TY - THES A1 - Sidiropoulou, Ourania T1 - Characterization of the ATLAS-type Micromegas Detectors T1 - Charakterisierung von Micromegas-Detektoren des ATLAS-Typs N2 - Micromegas are parallel-plate gaseous detectors with micro-pattern readout structures that are able to measure precisely and efficiently at high particle rates. Their difference with respect to other gaseous detectors is that the space in which particles ionise the gas and create electrons is separated from the region in which these electrons are multiplied (or amplified) by a thin metallic mesh. In the ionisation region, typically a few mm thick, a moderate field of a few hundred V/cm is applied. The amplification region with a homogeneous electrical field of 40--50~kV/cm is only 100--150~$\upmu$m thick. The latter guarantees that the positive ions produced in the amplification process are rapidly evacuated and the possibility to build up space charge at high rate is reduced. Critical in micromegas detectors are sparks in the thin amplification region in the presence of the high electrical field. This problem was solved in 2011 by introducing a spark protection scheme. It consists of a layer of resistive strips on top of the readout strips, separated from the latter by a thin insulation layer. Micromegas with the spark protection scheme were selected as instrumentation of the first ATLAS forward muon station (NSW) in the upgrade of the ATLAS detector for the operation of the Large Hadron Collider (LHC) at high luminosity (HL-LHC), expected for 2026. The main subjects of this thesis are: the characterisation of the first micromegas quadruplet prototypes for the NSW detectors; the characterisation of the materials used in the spark-protection system; and the study of the influence of the mesh distance holders (pillars) on the detector performance. The thesis starts with a brief introduction into the LHC and ATLAS projects, followed by a chapter that explains the reason for the upgrade of the ATLAS muon system and shows the layout of the NSW. The first of the three main chapters covers the construction and the characterisation of the first two prototypes for the NSW detectors. These detectors comprise four detection layers and have the same mechanical structure as the NSW detectors. The mechanical precision as well as the homogeneity of the detector response are discussed. The latter has been measured using X-rays and cosmic rays. The spatial resolution that can be achieved with these detectors precision has been measured at the MAMI accelerator at Mainz with low-energy electrons. The chapter is completed by a section that describes the successful integration of a data acquisition system (DAQ) into the official ATLAS DAQ system that was required for an initially planned installation of one of the prototypes on the existing Small Wheel. The next chapter presents a study of the influence of temperature and humidity changes on the resistive strips used in the spark protection system. In addition the long-term stability of the resistive material has been measured accumulating charge equivalent to 100 years of operation in the HL-LHC and exposing the samples to intense gamma irradiation equivalent to 10 years of HL-LHC operation. The third part covers the impact of the mesh distance holders (pillars) on the performance of the detector. This study has been performed with a 10 x 10 cm$^2$ bulk-micromegas with two different pillar shapes. Both 5.9 keV gammas from a $^{55}$Fe and 8 keV X-rays from a Cu target were used. In this context also the electrostatic charge-up of the detector is discussed. In the Appendices one finds a summary of the fundamental physics relevant for gaseous detectors as well as some supporting material for the topics covered in the main part of the thesis. N2 - Micromegas-Detektoren sind Gas-Detektoren aus der Familie der Parallel-Platten-Detektoren mit sehr feinen Auslese-Elementen, die präzise und effizient bei hohen Teilchenraten messen können. Sie unterscheiden sich von anderen Gas-Detektoren dadurch, dass der Bereich, in dem die zu messenden Teilchen das Gas ionisieren und damit Elektronen produzieren, von dem Bereich, in dem diese Elektronen vervielfältigt werden, durch ein feines metallisches Gitter getrennt ist. Im Ionisationsbereich der gewöhnlich mehrere mm dick ist, wird ein moderates elektrisches Feld von einigen hundert Volt angelegt. Der Vervielfachungs- oder Verstärkungsbereich mit einem homogenen elektrischen Feld von $\sim$40--50 kV/cm ist nur 100--150 $\upmu$m dick. Dadurch können die positiven Ionen, die im Vervielfältigungsprozess entstehen, schnell abgeleitet werden und der Aufbau von Raumladung bei hohen Teilchenraten wird begrenzt. Ein kritisches Element der Micromegas Detektoren sind spontane Entladungen in dem starken elektrischen Feld und dem sehr dünnen Verstärkungsbereich. Diese Problem wurde 2011 durch die Einführung einer Schutzschicht gelöst. Diese besteht aus einer dünnen Isolationsschicht über den Auslesestreifen, auf die Widerstandsstreifen aufgebracht werden. Micromegas-Detektoren mit Widerstandsschutz wurden für die Instrumentierung der ersten Station des ATLAS Myon-Systems in Vorwärtsrichtung (NSW) als Mess- und Auslöse-Instrumente für den Betrieb des Large Hadron Colliders (LHC) bei höherer Luminosität (HL-LHC, ab 2020) gewählt. Das Ziel dieser Arbeit ist: 1. die Messung der Eigenschaften der ersten Micromegas NSW Prototypen; 2. die Untersuchung der Eigenschaften des Materials, das für die Widerstandsstreifen benutzt wird; und 3. die Bestimmung des Einflusses der Gitter-Abstandshalter (pillars) auf die Eigenschaften des Detektors. Die Arbeit beginnt mit einer kurzen Einführung, die den LHC und das ATLAS Projekt vorstellt, gefolgt von einem Kapitel, das erklärt, warum die jetzt installierten Myon-Detektoren ersetzt werden müssen, um bei einer konsequenten Erhöhung der LHC-Luminosität nicht an Messgenauigkeit zu verlieren. Es zeigt dann wie die neue Myon Station, das New Small Wheel (NSW), aussehen wird. Im ersten der Hauptkapitel werden der Bau und die Untersuchung der ersten beiden Prototypen für die NSW Detektoren beschrieben. Diese Detektoren (MMSW) bestehen aus vier Messlagen und haben die gleiche mechanische Struktur wie die NSW Detektoren. Sowohl die mechanische Präzision als auch die Homogenität der Signale über den gesamten Detektor und die Teilchen-Nachweiswahrscheinlichkeit werden diskutiert. Letztere wurden mit Röntgenstrahlen und Teilchen aus der kosmischen Strahlung gemessen. Die Ortsauflösung wurde am MAMI Beschleuniger in Mainz mit nieder energetischen Elektronen gemessen. Das Kapitel wird komplettiert durch einen Abschnitt, der die erfolgreiche Integration eines Datenerfassungssystems für die MMSW Detektoren in das offizielle ATLAS Datenerfassungssystem beschreibt. Solch ein System wurde für die ursprünglich geplante Installation eines der MMSW Detektoren in ATLAS gebraucht. Danach wird die Untersuchung der Eigenschaften der Widerstandsstreifen präsentiert, insbesondere deren Abhängigkeit von Temperatur und relativer Luftfeuchtigkeit, sowie ihr Langzeitverhalten. Dafür wurden die Streifen einem Stromfluss ausgesetzt der 100 Jahren Betrieb im LHC entspricht, zum anderen einer Gamma Strahlendosis ausgesetzt, wie sie bei einem 10-jährigen LHC Betrieb erwartet wird. Im dritten Teil folgt eine ausführliche Studie des Einflusses der Gitter-Abstands-halter (pillars) auf die Ortsauflösung und die Nachweiswahrscheinlichkeit. Diese Studie wurde mit einem 10 $\times$ 10 cm$^2$ großen Micromegas Detektor mit zwei verschiedenen Abstandshalterformen sowohl mit 5.9 keV Gamma-Strahlen von einer $^{55}$Fe Quelle, als auch mit 8 keV Photonen aus einer Röntgen-Quelle durchgeführt. In diesem Zusammenhang wird auch die elektrostatische Aufladung des Detektors diskutiert. Im Anhang findet sich eine Zusammenfassung der physikalischen Grundlagen, die für Gasdetektoren relevant sind, sowie zusätzliches Material zu den oben beschriebenen Kapiteln. KW - micromegas detectors KW - ATLAS New Small Wheels (NSW) KW - resistive micromegas KW - micro pattern gaseous detectors KW - muon spectrometer KW - ATLAS KW - Gasionisationsdetektor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167323 ER - TY - THES A1 - Krauß, Manuel Ernst T1 - Non-minimal supersymmetric models: LHC phenomenology and model discrimination T1 - Nichtminimale supersymmetrische Modelle: LHC-Phänomenologie und Modellunterscheidung N2 - It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar \(SU(2)_R\) triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new physics signals or just background fluctuations. In a careful evaluation of the loop-corrected scalar potential we then identify parameter regions in which the vacuum with the phenomenologically correct symmetry-breaking properties is stable. Conveniently, those regions favour low left-right symmetry breaking scales which are accessible at the LHC. In a slightly modified version of this model where a \(U(1)_R × U(1)_{B−L}\) gauge symmetry survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry breaking mechanism for which we calculate the boundary conditions in the presence of gauge kinetic mixing. We show how the presence of the extended gauge group raises the tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is relaxed. Taking the constraints from the Higgs sector into account, we then explore the LHC phenomenology of this model and point out where the expected collider signatures can be distinguished from standard scenarios. In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done throughout this work, there are potentially spectacular signals at low-energy experiments which search for charged lepton flavour violation. The last part of this thesis is dedicated to the detailed exploration of processes like μ → e γ, μ → 3 e or μ−e conversion in nuclei in a supersymmetric framework with an inverse seesaw mechanism. In particular, we disprove claims about a non-decoupling effect in Z-mediated three-body decays and study the prospects for discovering and distinguishing signals at near-future experiments. In this context we identify the possibility to deduce from ratios like BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) whether the contributions from ν − W loops dominate over supersymmetric contributions or vice versa. N2 - Man ist sich einig darüber, dass das Standardmodell der Teilchenphysik in seiner aktuellen Form nicht der Weisheit letzter Schluss ist – zu viele grundlegende Fragen lässt es offen. Lediglich die genaue Form der nötigen Erweiterung wird heiß debattiert. Supersymmetrische Modelle gehören zu den vielversprechendsten Ansätzen zu Physik jenseits des Standardmodells, da sie gleichzeiting das Hierarchieproblem lösen und die Dichte der beobachteten dunklen Materie im Universum erklären können. Obwohl das minimale supersymmetrische Modell weitere Vorzüge vorzuweisen hat – hierzu gehört die Vereinheitlichung der Eichkopplungen an großen Skalen sowie radiative elektroschwache Symmetriebrechung – sprechen die aktuellen Messungen am LHC eine andere Sprache. Zudem sind auch in diesem Modell die Neutrinos masselos, sodass es nicht die endgültige Theorie darstellen kann. Dies mindert jedoch nicht die Schönheit des Konzepts der Supersymmetrie, weshalb es an der Zeit ist, nichtminimale supersymmetrische Modelle zu untersuchen, welche die o. g. Probleme nicht aufweisen. Diese Modelle müssen auf Herz und Nieren geprüft werden, bevor man sie mit experimentellen Daten vergleichen und Vorhersagen für zukünftige Experimente treffen kann. Das Ziel dieser Arbeit ist es, zu diesem wichtigen Prozess beizutragen. Hierzu soll die besonders aussichtsreiche Klasse von supersymmetrischen Modellen, welche auf einer links-rechts-Eichsymmetrie basieren, genau untersucht werden. Diese Modelle sind deutlich weniger von LHC-Ausschlussgrenzen betroffen und sagen zudem rechtshändige Neutrinos voraus, mit welchen die leichten Neutrinomassen erklärt werden können. Zu Beginn wenden wir uns einem links-rechts-supersymmetrischen Modell an der TeV-Skala zu, in welchem \(SU(2)_R\) -Tripletts sowohl für die Brechung der Links-Rechts-Symmetrie als auch für die Generation von Neutrinomassen verantwortlich sind. Zur führenden Ordnung in der Störungstheorie beinhaltet diese Art von Modellen ein tachyonisches doppelt geladenes Skalarfeld. Wir wenden uns der Ermittlung der zugehörigen Masse auf dem Einschleifenniveau zu und zeigen erstmals in einer konsistenten, vollständigen Berechnung derselben, dass die Masse im Allgemeinen reell ist. Anschließend werden die Beschränkungen an die Links-Rechts-Brechungsskala aus aktuellen LHC-Daten ermittelt. Wir zeigen, dass unser Modell gewisse Signal- Uberschüsse in jenen Daten erklären kann – der aktuelle LHC-Lauf wird klären, ob diese tatsächlich neuer Physik oder doch nur statistischen Fluktuationen entsprechen. Schließlich bestimmen wir in einer Untersuchung der Vakuumstruktur auf dem Einschleifenniveau diejenigen Parameterregionen, in welchen die phänomenologisch korrekte elektroschwache Symmetriebrechung angenommen wird. Passenderweise werden Regionen bevorzugt, welche messbare Signale am LHC vorhersagen. In einem leicht unterschiedlichen Modell, in dem eine \(U(1)_R × U(1)_{B−L}\) bis herunter an die TeV-Skala überleben kann, implementieren wir einen über Eichwechselwirkungen vermittelten Supersymmetrie-Brechungsmechanismus, mit besonderem Augenmerk auf die eichkinetische Mischung in den Randbedingungen. Durch die erweiterte Eichgruppe wird die Higgsmasse bereits auf führender Ordnung erhöht. Wir ermitteln die Konsequenzen für die Skala der Supersymmetrie-Brechungsskala. Anschließend untersuchen wir die am LHC zu erwartende Phänomenologie und zeigen auf, in welchen Prozessen sich dieses Modell von Standard-Szenarien unterscheidet. Durch diese Arbeit hinweg nehmen wir an, dass die leichten Neutrinomassen duch einen Seesaw-Mechanismus an der TeV-Skala erklärt werden. Dass dies zu potentiell höchst interessanten Signalen in Niederenergieexperimenten führt, wird im letzten Teil dieser Arbeit thematisiert. Der Fokus liegt hierbei auf Lepton-Flavour-verletzenden Prozessen wie μ → e γ, μ → 3 e oder die μ−e-Umwandlung in Atomkernen, welche wir im Rahmen eines supersymmetrischen Modells mit inversem Seesaw-Mechanismus genauer untersuchen. Insbesondere widerlegen wir Behauptungen von nichtentkoppelnden Z-Pinguin-Diagrammen und untersuchen die Aussichten, Signale an zukünftigen Experimenten zu messen sowie Rückschlüsse auf das zugrundeliegende Modell ziehen zu können. In diesem Zusammenhang demonstrieren wir die Möglichkeit, durch die relativen Verhältnisse von Verzweigungsverhältnissen wie BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) unterscheiden zu können, ob die zugehörigen Prozesse hauptsächlich durch supersymmetrische oder durch W − ν-Diagramme herbeigeführt wurden. KW - Supersymmetrie KW - Standardmodell KW - beyond Standard Model KW - Physik jenseits des Standardmodells KW - lepton flavour violation KW - extra gauge bosons KW - extended gauge symmetry KW - Lepton-Flavour-Verletzung KW - extra Eichbosonen KW - erweiterte Eichsymmetrie KW - LHC KW - Vektorboson KW - Higgs-Teilchen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123555 ER - TY - THES A1 - Schreyer, Manuel T1 - Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \(\sqrt{s}\) = 8 TeV pp collisions with the ATLAS detector T1 - Suche nach Supersymmetrie in Ereignissen mit leichten Leptonen, Jets und fehlendem Transversalimpuls in pp-Kollisionen bei \(\sqrt{s}\) = 8 TeV mit dem ATLAS-Detektor N2 - The results of two analyses searching for supersymmetry (SUSY) in data of the ATLAS experiment are presented in this thesis. The data were recorded in proton-proton collisions at the Large Hadron Collider in 2012 at a centre of mass energy of \(\sqrt{s}\)=8 TeV and correspond to an integrated luminosity of 20.3 fb\(^{−1}\). The first search is performed in signatures containing an opposite-sign electron or muon pair, which is compatible with originating from a Z boson decay, in addition to jets and large missing transverse momentum. The analysis targets the production of squarks and gluinos in R-parity conserving (RPC) models with SUSY breaking via General Gauge Mediation (GGM). The main Standard Model (SM) backgrounds are \(t\overline t\), WW, W+t and Z to \(\tau \tau\) processes which are entirely estimated from data using different-flavour events. Besides that, the SM production of Z bosons in association with jets and large fake missing momentum from mismeasurements plays a role and is predicted with the data-driven jet smearing method. Backgrounds from events with fake leptons are estimated with the data-driven matrix method. WZ/ZZ production as well as smaller background contributions are determined from Monte-Carlo simulations. The search observes an excess of data over the SM prediction with a local significance of 3.0 \(\sigma\) in the electron channel, 1.7 \(\sigma\) in the muon channel and 3.0 \(\sigma\) when the two channels are added together. The results are used to constrain the parameters of the GGM model. The second analysis uses the already published results of an ATLAS search for SUSY in events with one isolated electron or muon, jets and missing transverse momentum to reinterpret them in the context of squark and gluino production in SUSY models with R-parity violating (RPV) \(LQ\overline D\)-operators. In contrast to RPC models, the lightest SUSY particle (LSP) is not stable but decays into SM particles. "Standard" analyses often do not consider SUSY models with RPV although they are in principle sensitive to them. The exclusion limits on the squark and gluino mass obtained from the reinterpretation extend up to 1200 GeV. These are the first results by any ATLAS SUSY search which systematically cover a wide range of RPV couplings in the case of prompt LSP decays. However, the analysis is not sensitive to the full parameter space of the \(LQ\overline D\)-model and reveals gaps in the ATLAS SUSY program which have to be closed by dedicated search strategies in the future. N2 - In dieser Arbeit werden die Ergebnisse von zwei Suchen nach Supersymmetrie (SUSY) in Daten des ATLAS-Experiments präsentiert. Die Messdaten wurden im Jahr 2012 in Proton-Proton-Kollisionen am Large Hadron Collider bei einer Schwerpunktsenergie von \(\sqrt{s}\) = 8 TeV gewonnen und entsprechen einer integrierten Luminosität von 20,3 fb\(^{−1}\). Die erste Suche verwendet Signaturen mit Jets, großem fehlenden Transversalimpuls sowie einem Elektron- oder Myonpaar mit entgegengesetzter Ladung, dessen Eigenschaften mit einem Leptonpaar aus dem Zerfall eines Z-Bosons vereinbar sind. Die Analyse zielt auf die Untersuchung von Squark- und Gluinoproduktion im Rahmen R-paritätserhaltender (RPC) Modelle mit SUSY-Brechung durch General Gauge Mediation (GGM) ab. Die Hauptuntergründe des Standardmodells (SM) sind \(t\overline t\), WW, W+t und Z nach \(\tau \tau\) Prozesse. Diese werden komplett aus den Daten selbst unter Verwendung von Ereignissen mit Leptonpaaren unterschiedlichen Flavours abgeschätzt. Daneben spielt der Untergrund aus der SM-Produktion von Z-Bosonen in Verbindung mit Jets und großem fehlenden Impuls, der durch Fehlmessungen fälschlicherweise rekonstruiert wird, ein Rolle. Dieser wird mit der datengestützten Jet-Smearing-Methode abgeschätzt. Der Hintergrundbeitrag von Ereignissen mit fehlidentifizierten Leptonen wird mit der datengestützten Matrix-Methode bestimmt, während die Produktion von WZ/ZZ-Paaren sowie kleinere Untergrundprozesse mit Hilfe von Monte-Carlo-Simulationen abgeschätzt werden. Die Suche beobachtet einen Überschuss an Daten über der SM-Vorhersage mit einer lokalen Signifikanz von 3,0 \(\sigma\) im Elektronkanal, 1,7 \(\sigma\) im Myonkanal und 3,0 \(\sigma\), wenn beide Kanäle zusammengezählt werden. Mit den Ergebnissen lassen sich die Parameter des GGM-Modells einschränken. Die zweite Analyse interpretiert die bereits veröffentlichten Ergebnisse einer ATLAS SUSY-Suche in Ereignissen mit einem isolierten Elektron oder Myon, Jets und fehlendem Transversalimpuls im Rahmen von Squark- und Gluinoproduktion in SUSY-Modellen, in denen die R-Parität durch \(LQ\overline D\)-Operatoren verletzt wird. Im Gegensatz zu RPC-Modellen ist das leichteste SUSY-Teilchen (LSP) dort nicht stabil, sondern zerfällt in SM-Teilchen. R-paritätsverletzende (RPV) SUSY-Modelle werden von "Standardanalysen" oft vernachlässigt, obwohl diese prinzipiell sensitiv auf RPV SUSY sind. Die Ausschlussgrenzen auf die Squark- und Gluinomasse, die sich aus der Reinterpretation ergeben, reichen bis zu 1200 GeV. Dies sind die ersten derartigen Ergebnisse einer ATLAS SUSY-Suche, die einen großen Bereich möglicher RPV-Kopplungen für den Fall prompter LSP-Zerfälle auf systematische Art und Weise abdecken. Allerdings ist die Analyse nicht im gesamten Parameterraum des \(LQ\overline D\)-Modells sensitiv und deckt somit Lücken im ATLAS SUSY-Programm auf. Diese sollten in Zukunft durch speziell optimierte Suchstrategien geschlossen werden. KW - Supersymmetrie KW - Supersymmetry KW - Supersymmetrie KW - LHC KW - ATLAS-Detektor KW - Neue Physik KW - New physics KW - ATLAS KW - Proton-Proton-Streuung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120863 ER - TY - THES A1 - Camargo Molina, José Eliel T1 - Vacuum stability of models with many scalars T1 - Vakuumstabilität von Modellen mit vielen Skalaren N2 - One of the most popular extensions of the SM is Supersymmetry (SUSY). It is a symmetry relating fermions and bosons and also the only feasible extension to the symmetries of spacetime. With SUSY it is then possible to explain some of the open questions left by the SM while at the same time opening the possibility of gauge unification at a high scale. SUSY theories require the addition of new particles, in particular an extra Higgs doublet and at least as many new scalars as fermions in the SM. Much in the same way that the Higgs boson breaks SU (2)L symmetry, these new scalars can break any symmetry for which they carry a charge through spontaneous symmetry breaking. Let us assume there is a local minimum of the potential that reproduces the correct phenomenol- ogy for a parameter point of a given model. By exploring whether there are other deeper minima with VEVs that break symmetries we want to conserve, like SU (3)C or U (1)EM , it is possible to exclude regions of parameter space where that happens. The local minimum with the correct phenomenology might still be metastable, so it is also necessary to calculate the probability of tunneling between minima. In this work we propose and apply a framework to constrain the parameter space of models with many scalars through the minimization of the one-loop eff e potential and the calculation of tunneling times at zero and non zero temperature.After a brief discussion about the shortcomings of the SM and an introduction of the basics of SUSY, we introduce the theory and numerical methods needed for a successful vacuum stability analysis. We then present Vevacious, a public code where we have implemented our proposed framework. Afterwards we go on to analyze three interesting examples. For the constrained MSSM (CMSSM) we explore the existence of charge- and color- breaking (CCB) minima and see how it constraints the phenomenological relevant region of its parameter space at T = 0. We show that the regions reproducing the correct Higgs mass and the correct relic density for dark matter all overlap with regions suffering from deeper CCB minima. Inspired by the results for the CMSSM, we then consider the natural MSSM and check the region of parameter space consistent with the correct Higgs mass against CCB minima at T /= 0. We find that regions of parameter space with CCB minima overlap significantly with that reproducing the correct Higgs mass. When thermal eff are considered the majority of such points are then found to have a desired symmetry breaking minimum with very low survival probability. In both these studies we find that analytical conditions presented in the literature fail in dis- criminating regions of parameter space with CCB minima. We also present a way of adapting our framework so that it runs quickly enough for use with parameter fit studies. Lastly we show a different example of using vacuum stability in a phenomenological study. For the BLSSM we investigate the violation of R-parity through sneutrino VEVs and where in parameter space does this happen. We find that previous analyses in literature fail to identify regions with R-parity conservation by comparing their results to our full numerical analysis. N2 - Eine der populärsten Erweiterungen des SM ist die Supersymmetrie (SUSY). Dies ist eine Symmetrie, die Bosonen und Fermionen in Beziehung setzt und auch die einzige machbare Erweiterung der Raumzeitsymmetrien. SUSY kann einige offene Fragen des SM erklären und eröffnet die Möglichkeit einer Vereinheitlichung der Eichwechselwirkungen bei einer hohen Skala. Supersymmetrische Theorien erfordern das Hinzufügen neuer Teilchen, insbesondere eines zusätzlichen Higgs-Dubletts und zumindest eines Skalars für jedes Fermion im SM. So wie im SM das Higgs-Boson die SU (2)L-Symmetrie bricht, können diese neuen Skalare jede Symmetrie, deren Ladung sie tragen, spontan brechen. Angenommen, es gibt ein lokales Minimum des Potentials, das die korrekte Phänomenologie für einen Parameterraumpunkt eines Modells erzeugt: Durch die Suche nach anderen tieferen Minima mit Vakuumerwartungswerten, die gewünschte Symmetrien wie SU (3) oder U (1)EM brechen, ist es möglich Parameterraumpunkte, in denen dies passiert, auszuschliessen. Das lokale Minimum mit der korrekten Phänomenologie kann immernoch metastabil sein, weshalb es auch notwendig ist, die Tunnelwahrscheinlichkeit zwischen zwei Minima zu berechnen. In dieser Arbeit legen wir eine Prozedur vor und wenden sie an, um den Parameterraum von Modellen mit vielen Skalaren durch die Minimierung des effektiven Ein-Schleifen-Potentials und durch die Berechnung seiner Lebensdauer sowohl bei T = 0 und bei T /= 0 einzuschränken. Nach einer kurzen Diskussion der Unzulänglichkeiten des SM und Einführung der Grundlagen von SUSY erläutern wir die Theorie und die die nötigen numerischen Methoden für eine erfolgreiche Analyse der Vakuumstabilitaet. Danach präsentieren wir Vevacious, ein öffentliches Programmpaket, in das wir unsere Prozedur implementiert haben. Daraufhin analysieren wir drei interessante Beispiele. Für das Constrained MSSM (CMSSM) untersuchen wir die die Existenz von Minima, in denen die Farb- oder elektrische Ladung nicht erhalten ist (CCB-Minima), und wie dessen phänomenologisch relevante Region des Parameter- raums dadurch bei T = 0 eingeschränkt wird. Wir zeigen, dass die Regionen, die die korrekte Higgsmasse und die richtige Relikt-Dichte für die Dunkle Materie reproduzieren, mit Regionen, die tiefere CCB-Minima aufweisen, überlappen. Inspiriert durch die Ergebnisse für das CMSSM betrachten wir dann das Natural MSSM und prüfen die Parameterraumregion mit der korrekten Higgsmasse auf CCB-Minima bei T /= 0.Wir finden, dass die Region des Parameterraums mit CCB-Minima deutlich mit denen mit einer korrekten Higgsmasse überlappt. Bei Berücksichtigung von thermalen Effekten hat ein Großteil der bei T = 0 langlebigen Punkte ein gewünschtes symmetriebrechendes Minimum mit einer sehr geringen Überlebenswahrscheinlichkeit bei T /= 0. In beiden Studien finden wir, dass die analytischen Bedingungen, die bisher in der Literatur präsentiert wurden, nicht ausreichen, um Bereiche des Parameterraums mit CCB-Minima auszuweisen. Wir präsentieren einen Weg, unsere Prozedur für die Nutzung in Parameterraum-Fit-Studien zu beschleunigen. Zuletzt zeigen wir ein weiteres Beispiel. Für das BLSSM untersuchen wir die Verletzung der R-Parität durch Sneutrino- VEVs und in welchen Parameterraumbereichen dies geschieht. Wir stellen durch Vergleich mit unserer kompletten numerischen Analyse heraus, dass frühere Analysen in der Literatur darin fehlschlagen, diese Bereiche mit Erhaltung der R-Parität zu identifizieren. KW - Supersymmetry KW - Vacuum stability KW - Supersymmetry KW - Beyond Standard Model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112755 ER - TY - THES A1 - Krauß, Martin Bernhard T1 - Testing Models with Higher Dimensional Effective Interactions at the LHC and Dark Matter Experiments T1 - Tests von Modellen mit höherdimensionalen effektiven Operatoren am LHC und Experimenten zur Suche dunkler Materie N2 - Dark matter and non-zero neutrino masses are possible hints for new physics beyond the Standard Model of particle physics. Such potential consequences of new physics can be described by effective field theories in a model independent way. It is possible that the dominant contribution to low-energy effects of new physics is generated by operators of dimension d>5, e.g., due to an additional symmetry. Since these are more suppressed than the usually discussed lower dimensional operators, they can lead to extremly weak interactions even if new physics appears at comparatively low scales. Thus neutrino mass models can be connected to TeV scale physics, for instance. The possible existence of TeV scale particles is interesting, since they can be potentially observed at collider experiments, such as the Large Hadron Collider. Hence, we first recapitulate the generation of neutrino masses by higher dimensional effective operators in a supersymmetric framework. In addition, we discuss processes that can be used to test these models at the Large Hadron Collider. The introduction of new particles can affect the running of gauge couplings. Hence, we study the compatibilty of these models with Grand Unified Theories. The required extension of these models can imply the existence of new heavy quarks, which requires the consideration of cosmological constraints. Finally, higher dimensional effective operators can not only generate small neutrino masses. They also can be used to discuss the interactions relevant for dark matter detection experiments. Thus we apply the methods established for the study of neutrino mass models to the systematic discussion of higher dimensional effective operators generating dark matter interactions. N2 - Dunkle Materie und nichtverschwindende Neutrinomassen sind nur zwei Hinweise auf das mögliche Vorhandensein neuer Physik jenseits des Standardmodells der Teilchenphysik. Solche möglichen Konsequenzen neuer Physik können modellunabhängig mit effektiven Feldtheorien beschrieben werden. Beispielsweise aufgrund zusätzlicher Symmetrien ist es möglich, dass Operatoren mit Dimension $d>5$ den dominanten Beitrag zu den Effekten neuer Physik bei niedrigen Energieskalen liefern. Da diese stärker unterdrückt sind als die gewöhnlicherweise betrachteten Operatoren niedrigerer Dimension, können sie zu äußerst schwachen Wechselwirkungen führen, selbst wenn neue Physik bereits bei vergleichsweise niedrigen Energien auftritt. Dies ermöglicht unter anderem neue Teilchen mit Massen im Bereich der TeV-Skala mit der Erzeugung der sehr geringen Neutrinomassen in Verbindung zu bringen. Solche Teilchen sind besonders interessant, da sie an Beschleunigerexperimenten wie dem Large Hadron Collider untersucht werden können. Deswegen wird in dieser Arbeit zunächst die Erzeugung von Neutrinomassen durch höherdimensionale effektive Operatoren in supersymmetrischen Modellen rekapituliert. Darüber hinaus sollen mögliche Prozesse zum Nachweis dieser Modelle am Large Hadron Collider anhand eines Beispiels diskutiert werden. Da das Einführen neuer Teilchen das Laufen der Kopplungskonstanten beeinflussen kann, wird ferner betrachtet, inwiefern solche Szenarien vereinbar mit großen vereinheitlichten Theorien (Grand Unified Theories) sind. Die entsprechende Erweiterung dieser Modelle kann beispielsweise das Auftreten neuer schwerer Quarks zur Folge haben, die auf ihre Vereinbarkeit mit kosmologischen Beobachtungen untersucht werden. Höherdimensionale Operatoren können jedoch nicht nur sehr kleine Neutrinomassen erzeugen, sondern auch für Experimente zum Nachweis dunkler Materie relevant sein. Daher sollen die zuvor angewandten Methoden zur systematischen Diskussion effektiver Operatoren, die Wechselwirkungen dunkler Materie beschreiben, verwendet werden. KW - Neutrino KW - Supersymmetrie KW - Dunkle Materie KW - Effektive Theorie KW - Theoretische Teilchenphysik KW - Theoretical High Energy Physics KW - Neutrino Physics KW - Neutrinophysik KW - Supersymmetry KW - Supersymmetrie KW - Dark Matter KW - Dunkle Materie KW - Effective Field Theory KW - Effektive Feldtheorien KW - Elementarteilchenphysik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94519 ER - TY - THES A1 - Lang, Jean-Nicolas Olivier T1 - Automation of electroweak NLO corrections in general models T1 - Automatisierung von elektroschwachen NLO Korrekturen in allgemeinen Modellen N2 - The thesis deals with the automated generation and efficient evaluation of scattering amplitudes in general relativistic quantum field theories at one-loop order in perturbation theory. At the present time we lack signals beyond the Standard Model which, in the past, have guided the high-energy physics community, and ultimately led to the discovery of new physics phenomena. In the future, precision tests could acquire this guiding role by systematically probing the Standard Model and constraining Beyond the Standard Model theories. As current experimental constraints strongly favour Standard Model-like theories, only small deviations with respect to the Standard Model are expected which need to be studied in detail. The required precision demands one-loop corrections in all future analyses, ideally in a fully automated way, allowing to test a variety of observables in different models and in an effective field theory approach. In the process of achieving this goal we have developed an enhanced version of the tool Recola and on this basis the generalization Recola2. These tools represent fully automated tree- and one-loop-amplitude providers for the Standard Model, or in the case of Recola2 for general models. Concerning the algorithm, we use a purely numerical and fully recursive approach allowing for extreme calculations of yet unmatched complexity. Recola has led to the first computation involving 9-point functions. Beyond the Standard Model theories and Effective Field theories are integrated into the Recola2 framework as model files. Renormalized model files are produced with the newly developed tool Rept1l, which can perform the renormalization in a fully automated way, starting from nothing but Feynman rules. In view of validation, we have extended Recola2 to new gauges such as the Background-Field Method and the class of Rxi gauges. In particular, the Background-Field Method formulation for new theories serves as an automated validation, and is very useful in practical calculations and the formulation of renormalization conditions. We have applied the system to produce the first results for Higgs-boson production in Higgs strahlung and vector-boson fusion in the Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model. All in all, we have laid the foundation for an automated generation and computation of one-loop amplitudes within a large class of phenomenologically interesting theories. Furthermore, we enable the use of our system via a very flexible and dynamic control which does not require any intermediate intervention. N2 - In dieser Arbeit behandeln wir die automatisierte Generierung und effiziente Auswertung von Streuamplituden in allgemeinen relativistischen Quantenfeldtheorien auf Einschleifen-Niveau. Gegenwärtig gibt es keine konkreten Hinweise auf Physik jenseits des Standard Models und daher auch keine Möglichkeit, gezielt nach neuer Physik in Teilchenbeschleuniger-Experimenten zu suchen. In der Zukunft könnten Präzisionstests eine richtungsweisende Rolle übernehmen und Aufschluss über Abweichungen zum Standard Model geben, und dabei möglicherweise erlauben, indirekt auf neue Physik zu schließen. Nach dem derzeitigen experimentellen Stand werden Standard-Model-artige Theorien deutlich bevorzugt. Infolgedessen werden nur kleine Abweichungen zum Standard Model erwartet, die mit hoher Präzision untersucht werden müssen. Auf der theoretischen Seite erfordert die nötige Präzision die Berechnung von Einschleifen-Korrekturen in allen zukünftigen Analysen, die, idealerweise, vollautomatisiert durchgeführt werden, um alle grundsätzlich zugänglichen Observablen in verschiedensten Theorien testen zu können. Um dieses Ziel schrittweise zu erreichen, haben wir das Programm Recola weiterentwickelt, und auf dieser Basis die Verallgemeinerung Recola2 entwickelt. Die Programme erlauben eine vollautomatisierte Erzeugung und Auswertung von Baumgraphen- und Einschleifen-Amplituden für das Standard Model, beziehungsweise, im Falle von Recola2, für allgemeine Theorien. Der zugrundeliegende numerische Algorithmus arbeitet vollständig rekursiv und erlaubt die Berechnung von Prozessen mit bislang unerreichter Komplexität. Beispielsweise hat Recola zur ersten Berechnung mit 9-Punkt Funktionen geführt. In Recola2 werden neue Theorien durch spezifische Recola2 Modelfiles in das System integriert. Die Renormierung wird mit dem neu entwickelten Programm Reptil vollautomatisch durchgeführt, wobei lediglich die Feynman Regeln als externe Abhängigkeit benötigt werden. Zur Validierung des Systems wurden zum einen Vergleiche mit unabhängigen Rechnungen durchgeführt, und zum anderen Recola2 soweit verallgemeinert, dass dessen Konsistenz in verschiedenen Eichungen getestet werden kann. Besonders die Background-Field Formulierung erlaubt es neue Theorien automatisch zu validieren und ist darüberhinaus sehr nützlich für praktische Rechnungen, sowie für die Formulierung von Renormierungsbedingungen. Mit diesem System haben wir die ersten Berechnungen zur Higgs-Boson-Produktion in Higgs-Strahlung und Vektor-Boson-Fusion im Zwei-Higgs-Doublet Model und der Higgs-Singlet Erweiterung des Standard Models durchgeführt. Alles in allem wurden die Voraussetzungen geschaffen, Einschleifen-Amplituden in einer großen Klasse von phänomenologisch interessanten Theorien automatisiert erzeugen zu können. Darüberhinaus ermöglichen wir die Nutzung für andere durch eine sehr flexible und dynamische Bedienung, die keinerlei Zwischenschritte benötigt. KW - Standardmodell KW - Feynman diagrams KW - One-loop corrections KW - Beyond the Standard Model KW - Atomphysik KW - Molekularphysik KW - Kernphysik KW - Elementarteilchen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154426 ER - TY - THES A1 - Banik, Amitayus T1 - Two Approaches to the Baryon Asymmetry of the Universe T1 - Zwei Herangehensweisen für die Baryon-Asymmetrie im Universum N2 - Explaining the baryon asymmetry of the Universe has been a long-standing problem of particle physics, with the consensus being that new physics is required as the Standard Model (SM) cannot resolve this issue. Beyond the Standard Model (BSM) scenarios would need to incorporate new sources of \(CP\) violation and either introduce new departures from thermal equilibrium or modify the existing electroweak phase transition. In this thesis, we explore two approaches to baryogenesis, i.e. the generation of this asymmetry. In the first approach, we study the two-particle irreducible (2PI) formalism as a means to investigate non-equilibrium phenomena. After arriving at the renormalised equations of motions (EOMs) to describe the dynamics of a phase transition, we discuss the techniques required to obtain the various counterterms in an on-shell scheme. To this end, we consider three truncations up to two-loop order of the 2PI effective action: the Hartree approximation, the scalar sunset approximation and the fermionic sunset approximation. We then reconsider the renormalisation procedure in an \(\overline{\text{MS}}\) scheme to evaluate the 2PI effective potential for the aforementioned truncations. In the Hartree and the scalar sunset approximations, we obtain analytic expressions for the various counterterms and subsequently calculate the effective potential by piecing together the finite contributions. For the fermionic sunset approximation, we obtain similar equations for the counterterms in terms of divergent parts of loop integrals. However, these integrals cannot be expressed in an analytic form, making it impossible to evaluate the 2PI effective potential with the fermionic contribution. Our main results are thus related to the renormalisation programme in the 2PI formalism: \( (i) \)the procedure to obtain the renormalised EOMs, now including fermions, which serve as the starting point for the transport equations for electroweak baryogenesis and \( (ii) \) the method to obtain the 2PI effective potential in a transparent manner. In the second approach, we study baryogenesis via leptogenesis. Here, an asymmetry in the lepton sector is generated, which is then converted into the baryon asymmetry via the sphaleron process in the SM. We proceed to consider an extension of the SM along the lines of a scotogenic framework. The newly introduced particles are charged odd under a \(\mathbb{Z}_2\) symmetry, and masses for the SM neutrinos are generated radiatively. The \(\mathbb{Z}_2\) symmetry results in the lightest BSM particle being stable, allowing for a suitable dark matter (DM) candidate. Furthermore, the newly introduced heavy Majorana fermionic singlets provide the necessary sources of \(CP\) violation through their Yukawa interactions and their out-of-equilibrium decays produce a lepton asymmetry. This model is constrained from a wide range of observables, such as consistency with neutrino oscillation data, limits on branching ratios of charged lepton flavour violating decays, electroweak observables and obtaining the observed DM relic density. We study leptogenesis in this model in light of the results of a Markov chain Monte Carlo scan, implemented in consideration of the aforementioned constraints. Successful leptogenesis in this model, to account for the baryon asymmetry, then severely constrains the available parameter space. N2 - Die Erklärung der beobachteten Baryon-Asymmetrie im Universum ist ein seit langem ungelöstes Problem in der Hochenergiephysik. Ein weitgehender Konsens besteht darin, dass dafür "neue Physik" erforderlich ist, da dieses Problem nicht im Rahmen des Standardmodells gelöist werden kann. Dazu gehören CP-verletzende Erweiterungen des Standardmodells ebenso wie neue Aspekte des Nichtgleichgewichts und Modifikationen des elektroschwachen Phasenübergangs. In dieser Dissertation werden zwei Herangehensweisen untersucht, mit denen eine Baryon-Asymmetrie erzeugt werden könnte. Die erste Herangehensweise besteht darin, den 2-Teilchen-irreduziblen (2PI) Formalismus anzuwenden, um auf diese Weise Nichtgleichgewichtsphänomene berücksichtigen zu können. Nach Ableitung der renormierten Bewegungsgleichungen, welche die Dynamik des Phasenübergangs beschreiben, werden Methoden diskutiert, mit denen die sogenannten Counterterme im "On-shell"-Schema berechnet werden können. Um dieses Ziel zu erreichen, betrachten wir drei verschiedene Näherungen der 2PI-Wirkung in zweiter Schleifenordnung, nämlich die Hartree- und die skalare 'sunset' Approximation sowie die fermionische 'sunset'-Approximation. Danach kehren wir zur Renormierungsprozedur in einem \(\overline{\text{MS}}\)-Schema zurück, um das effektive 2PI-Potential für die jeweiligen Abschneideverfahren zu berechnen. In den ersten beiden Fällen gelangen wir zu analytischen Ausdrücken für die verschiedenen Counterterme und berechnen anschließend durch Zusammenfügen aller Beiträge das effektive Potential. Im fermionischen Fall erhalten wir ähnliche Gleichungen für die Counterterme, deren Schleifenintegrale allerdings noch divergente Anteile enthalten. Weil diese Integrale nicht in analytisch geschlossener Form dargestellt werden können, ist es in diesem Fall nicht möglich, das effektive Potential zu berechnen. Die beiden wesentlichen Resultate beziehen sich also auf Renormierungsverfahren im 2PI-Formalismus: \( (i) \) eine Methode, um renormierte Bewegungsgleichungen, jetzt auch mit Fermionen, zu erhalten, die als Ausgangspunkt für Transportgleichungen in der elektroschwachen Baryogenese nutzbringend sein können, und \( (ii) \) eine Methode, um das effektive 2PI-Potential in einer transparenten Weise zu bestimmen. Die zweite Herangehensweise befasst sich mit der Baryogenese durch Leptogenese. In diesem Fall wird zunächst eine Asymmetrie im leptonischen Sektor erzeugt, die dann vermittels eines Sphaleron-Prozesses in eine Baryonasymmetrie konvertiert wird. Wiederum betrachten wir eine Erweiterung des Standardmodells im Sinn eines skotogenen Ansatzes. Die zusätzlich eingeführten Teilchen sind ungerade geladen unter einer \(\mathbb{Z}_2\)-Symmetrie und die Massen für die Neutrinos im Standardmodell werden durch Strahlungskorrekturen erzeugt. Wegen der \(\mathbb Z_2\)-Symmetrie sind die leichtesten Teilchen im erweiterten Standardmodell stabil und kommen damit als geeignete Kandidaten für dunkle Materie infrage. Darüber hinaus verursachen die zusätzlich eingeführten schweren Majorana-Singlet-Fermionen durch ihre Yukawa-Wechselwirkung die benötigte CP-Verletzung, wobei Zerfälle im Nichtgleichgewicht zu einer Leptonen-Asymmetrie führen. Dieses Model wird durch eine Vielzahl von Observablen eingeschränkt, wie z.B. Konsistenz mit den Daten zu Neutrino-Oszillationen, Schranken der Verzweigungsverhältnisse für leptonische Flavor-verletzende Zerfälle, elektroschwache Präzisionsobservablen sowie die im Universum beobachtete Dichte dunkler Materie. Wir untersuchen die Leptogenese im Rahmen dieses Modells in einem Parameterraumbereich, der mithilfe einer Makovketten-Monte-Carlo-Simulation die unter Berücksichtigung der genannten Einschränkungen bestimmt wurde. Eine erfolgreiche Leptogenese in diesem Modell, welche auf die gewünschte Baryon-Asymmetrie führt, schränkt dann den Parameterraum erheblich weiter ein. KW - Baryonenasymmetrie KW - Renormierung KW - Elementarteilchenphysik KW - Neutrino KW - Quantenfeldtheorie KW - 2PI Formalism KW - Baryogenesis KW - Leptogenesis KW - Physics beyond the Standard Model KW - Scotogenic Model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320468 ER -