umsetzung von Naturschutzmaßnahmen (z.B. Wiedereinführung von Arten) oder biologischer Schädlingsbekämpfung (z.B. Einführung von Prädatoren zur Bekämpfung von Schädlingen) angestrebt wird. KW - dispersal timing KW - metapopulation KW - individual-based simulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154522 ER - TY - THES A1 - Horn [née Bunz], Melanie T1 - The impact of Drosophila melanogaster`s endogenous clock on fitness: Influence of day length, humidity and food composition T1 - Auswirkungen von Drosophila melanogaster`s Innerer Uhr auf die Fitness: Einfluss von Tageslänge, Luftfeuchtigkeit und Ernährung N2 - We are living in a system that underlies permanent environmental changes due to the rotation of our planet. These changes are rhythmic with the most prominent one having a period of about 24 hours, but also shorter and longer rhythms characterize our environment. To cope with the ever-changing environmental conditions, it is thought to be beneficial if an organism can track and anticipate these changes. The so called endogenous clocks enable this and might provide a fitness advantage. To investigate and unravel the mechanism of endogenous clocks Chronobiologists have used different model organisms. In this thesis Drosophila melanogaster was used as model organism with its about 150 clock neurons representing the main endogenous clock of the fly in the central brain. The molecular mechanisms and the interlocked feedback loops with the main circadian key players like period, timeless, clock or cycle are under investigation since the 1970s and are characterized quite well so far. But the impact of a functional endogenous clock in combination with diverse factors and the resulting fitness advantages were analysed in only a few studies and remains for the most part unknown. Therefore the aim of this thesis was to unravel the impact of Drosophila melanogaster`s endogenous clock on the fitness of the fly. To achieve this goal different factors – like day length, humidity and food composition – were analyzed in wild type CS and three different period mutants, namely perL, perS and per01, that carry a point mutation altering or abolishing the free-running period of the fruit fly as well as a second arrhythmic strain, clkAR. In competition assay experiments wild type and clock mutant flies competed for up to 63 generations under a normal 24 hour rhythm with 12 hours light/day and 12 hours darkness/night (LD12:12) or T-cycles with 19 or 29 hours, according to the mutants free-running period, or constant light (LL) in case of the arrhythmic mutant as well as under natural-like outdoor conditions in two consecutive years. Overall the wild type CS strain was outcompeting the clock mutant strains independent of the environmental conditions. As the perL fly strain elongated their free-running period, the competition experiments were repeated with naturally cantonized new fly strains. With these experiments it could be shown that the genetic background of the fly strains – which are kept for decades in the lab, with backcrosses every few years – is very important and influences the fitness of flies. But also the day length impacts the fitness of the flies, enabling them to persist in higher percentage in a population under competition. Further factors that might influence the survival in a competing population were investigated, like e.g. mating preferences and locomotor activity of homo- and heterozygous females or sperm number of males transferred per mating. But these factors can still not explain the results in total and play no or only minor roles and show the complexity of the whole system with still unknown characteristics. Furthermore populations of flies were recorded to see if the flies exhibit a common locomotor activity pattern or not and indeed a population activity pattern could be recorded for the first time and social contact as a Zeitgeber could be verified for Drosophila melanogaster. In addition humidity and its impact on the flies´ fitness as well as a potential Zeitgeber was examined in this thesis. The flies experienced different relative humidities for eclosion and wing expansion and humidity cycle phase shifting experiments were performed to address these two different questions of fitness impact and potential Zeitgeber. The fruit fly usually ecloses in the morning hours when the relative humidity is quite high and the general assumption was that they do so to prevent desiccation. The results of this thesis were quite clear and demonstrate that the relative humidity has no great effect on the fitness of the flies according to successful eclosion or wing expansion and that temperature might be the more important factor. In the humidity cycle phase shifting experiments it could be revealed that relative humidity cannot act as a Zeitgeber for Drosophila melanogaster, but it influences and therefore masks the activity of flies by allowing or surpressing activity at specific relative humidity values. As final experiments the lifespan of wild type and clock mutant flies was investigated under different day length and with different food qualities to unravel the impact of these factors on the fitness and therefore survival of the flies on the long run. As expected the flies with nutrient-poor minimum medium died earlier than on the nutrient-rich maximum medium, but a small effect of day length could also be seen with flies living slightly longer when they experience environmental day length conditions resembling their free-running period. The experiments also showed a fitness advantage of the wild type fly strain against the clock mutant strains for long term, but not short term (about the first 2-3 weeks). As a conclusion it can be said that genetic variation is important to be able to adapt to changing environmental conditions and to optimize fitness and therefore survival. Having a functional endogenous clock with a free-running period of about 24 hours provides fitness advantages for the fruit fly, at least under competition. The whole system is very complex and many factors – known and unknown ones – play a role in this system by interacting on different levels, e.g. physiology, metabolism and/or behavior. N2 - Wir leben in einem System, welches durch die Erdrotation permanenten Veränderungen der Umwelt unterliegt. Diese Veränderungen sind rhythmischer Natur, wobei die wichtigste Veränderung einen Rhythmus von circa 24 Stunden aufweist. Aber auch kürzere und längere Rhythmen charakterisieren unsere Umwelt. Um mit den permanenten Veränderungen klar zu kommen geht man davon aus, dass es von Vorteil ist wenn ein Organismus die Veränderungen wahrnehmen und vorausahnen kann. Die sogenannten Inneren Uhren ermöglichen dies und stellen möglicherweise einen Fitness Vorteil dar. Um den Mechanismus von Inneren Uhren zu untersuchen und aufzudecken benutzen Chronobiologen verschiedene Modellorganismen. In dieser Arbeit wurde Drosophila melanogaster, mit ihren etwa 150 Uhrneuronen welche die Innere Uhr im Zentralen Nervensystem darstellen, als Modellorganismus verwendet. Der molekulare Mechanismus und die ineinandergreifenden Rückkopplungsschleifen mit den Hauptakteuren period, timeless, clock und cycle werden seit den 1970ern erforscht und wurden bisher recht gut charakterisiert. Aber der Einfluss einer funktionellen Inneren Uhr in Kombination mit diversen Faktoren und die daraus resultierenden Fitness Vorteile wurden in nur wenigen Studien untersucht und bleiben zu großen Teilen unbekannt. Deshalb war es das Ziel dieser Arbeit den Einfluss von Drosophilas Innere Uhr auf die Fitness der Taufliege aufzudecken. Um dieses Ziel zu erreichen wurden verschiedene Faktoren – wie z.B. Tageslänge, Luftfeuchtigkeit und Futterqualität – in Wildtyp CS und drei verschiedenen period Mutanten – namentlich perL, perS und per01, welche alle eine Punktmutation tragen, welche die Freilauf-Periodenlänge verändert oder zu Arrhythmizität führt – sowie einem weiteren arrhythmischen Fliegenstamm, clkAR, untersucht. In Konkurrenzversuchen konkurrierten Wildtyp und Uhrmutanten über bis zu 63 Generationen unter normalen 24 Stunden Rhythmen mit jeweils 12 Stunden Licht/Tag und 12 Stunden Dunkelheit/Nacht oder unter T-Zyklen mit 19 oder 29 Stunden, entsprechend der Freilauf-Periodenlänge der Mutanten, oder Dauerlicht (LL) im Falle der arrhythmischen Mutante, sowie unter naturähnlichen Bedingungen im Feldversuch in zwei aufeinanderfolgenden Jahren. Im Gesamten war der Wildtyp den Uhrmutanten überlegen, unabhängig von den Umweltbedingungen. Da die perL Mutanten Ihre Freilauf-Periodenlänge deutlich verlängerten, wurden die Konkurrenzexperimente mit auf natürlicher Weise mit dem Wildtyp CS rückgekreuzten Fliegenstämmen wiederholt. Mit diesen Experimenten konnte gezeigt werden, dass der genetische Hintergrund der Fliegenstämme – welche teils für Jahrzehnte im Labor gehalten und nur wenige Male rückgekreuzt werden – sehr wichtig ist und die Fitness der Fliegen beeinflusst. Aber auch die Länge der Tage (19 h, 24 h oder 29 h) beeinflusst die Fitness der Fliegen und ermöglicht es Ihnen in höherem Anteil in einer Population unter Konkurrenz zu bestehen. Weitere Faktoren, welche das Überleben unter Konkurrenz möglicherweise beeinflussen können, wie z.B. eine Paarungspräferenz und Laufaktivität von homo- und heterozygoten Weibchen oder die Anzahl an Spermien, die pro Paarung übertragen werden, wurden untersucht. Diese Faktoren allein konnten jedoch die Ergebnisse der Konkurrenzversuche nicht erklären und spielen dabei keine oder nur geringfügige Rollen und stellen ein Beispiel für die Komplexität des ganzen Systems mit noch weiteren unbekannten Faktoren dar. Im Weiteren wurde das Laufverhalten von ganzen Fliegenpopulationen aufgezeichnet, um zu erforschen, ob eine Fliegenpopulation einen gemeinsamen Freilauf an Laufaktivität aufweist oder nicht. Und tatsächlich konnte zum ersten Mal das Laufverhalten von ganzen Populationen aufgezeichnet werden und Sozialer Kontakt als Zeitgeber für Drosophila melanogaster bestätigt werden. Zusätzlich wurde in dieser Arbeit relative Luftfeuchtigkeit und deren Auswirkung auf die Fitness der Fliegen, als auch als potentieller Zeitgeber untersucht. Die Fliegen wurden zum Schlupf und zur Entfaltung der Flügel unterschiedlichen Luftfeuchtigkeiten ausgesetzt und es wurden Phasenverschiebungsversuche mit Luftfeuchtigkeitszyklen durchgeführt, um diese zwei verschiedenen Fragen nach Fitness und potentiellem Zeitgeber zu beantworten. Die Fruchtfliege schlüpft normalerweise in den Morgenstunden, wenn die Luftfeuchtigkeit relativ hoch ist, weshalb im Allgemeinen angenommen wird, dass dies zu diesem Zeitpunkt des Tages geschieht, um eine Austrocknung zu verhindern. Die Ergebnisse dieser Arbeit waren sehr eindeutig und demonstrierten, dass die relative Luftfeuchtigkeit keinen großen Einfluss auf die Fitness der Fliegen in Bezug auf den Schlupferfolg und korrektes Entfalten der Flügel hat und dass die Temperatur wohl eher der ausschlaggebende Faktor sein könnte. In den Phasenverschiebungsversuchen mit Luftfeuchtigkeitszyklen konnte aufgedeckt werden, dass relative Luftfeuchtigkeit keinen Zeitgeber für Drosophila melanogaster darstellt, aber die Laufaktivität der Fliegen beeinflusst und maskiert, indem das Laufverhalten bei bestimmten relativen Luftfeuchtigkeiten zugelassen oder unterdrückt wird. Außerdem wurde die Lebenserwartung der Wildtyp und Uhrmutanten Fliegenstämme unter verschiedenen Tageslängen und mit unterschiedlicher Futterqualität untersucht, um den Einfluss dieser Faktoren auf die Fitness und somit das Überleben der Fliegen auf Dauer zu charakterisieren. Wie erwartet starben die Fliegen auf dem nährstoffarmen Minimalmedium früher als auf dem nährstoffreichen Maximalmedium, aber es konnte auch ein kleiner Effekt der Tageslänge gezeigt werden. Hierbei lebten die Fliegen etwas länger, wenn die Tageslänge die Freilauf-Periodenlänge der Fliegen widerspiegelte. Diese Versuche zeigten auch einen Fitness Vorteil der Wildtyp Fliegen gegenüber der Uhrmutanten auf lange Sicht, jedoch nicht zu Beginn (in den ersten ca. 2-3 Wochen). Abschließend kann zusammengefasst werden, dass genetische Variation wichtig ist, um sich an Veränderungen in der Umwelt anzupassen und die eigene Fitness und somit Überleben zu steigern. Eine funktionelle Innere Uhr mit einer Periodenlänge von etwa 24 Stunden zu besitzen stellt einen Fitness Vorteil für die Fliegen dar, zumindest unter Konkurrenzbedingungen. Das ganze System ist sehr komplex und viele Faktoren – bekannte und noch unbekannte – spielen eine Rolle in diesem System, welches auf verschiedenen Ebenen interagiert, wie z.B. auf physiologischer, metabolistischer oder auf der Verhaltensebene. KW - Taufliege KW - Drosophila KW - Biologische Uhr KW - Tageslänge KW - Luftfeuchtigkeit KW - Drosophila melanogaster KW - Fitness Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211415 ER - TY - THES A1 - Lewerentz, Anne F. T1 - Spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes under environmental change T1 - Raum-zeitliche Dynamik der Makrophyten in bayerischen Seen unter sich ändernden Umweltbedingungen N2 - Macrophytes are key components of freshwater ecosystems because they provide habitat, food, and improve the water quality. Macrophyte are vulnerable to environmental change as their physiological processes depend on changing environmental factors, which themselves vary within a geographical region and along lake depth. Their spatial distribution is not well understood and their importance is publicly little-known. In this thesis, I have investigated the spatiotemporal dynamics of freshwater macrophytes in Bavarian lakes to understand their diversity pattern along different scales and to predict and communicate potential consequences of global change on their richness. In the introduction (Chapter 1), I provide an overview of the current scientific knowledge of the species richness patterns of macrophytes in freshwater lakes, the influences of climate and land-use change on macrophyte growth, and different modelling approaches of macrophytes. The main part of the thesis starts with a study about submerged and emergent macrophyte species richness in natural and artificial lakes of Bavaria (Chapter 2). By analysing publicly available monitoring data, I have found a higher species richness of submerged macrophytes in natural lakes than in artificial lakes. Furthermore, I showed that the richness of submerged species is better explained by physio-chemical lake parameters than the richness of emergent species. In Chapter 3, I considered that submerged macrophytes grow along a depth gradient that provides a sharp environmental gradient on a short spatial scale. This study is the first comparative assessment of the depth diversity gradient (DDG) of macrophytes. I have found a hump-shaped pattern of different diversity components. Generalised additive mixed-effect models indicate that the shape of the DDG is influenced mainly by light quality, light quantity, layering depth, and lake area. I could not identify a general trend of the DDG within recent years, but single lakes show trends leading into different directions. In Chapter 4, I used a mechanistic eco-physiological model to explore changes in the distribution of macrophyte species richness under different scenarios of environmental conditions across lakes and with depths. I could replicate the hump-shaped pattern of potential species richness along depth. Rising temperature leads to increased species richness in all lake types, and depths. The effect of turbidity and nutrient change depends on depth and lake type. Traits that characterise “loser species” under increased turbidity and nutrients are a high light consumption and a high sensibility to disturbances. “Winner species” can be identified by a high biomass production. In Chapter 5, I discuss the image problem of macrophytes. Unawareness, ignorance, and the poor accessibility of macrophytes can lead to conflicts of use. I assumed that an increased engagement and education could counteract this. Because computer games can transfer knowledge interactively while creating an immersive experience, I present in the chapter an interactive single-player game for children. Finally, I discuss the findings of this thesis in the light of their implications for ecological theory, their implications for conservation, and future research ideas (Chapter 6). The findings help to understand the regional distribution and the drivers of macrophyte species richness. By applying eco-physiological models, multiple environmental shaping factors for species richness were tested and scenarios of climate and land-use change were explored. N2 - Makrophyten sind wichtige Bestandteile des Lebensraums See. Sie schaffen Habitate und verbessern die Wasserqualität, sind in der Öffentlichkeit jedoch kaum bekannt. Makrophyten sind sehr anfällig für Umweltveränderungen, da ihre physiologischen Prozesse von Umweltfaktoren abhängen, die ihrerseits innerhalb einer geografischen Region und entlang der Seetiefe variieren. Diese Arbeit untersucht die räumlich-zeitliche Dynamik von Makrophyten in bayerischen Seen, um die Muster ihrer Artenvielfalt auf verschiedenen Skalen zu verstehen und um die Folgen von Klima- und Landnutzungswandel auf ihre Artenvielfalt zu untersuchen. Die Einleitung (Kapitel 1) gibt einen Überblick über den aktuellen Wissensstand zur Artenvielfalt von Makrophyten in Seen, zu Einflüssen von Klima- und Landnutzungswandel auf das Wachstum von Makrophyten, sowie zu verschiedenen Modellierungsansätzen von Makrophyten. Der Hauptteil der Arbeit beginnt mit der Analyse (Kapitel 2) der submersen und emergenten Makrophytenvielfalt in natürlichen und künstlichen Seen Bayerns. Mit Hilfe von öffentlich zugänglichen Monitoringdaten konnte gezeigt werden, dass es mehr submerser Makrophyten in natürlichen Seen als in künstlichen Seen gibt und dass sich die Anzahl an submersen Makrophyten je See besser mit physiko-chemischen Parametern erklären lässt als die von emergenten Arten. In Kapitel 3 wird die Verteilung der Artenvielfalt von submersen Makrophyten entlang des Tiefengradienten be-trachtet. Entlang der Tiefe ändern sich physikalisch-chemische Parameter auf einer kurzen räumli-chen Skala. Diese Studie ist die erste vergleichende Untersuchung des Tiefen-Diversitätsgradienten (DDG) von Makrophyten. Der DDG von verschiedenen Diversitätskomponenten verläuft buckelförmig. „Generalised additive mixed-effect models“ deuten darauf hin, dass die Form des DDG hauptsächlich von der Lichtqualität, der Lichtmenge, der Schichtungstiefe und der Fläche des Sees beeinflusst wird. Die Daten zeigen keine verallgemeinerbare Veränderung des höckerförmigen DDGs in den letzten Jahren. In einzelnen Seen gibt es jedoch Trends. In Kapitel 4 wird mit einem mechanistischen, ökophysiologischen Makrophyten-Wachstums-Modell (MGM) die potenziellen Veränderungen in der Verbreitung von Makrophyten unter verschiedenen Klima- und Landnutzungsszenarien untersucht. Durch die Anwendung von MGM konnte das höckerförmige Muster des DDG repliziert werden. Unterschiede zum kartierten Artenreichtum lassen sich wahrscheinlich durch nicht modellierte Prozesse wie Konkurrenz und Umweltheterogenität innerhalb des Sees erklären. Steigende Temperaturen führen zu einer Zunahme des Artenreichtums in allen Seetypen, Artengruppen und Tiefen. Die Auswirkungen von Trübungen und Nährstoffveränderungen hängen von der Tiefe und dem Seetyp ab. Merkmale, die unter erhöhter Trübung und Nährstoffgehalt "Verlierer-Arten" kennzeichnen, sind ein hoher Lichtverbrauch und eine hohe Störungsempfindlichkeit, während "Gewinner-Arten" diejenigen sind, die eine hohe Biomasseproduktion aufweisen. Kapitel 5 stellt das Imageproblem von Makrophyten dar. Unkenntnis, Unwissenheit und die schlechte Zugänglichkeit können zu Nutzungskonflikten führen. Es ist anzunehmen, dass ein verstärktes Engagement und Aufklärung dem entgegenwirken könnten. Da Computerspiele eine Möglichkeit sind, Wissen interaktiv zu transportieren und ein immersives Erlebnis zu schaffen, wird in diesem Kapitel das entwickelte Spiel bioDIVERsity vorgestellt. Abschließend werden die Ergebnisse im Hinblick auf ihre Bedeutung für ökologische Theorien, ihre Auswirkungen auf den Naturschutz und zukünftige Forschungsideen diskutiert (Kapitel 6). Die Ergebnisse dieser Arbeit tragen dazu bei, die regionale Verbreitung und die Treiber einer oft übersehenen Artengruppe zu verstehen. Durch die Anwendung öko-physiologischer Modelle konnten verschiedene Einflussfaktoren auf den Artenreichtum von Makrophyten getestet und Szenarien von Klima- und Landnutzungswandel erforscht werden. KW - Ökologie KW - Makrophyten KW - Biologisches Modell KW - Klimaänderung KW - Artenreichtum KW - Ecology KW - Macrophytes KW - Global change KW - Species richness KW - Mechanistic model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287700 ER -