TY - THES A1 - Sahiti, Floran T1 - Myocardial Work – Application and Clinical Characterization of a New Echocardiographic Tool T1 - Myocardial Work – Anwendung und klinische Charakterisierung einer neuen Echokardiographie-basierten Methode N2 - 1 Summary Left ventricular (LV) ejection fraction (EF) and global longitudinal strain (GLS) are the most commonly used measures of LV function. Yet, they are highly dependent on loading conditions since higher afterload yields lower systolic deformation and thereby a lower LVEF and GLS – despite presumably unchanged LV myocardial contractile strength. Invasive pressure-volume loop measurements represent the reference standard to assess LV function, also considering loading conditions. However, this procedure cannot be used in serial investigations or large sample populations due to its invasive nature. The novel concept of echocardiography-derived assessment of myocardial work (MyW) is based on LV pressure-strain loops, may be a valuable alternative to overcome these challenges, and may also be used with relative ease in large populations. As MyW also accounts for afterload, it is considered less load-dependent than LVEF and GLS. The current PhD work addresses the application and clinical characterization of MyW, an innovative echocardiographic tool. As the method is new, we focused on four main topics: (a) To establish reference values for MyW indices, i.e., Global Work Index (GWI), Global Constructive Work (GCW), Global Wasted Work (GWW), and Global Work Efficiency (GWE); we addressed a wide age range and evaluated the association of MyW indices with age, sex and other clinical and echocardiography parameters in apparently cardiovascular healthy individuals. (b) To investigate the impact of cardiovascular (CV) risk factors on MyW indices and characterize the severity of subclinical LV deterioration in the general population. (c) To assess the association of the LV geometry, i.e., LV mass and dimensions, with MyW indices. (d) To evaluate in-hospital dynamics of MyW indices in patients hospitalized for acute heart failure (AHF). For the PhD thesis, we could make use of two larger cohorts: The STAAB population-based cohort study prospectively recruited and phenotyped a representative sample (5,000 individuals) of the general population of the City of Würzburg, aged 30-79 years and free from symptomatic heart failure at the time of inclusion. We focused on the first half of the study sample (n=2473 individuals), which fulfilled the anticipated strata regarding age and sex. The Acute Heart Failure (AHF) Registry is a prospective clinical registry recruiting and phenotyping consecutive patients admitted for decompensated AHF to the Department of Medicine I, University Hospital Würzburg, and observing the natural course of the disease. The AHF Registry focuses on the pathophysiological understanding, particularly in relation to the early phase after cardiac decompensation, with the aim to improve diagnosis and better-tailored treatment of patients with AHF. For the current study, we concentrated on patients who provided pairs of echocardiograms acquired early after index hospital admission and prior to discharge. The main findings of the PhD thesis were: From the STAAB cohort study, we determined the feasibility of large-scale MyW derivation and the accuracy of the method. We established reference values for MyW indices based on 779 analyzable, apparently healthy participants (mean age 49 ± 10 years, 59% women), who were in sinus rhythm, free from CV risk factors or CV disease, and had no significant LV valve disease. Apart from GWI, there were no associations of other MyW indices with sex. Further, we found a disparate association with age, where MyW showed stable values until the age of 45 years, with an upward shift occurring beyond the age of 45. A higher age decade was associated with higher GWW and lower GWE, respectively. MyW indices only correlated weakly with common echocardiographic parameters, suggesting that MyW may add incremental information to clinically established parameters. Further analyses from the STAAB cohort study contributed to a better understanding of the impact of CV risk factors on MyW indices and the association of LV geometry with LV performance. We demonstrated that CV risk factors impacted selectively on GCW and GWW. Hypertension appears to profoundly compromise the work of the myocardium, in particular, by increasing both GCW and GWW. The LV in hypertension seems to operate at a higher energy level yet lower efficiency. Other classical CV risk factors (Diabetes mellitus, Obesity, Dyslipidemia, Smoking) – independent of blood pressure – impacted consistently and adversely on GCW but did not affect GWW. Further, all CV risk factors affected GWE adversely. We observed that any deviation from a normal LV geometric profile was associated with alterations on MyW. Of note, MyW was sensitive to early changes in LV mass and dimensions. Individuals with normal LV geometry yet established arterial hypertension exhibited a MyW pattern that is typically found in LV hypertrophy. Therefore, such a pattern might serve as an early sign of myocardial damage in hypertensive heart disease and might aid in risk stratification and primary prevention. From the AHF Registry, we selected individuals with serial in-hospital echocardiograms and described in-hospital changes in myocardial performance during recompensation. In patients presenting with a reduced ejection fraction (HFrEF), decreasing N-terminal pro-natriuretic peptide (NT-proBNP) levels as a surrogate of successful recompensation were associated with an improvement in GCW and GWI and consecutively in GWE. In contrast, in patients presenting with a preserved ejection fraction (HFpEF), there was no significant change in GCW and GWI. However, unsuccessful recompensation, i.e., no change or an increase in NT-proBNP levels, was associated with an increase in GWW. This suggests a differential myocardial response to de- and recompensation depending on the HF phenotype. Further, GWW as a surrogate of inappropriate LV energy consumption was elevated in all patients with AHF (compared to reference values) and was not associated with conventional markers as LVEF or NT-proBNP. In an exploratory analysis, GWW predicted the risk of death or rehospitalization within six months after discharge. Hence, GWW might carry incremental information beyond conventional markers of HF severity. N2 - 2 Zusammenfassung Die linksventrikuläre (LV) Ejektionsfraktion (EF) und der Global Longitudinal Strain (GLS) sind die am häufigsten verwendeten Maße der LV-Funktion. Sie sind jedoch stark von den jeweiligen Belastungsbedingungen abhängig, da eine höhere Nachlast zu einer geringeren systolischen Deformation und somit zu einer niedrigeren LVEF und GLS führt, trotz einer vermutlich unveränderten myokardialen Kontraktionsstärke. Intrakardiale Druck-Volumen-Schleifenmessungen stellen den Referenzstandard zur Beurteilung der LV-Funktion dar, da hiermit auch die umfassende Berücksichtigung der Lastbedingungen (Vorlast, Nachlast) möglich ist. Dieses Verfahren lässt sich jedoch aufgrund des invasiven Charakters nur schwer in Follow-up Untersuchungen oder großen Studienpopulationen einsetzen. Angelehnt an die Prinzipien dieser invasiven Technik, wurde vor kurzem das neuartige Konzept der Echokardiographie-abgeleiteten Beurteilung der Myokardarbeit (MyW) entwickelt. Dieser Ansatz wertet Druck-Strain-Schleifen aus und berücksichtigt den Einfluss der Nachlast, so dass MyW als weniger lastabhängig gilt verglichen mit LVEF und GLS. Die Analyse von MyW könnte deshalb eine wertvolle Alternative sein, um den o.g. Herausforderungen zu begegnen. Die Methode lässt sich in großen Stichproben, ggf. auch wiederholt, einsetzen. Die hier vorgelegte Dissertation befasst sich mit der Anwendung und klinischen Charakterisierung von MyW, einer innovativen echokardiographischen Methode. Der Fokus lag auf vier Themenbereichen: (a) Festlegung von Referenzwerten für MyW-Indizes, d. h. Global Work Index (GWI), Global Constructive Work (GCW), Global Wasted Work (GWW) und Global Work Efficiency (GWE); wir adressierten einen breiten Altersbereich und quantifizierten die Assoziation der MyW-Indizes mit Alter, Geschlecht und weiteren klinischen und echokardiographischen Parametern bei kardiovaskulär gesunden Normalpersonen. (b) Untersuchung des Einflusses kardiovaskulärer Risikofaktoren auf die MyW-Indizes und die Charakterisierung einer subklinischen LV-Verschlechterung in der Allgemeinbevölkerung. (c) Bewertung der Assoziation der MyW-Indizes mit der LV-Geometrie, insbesondere der LV-Masse und der LV-Dimensionen. (d) Bewertung der Dynamik der MyW-Indizes im Krankenhaus bei Patienten, die wegen akuter Herzinsuffizienz (AHF) ins Krankenhaus aufgenommen wurden. Im Rahmen der hier vorgelegten Dissertation wurden die Daten zweier größerer Kohorten herangezogen: Die bevölkerungsbasierte STAAB-Kohortenstudie rekrutierte und phänotypisierte prospektiv eine repräsentative Stichprobe (5.000 Personen) der Allgemeinbevölkerung der Stadt Würzburg im Alter von 30-79 Jahren, die zum Zeitpunkt des Einschlusses keine vorbeschriebene Herzinsuffizienz hatten. Wir konzentrierten uns auf die erste Hälfte der Studienstichprobe (n=2473 Personen), welche die erwarteten Stratifizierung bezüglich Alter und Geschlecht erfüllten. Das Acute Heart Failure (AHF) Register ist ein klinisches Register zur Rekrutierung und Phänotypisierung von konsekutiven Patienten, die wegen akut dekompensierter Herzinsuffizienz in die Medizinische Klinik I des Universitätsklinikums Würzburg aufgenommen wurden. Ziel dieser Studie ist es, das pathophysiologische Verständnis insbesondere in Bezug auf die Frühphase nach einer kardialen Dekompensation zu verbessern und damit die gezielte Diagnostik und Therapie von Patienten mit AHF zu verbessern. Wir fokussierten hier auf Patienten, bei denen im Krankenhaus zwei Echokardiogramme durchgeführt wurden: früh nach Aufnahme ins Krankenhaus und kurz vor der Entlassung. Die wichtigsten Erkenntnisse der hier vorgelegten Dissertation sind: Aus den Daten der STAAB-Kohortenstudie wurden Referenzwerte für MyW-Indizes etabliert, die auf Auswertungen von insgesamt 779 gesunden Normalpersonen (mittleres Alter 49 ± 10 Jahre, 59% Frauen) mit Sinusrhythmus beruhen. Diese Probanden wiesen gemäß der Ergebnisse einer umfangreichen Eingangsuntersuchung keine kardiovaskulären Risikofaktoren oder Erkrankungen auf und zeigten echokardiographisch keinen Hinweis auf eine LV-Klappenerkrankung. Mit der Ausnahme von GWI fanden sich keine Assoziationen der MyW-Indizes mit dem Geschlecht. Darüber hinaus zeigte sich eine Altersabhängigkeit der MyW-Indizes. Bis zum Alter von 45 Jahren wies MyW stabile Werte auf, jenseits des 45. Lebensjahres jedoch eine Aufwärtsverschiebung: dabei war eine zunehmend höhere Altersdekade mit mehr GWW bzw. weniger GWE verbunden. Die MyW-Indizes korrelierten nur schwach mit üblichen echokardiographischen Parametern, was darauf hindeuten könnte, dass MyW zusätzliche Informationen jenseits klinisch etablierter Variablen beitragen kann. Weitere Analysen aus der STAAB-Kohortenstudie trugen zu einem besseren Verständnis des Einflusses kardiovaskulärer Risikofaktoren auf die MyW-Indizes und der Assoziation der LV-Geometrie mit der LV-Leistung bei. Wir zeigten, dass kardiovaskuläre Risikofaktoren sich selektiv auf GCW und GWW auswirken. Hypertonie beeinträchtigte die Arbeit des Myokards zutiefst, insbesondere durch die Erhöhung sowohl des GCW als auch des GWW. Der LV arbeitet demnach bei Hypertonie auf einem höheren Energieniveau – jedoch mit geringerer Effizienz. Andere klassische kardiovaskuläre Risikofaktoren (Diabetes mellitus, Adipositas, Dyslipidämie, Rauchen), wirkten sich unabhängig vom Blutdruck durchweg negativ auf GCW aus, zeigten jedoch keinen Einfluss auf GWW. Darüber hinaus wirkten sich alle kardiovaskulären Risikofaktoren nachteilig auf GWE aus. Jede Abweichung von einem normalen LV-Geometrie Profil war mit Änderungen der MyW verbunden. Bemerkenswert war, dass MyW empfindlich auf frühe Veränderungen der LV-Masse und -Dimensionen reagierte. Personen mit arterieller Hypertonie aber noch normaler LV-Geometrie zeigten ein myokardiales Arbeitsmuster, das ansonsten typischerweise bei LV-Hypertrophie zu finden ist. Somit könnte dieses Muster als frühes Zeichen einer Myokardschädigung bei hypertensiver Herzerkrankung dienen und bei der Risikostratifizierung und Primärprävention helfen. Aus dem AHF-Register wählten wir Personen mit seriellen Echokardiogrammen im Krankenhaus aus und beschrieben Veränderungen der myokardialen Leistung während der Rekompensationsphase beschrieben. Als Surrogat einer Rekompensation zogen wir während der Hospitalisierung sinkende Spiegel von N-terminalem pro-natriuretischem Peptid (NT-proBNP) heran. Bei Patienten mit reduzierter Ejektonfraktion (HFrEF) waren fallende NT-proBNP Werte (i. S. einer erfolgreichen Rekompensation) mit einer Verbesserung von GCW und GWI und konsekutiv auch von GWE verbunden. Im Gegensatz dazu gab es bei Patienten, die eine erhaltene Ejektonfraktionsfraktion aufwiesen (HFpEF), keine signifikante Veränderung von GCW und GWI. Eine erfolglose Rekompensation, d. h. keine Veränderung oder ein potenzieller Anstieg von NT-proBNP, war jedoch mit einem Anstieg von GWW verbunden. Wir interpretierten dies als unterschiedliche myokardiale Reaktion auf De- und Rekompensation in Abhängigkeit vom Herzinsuffizienz-Phänotyp. Darüber hinaus war GWW als Surrogat eines unangemessenen LV-Energieverbrauchs bei allen Patienten mit AHF erhöht (im Vergleich zu Referenzwerten) und korrelierte mit keinem der konventionellen Marker. In einer explorativen Analyse war GWW ein starker Prädiktor für das Risiko, im Verlauf der nächsten sechs Monaten nach Krankenhausentlassung zu sterben oder erneut hospitalisiert zu werden. Damit könnte die GWW zusätzliche Informationen enthalten, die über die konventionellen Marker für den Schweregrad der Herzinsuffizienz hinausgehen. KW - Myocardial Work KW - Echocardiography KW - Heart Failure KW - Hypertension KW - STAAB Cohort Study KW - Wasted Work KW - Cardiac Efficiency KW - Herzinsuffizienz KW - Echokardiographie KW - myokardiale Arbeit KW - LV Function Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282261 ER - TY - THES A1 - Lohr, David T1 - Functional and Structural Characterization of the Myocardium T1 - Funktionelle und Strukturelle Charakterisierung des Myokardiums N2 - Clinical practice in CMR with respect to cardiovascular disease is currently focused on tissue characterization, and cardiac function, in particular. In recent years MRI based diffusion tensor imaging (DTI) has been shown to enable the assessment of microstructure based on the analysis of Brownian motion of water molecules in anisotropic tissue, such as the myocardium. With respect to both functional and structural imaging, 7T MRI may increase SNR, providing access to information beyond the reach of clinically applied field strengths. To date, cardiac 7T MRI is still a research modality that is only starting to develop towards clinical application. In this thesis we primarily aimed to advance methods of ultrahigh field CMR using the latest 7T technology and its application towards the functional and structural characterization of the myocardium. Regarding the assessment of myocardial microstructure at 7T, feasibility of ex vivo DTI of large animal hearts was demonstrated. In such hearts a custom sequence implemented for in vivo DTI was evaluated and fixation induced alterations of derived diffusion metrics and tissue properties were assessed. Results enable comparison of prior and future ex vivo DTI studies and provide information on measurement parameters at 7T. Translating developed methodology to preclinical studies of mouse hearts, ex vivo DTI provided highly sensitive surrogates for microstructural remodeling in response to subendocardial damage. In such cases echocardiography measurements revealed mild diastolic dysfunction and impaired longitudinal deformation, linking disease induced structural and functional alterations. Complementary DTI and echocardiography data also improved our understanding of structure-function interactions in cases of loss of contractile myofiber tracts, replacement fibrosis, and LV systolic failure. Regarding the functional characterization of the myocardium at 7T, sequence protocols were expanded towards a dedicated 7T routine protocol, encompassing accurate cardiac planning and the assessment of cardiac function via cine imaging in humans. This assessment requires segmentation of myocardial contours. For that, artificial intelligence (AI) was developed and trained, enabling rapid automatic generation of cardiac segmentation in clinical data. Using transfer learning, AI models were adapted to cine data acquired using the latest generation 7T system. Methodology for AI based segmentation was translated to cardiac pathology, where automatic segmentation of scar tissue, edema and healthy myocardium was achieved. Developed radiofrequency hardware facilitates translational studies at 7T, providing controlled conditions for future method development towards cardiac 7T MRI in humans. In this thesis the latest 7T technology, cardiac DTI, and AI were used to advance methods of ultrahigh field CMR. In the long run, obtained results contribute to diagnostic methods that may facilitate early detection and risk stratification in cardiovascular disease. N2 - Bei kardiovaskulären Erkrankungen konzentriert sich die kardiale MRT aktuell auf die Gewebecharakterisierung und insbesondere die Herzfunktion. In den letzten Jahren hat sich gezeigt, dass MRT-basierte Diffusions-Tensor-Bildgebung (DTI) die Beurteilung der Mikrostruktur anhand der Analyse der Brownschen Bewegung von Wassermolekülen in anisotropem Gewebe, wie dem Myokardium, ermöglicht. In Bezug auf sowohl die funktionelle als auch die strukturelle Bildgebung kann 7T MRT SNR verbessern und Information messbar machen, die außerhalb der Reichweite von klinisch angewendeten Feldstärken liegt. Heute ist kardiale 7T MRT noch eine Forschungsmodalität, die sich Richtung klinischer Anwendung entwickelt. Hauptziel dieser Dissertation war die Weiterentwicklung von Methoden der kardialen Ultrahochfeld-Bildgebung mittels der neuesten 7T-Technologie und dessen Anwendung für die funktionelle und strukturelle Charakterisierung des Myokardiums. Für die Mikrostrukturcharakterisierung des Myokardiums bei 7T wurde die Durchführbarkeit von ex vivo DTI Messungen von Großtierherzen demonstriert. In solchen Herzen wurde eine Sequenz evaluiert, die für in vivo DTI etabliert wurde. Zudem wurden fixationsbedinge Veränderungen von Diffusionsparametern und Gewebeeigenschaften ermittelt. Die Ergebnisse erlauben den Vergleich von bestehenden und zukünftigen ex vivo Studien und geben Informationen zu Messparametern bei 7T. Der Transfer von etablierten Methoden zu präklinischen Studien in Mäuseherzen demonstrierte, dass ex vivo DTI sensitive Marker für Mikrostruktur-Remodeling nach Subendokard-Schäden liefern kann. In solchen Fällen zeigte Echokardiographie eine leichte diastolische Dysfunktion und eingeschränkte Longitudinalverformung. Komplementäre DTI und Echokardiographie-Daten erweiterten zudem unser Verständnis von Struktur-Funktions-Interaktionen in Fällen von Verlust von kontraktilen Faserbündeln, Fibrose und linksventrikulärem, systolischem Versagen. Für die funktionelle Charakterisierung des Myokardiums bei 7T wurde ein dediziertes 7T-Humanprotokoll erarbeitet, welches akkurate Schichtplanung und die Bestimmung der Herzfunktion mittels Cine-Bildgebung umfasst. Die Herzfunktionsbestimmung erfordert die Segmentierung des Myokards. Hierfür wurde künstliche Intelligenz (KI) entwickelt, die eine schnelle, automatische Herzsegmentierung in klinischen Daten ermöglicht. Mittels Lerntransfer wurden KI-Modelle für Bilder angepasst, die mit der neuesten 7T-Technologie aufgenommen wurden. Methoden für die KI-basierte Segmentierung wurden zudem für die Bestimmung und Segmentierung von Narbengewebe, Ödemen und gesundem Myokard erweitert. Entwickelte Radiofrequenz-Komponenten ermöglichen translationale 7T-Studien, welche kontrollierte Bedingungen für die Methodenentwicklung von kardialen 7T-Anwendungen für den Humanbereich liefern. In dieser Arbeit werden die neueste 7T-Technologie, DTI am Herzen und AI genutzt, um Methoden der kardialen Ultrahochfeld-Bildgebung weiterzuentwickeln. Langfristig erweitern die erzielten Ergebnisse diagnostische Methoden, die Früherkennung und Risikoabschätzung in kardiovaskulären Erkrankungen ermöglichen können. KW - Diffusionsgewichtete Magnetresonanztomografie KW - Künstliche Intelligenz KW - 7T KW - DTI KW - AI KW - Cardiac Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234486 ER - TY - THES A1 - Cellini, Antonella T1 - Die Rolle der Na\(^+\)/K\(^+\)-ATPase in der Herzinsuffizienz T1 - The Na\(^+\)/K\(^+\)-ATPase and its role in heart failure N2 - Die Na+ /K+ -ATPase (NKA) ist maßgeblich an der Regulation der kardialen Na+ -Homöostase beteilligt. Im Myokard werden hauptsächlich zwei Isoformen exprimiert: die α1 (NKA-α1) und die α2-Isoform (NKA-α2). Diese beiden Isoformen unterscheiden sich sowohl in ihrer Lokalisation als auch in ihrer zellulären Funktion. So ist die NKA-α1 recht homogen entlang des Sarkolemms zu finden und ist verantwortlich für die Regulation der globalen intrazellulären Na+ -Konzentration ([Na+ ]i). Die NKA-α2 hingegen konzentriert sich hauptsächlich in den T-Tubuli und beeinflusst über Veränderung der lokalen [Na+ ]i die Ca2+ -Transienten und die Kontraktilität. Im Rahmen einer Herzinsuffizienz wurde eine verminderte Expression und Aktivität der NKA beobachtet. Gleichzeitig werden Inhibitoren der NKA, sogenannte Digitalisglykoside, in fortgeschrittenen Herzinsuffizienz-Stadien eingesetzt. Die Studienlage über den Einsatz dieser Therapeutika ist recht uneinheitlich und reicht von einer verringerten Hospitalisierung bis hin zu einer erhöhten Mortalität. Ziel dieser Arbeit war es die Folgen einer NKA-α2 Aktivierung während einer Herzinsuffizienz mit Hilfe eines murinen Überexpressionsmodells zu analysieren. 11-Wochen alte Mäuse mit einer kardialen NKA-α2 Überexpression (NKA-α2) und Wildtyp (WT) Versuchstiere wurden einem 8-wöchigen Myokardinfarkt (MI) unterzogen. NKA-α2 Versuchstiere waren vor einem pathologischem Remodeling und einer kardialen Dysfunktion geschützt. NKA-α2 Kardiomyozyten zeigten eine erhöhte Na+ /Ca2+ -Austauscher (NCX) Aktivität, die zu niedrigeren diastolischen und systolischen Ca2+ -Spiegeln führte und einer Ca2+ -Desensitisierung der Myofibrillen entgegenwirkte. WT Versuchstiere zeigten nach chronischem MI eine sarkoplasmatische Ca2+ -Akkumulation, die in NKA-α2 Kardiomyozyten ausblieb. Gleichzeitig konnte in der NKA-α2 MI Kohorte im Vergleich zu den WT MI Versuchstieren eine erhöhte Expression von β1-adrenergen Rezeptoren (β1AR) beobachtet werden, die eine verbesserte Ansprechbarkeit gegenüber β-adrenergen Stimuli bewirkte. Zudem konnte in unbehandelten Versuchstieren eine Interaktion zwischen NKA-α2 und dem β1AR nachgewiesen werden, welche in der WT Kohorte größer ausfiel als in der NKA-α2 Versuchsgruppe. Gleichzeitig zeigten unbehandelte NKA-α2 Kardiomyozyten eine erhöhte Sensitivität gegenüber β-adrenerger Stimulation auf, welche nicht mit einer erhöhten Arrhythmie-Neigung oder vermehrten Bildung reaktiver Sauerstoffspezies einherging. Diese Untersuchungen zeigen, dass eine NKA-α2 Überexpression vor pathologischem Remodeling und einer kardialen Funktionbeeinträchtigung schützt, indem eine systolische, diastolische und sarkoplasmatische Ca2+ -Akkumulation verhindert wird. Gleichzeitig wird die β1AR Expression stabilisert, wodurch es zu einer verminderten neurohumoralen Aktivierung und einer Durchbrechung des Circulus vitiosus kommen könnte. Insgesamt scheint eine Aktivierung der NKA-α2 durchaus ein vielversprechendes Target in der Herzinsuffizienz Therapie darzustellen. Therapie darzustellen. N2 - The Na+ /K+ -ATPase (NKA) is significantly involved in the regulation of the cardiac Na+ homeostasis. Two isoforms are mainly expressed in the myocardium: the α1- (NKA-α1) and the α2-isoform (NKA-α2). These two isoforms differ regarding their localization as well as their cellular function. The NKA-α1 is located along the sarcolemma and is responsible for the regulation of the global intracellular Na+ concentration ([Na+ ]i). In contrast , the NKA-α2 is concentrated mostly in the t-tubules and influences the Ca2+ transients and contractility by changing the local [Na+ ]i. During heart failure, a reduced activity and expression of the NKA has been observed. At the same time, inhibitors of the NKA, so-called digitalis glycosides, are used in the treatment of advanced stages of heart failure. The current evidence for the use of these substances remains still inconsistent ranging from decreased hospitalization to increased mortality. The aim of this project was to analyze the consequences of an NKA-α2 activation during heart failure by using a murine overexpression system. 11-weeks old mice with a cardiac-specific overexpression of the NKA-α2 (NKA-α2) and wildtype (WT) animals were subjected to 8 weeks of myocardial infarction (MI). NKA-α2 mice were protected against pathological remodeling and functional impairment. NKA-α2 cardiomyocytes showed an increased Na+ /Ca2+ -exhanger (NCX) activity, which led to a reduction of the diastolic and systolic Ca2+ levels and prevented a Ca2+ desensitization of the myofilaments. WT animals showed a sarcoplasmic Ca2+ accumulation after MI, which did not occur in NKA-α2 cardiomyoctes. At the same time, NKA-α2 MI mice showed an increased expression of β1-adrenergic receptor (β1AR), which induced an improved response towards β-adrenergic stimuli. In addition, an interaction between the NKA-α2 and the β1AR was detected in untreated animals, which was tighter in the WT cohort than in the NKA-α2 group. Furthermore, untreated NKA-α2 cardiomyocytes showed an increased sensitivity towards β-adrenergic stimulation, which was not associated with a higher arrhythmic tendency or augmented generation of reative oxygen species. These results show that an NKA-α2 overexpression protects against pathological remodeling and cardiac dysfunction by preventing systolic, diastolic and sarcoplasmic Ca2+ accumulation. Concurrently, a β1AR downregulation is countercated, probably inducing a reduced neurohormonal activation and an ending of the vicious circle. Altogether, it seems that an activation of the NKA-α2 might be a promising target in the therapy of heart failure. KW - Herzinsuffizienz KW - Natrium-Kalium-Pumpe KW - Herzmuskelzelle KW - Na+/K+-ATPase KW - heart failure KW - myocardial infarction KW - Myokardinfarkt Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297894 ER - TY - THES A1 - Hock, Michael T1 - Methods for Homogenization of Spatio-Temporal B\(_0\) Magnetic Field Variations in Cardiac MRI at Ultra-High Field Strength T1 - Methoden zur Homogenisierung räumlicher und zeitlicher Variationen des B\(_0\)-Feldes in der kardialen Ultrahochfeld-MRT N2 - Cardiovascular disease is one of the leading causes of death worldwide and, so far, echocardiography, nuclear cardiology, and catheterization are the gold standard techniques used for its detection. Cardiac magnetic resonance (CMR) can replace the invasive imaging modalities and provide a "one-stop shop" characterization of the cardiovascular system by measuring myocardial tissue structure, function and perfusion of the heart, as well as anatomy of and flow in the coronary arteries. In contrast to standard clinical magnetic resonance imaging (MRI) scanners, which are often operated at a field strength of 1.5 or 3 Tesla (T), a higher resolution and subsequent cardiac parameter quantification could potentially be achieved at ultra-high field, i.e., 7 T and above. Unique insights into the pathophysiology of the heart are expected from ultra-high field MRI, which offers enhanced image quality in combination with novel contrast mechanisms, but suffers from spatio-temporal B0 magnetic field variations. Due to the resulting spatial misregistration and intra-voxel dephasing, these B0-field inhomogeneities generate a variety of undesired image artifacts, e.g., artificial image deformation. The resulting macroscopic field gradients lead to signal loss, because the effective transverse relaxation time T2* is shortened. This affects the accuracy of T2* measurements, which are essential for myocardial tissue characterization. When steady state free precession-based pulse sequences are employed for image acquisition, certain off-resonance frequencies cause signal voids. These banding artifacts complicate the proper marking of the myocardium and, subsequently, systematic errors in cardiac function measurements are inevitable. Clinical MR scanners are equipped with basic shim systems to correct for occurring B0-field inhomogeneities and resulting image artifacts, however, these are not sufficient for the advanced measurement techniques employed for ultra-high field MRI of the heart. Therefore, this work focused on the development of advanced B0 shimming strategies for CMR imaging applications to correct the spatio-temporal B0 field variations present in the human heart at 7 T. A novel cardiac phase-specific shimming (CPSS) technique was set up, which featured a triggered B0 map acquisition, anatomy-matched selection of the shim-region-of-interest (SROI), and calibration-based B0 field modeling. The influence of technical limitations on the overall spherical harmonics (SH) shim was analyzed. Moreover, benefits as well as pitfalls of dynamic shimming were debated in this study. An advanced B0 shimming strategy was set up and applied in vivo, which was the first implementation of a heart-specific shimming approach in human UHF MRI at the time. The spatial B0-field patterns which were measured in the heart throughout this study contained localized spots of strong inhomogeneities. They fluctuated over the cardiac cycle in both size and strength, and were ideally addressed using anatomy-matched SROIs. Creating a correcting magnetic field with one shim coil, however, generated eddy currents in the surrounding conducting structures and a resulting additional, unintended magnetic field. Taking these shim-to-shim interactions into account via calibration, it was demonstrated for the first time that the non-standard 3rd-order SH terms enhanced B0-field homogeneity in the human heart. However, they were attended by challenges for the shim system hardware employed in the presented work, which was indicated by the currents required to generate the optimal 3rd-order SH terms exceeding the dynamic range of the corresponding shim coils. To facilitate dynamic shimming updated over the cardiac cycle for cine imaging, the benefit of adjusting the oscillating CPSS currents was found to be vital. The first in vivo application of the novel advanced B0 shimming strategy mostly matched the simulations. The presented technical developments are a basic requirement to quantitative and functional CMR imaging of the human heart at 7 T. They pave the way for numerous clinical studies about cardiac diseases, and continuative research on dedicated cardiac B0 shimming, e.g., adapted passive shimming and multi-coil technologies. N2 - Herz-Kreislauf-Erkrankungen zählen zu den häufigsten Todesursachen weltweit und werden bisher in der Regel mittels Echokardiographie, Nuklearkardiologie und Katheterisierung untersucht. Die kardiale Magnetresonanztomographie hat das Potential diese invasiven Bildgebungsmodalitäten zu ersetzen. Dabei können sowohl das kardiovaskuläre System anhand der myokardialen Gewebestruktur sowie der Funktion und Perfusion des Herzens als auch Anatomie und Blutfluss der Koronararterien während einer einzigen Untersuchung charakterisiert werden. Im Gegensatz zu den weit verbreiteten klinischen Magnetresonanztomographie- (MRT) Geräten, welch häufig bei magnetischen Feldstärken zwischen 1.5 und 3T operieren, ermöglichen Feldstärken von 7 Tesla und mehr eine höhere Auflösung und somit eine akkuratere Quantifizierung kardialer Parameter. Die Ultrahochfeld-Magnetresonanztomographie (UHF-MRT) ermöglicht einzigartige Einblicke in die Pathophysiologie des Herzens. Neuartige Kontrastmechanismen und die verbesserte Bildqualität leiden jedoch unter Inhomogenitäten des statischen magnetischen B0-Feldes. Aufgrund der daraus resultierenden falschen räumlichen Registrierung der Voxel und einer Dephasierung des Signals innerhalb eines Voxels erzeugen diese Inhomogenitäten des B0-Feldes eine Vielzahl unerwünschter Bildartefakte, beispielsweise eine künstliche Deformation des Bildes. Die resultierenden makroskopischen Gradienten führen zu Signalverlust und beeinträchtigen die Messung der effektiven transversalen T2*-Relaxationszeit, welche für die Charakterisierung myokardialen Gewebes essentiell ist. Vor allem bei der Bildakquisition mittels der Steady State Free Precession Methode führen Inhomogenitäten des B0-Feldes zu Signalauslöschungen. Die dadurch entstehenden Bildartefakte erschweren die genaue Markierung des Myokards und haben so systematische Fehler bei der Bestimmung der kardialen Funktion zur Folge. Klinische MRT-Geräte sind dabei mit sogenannten Shim-Systemen ausgestattet um die Inhomogenitäten des B0-Feldes zu korrigieren. Für die kardiale UHF-MRT des Herzens sind diese standardisierten Shim-Systeme allerdings nicht mehr ausreichend. Im Fokus stand deshalb die Entwicklung moderner Methoden zur räumlichen und zeitlichen Korrektur der B0-Inhomogenitäten, welche als „Shimming“ bezeichnet wird, für die kardiale UHF-MRT. Es wurde eine neue, herzphasen-spezifische Shimming-Strategie untersucht, welche auf der getriggerten Datenaufnahme, der Optimierung für die Anatomie des Herzens, sowie der kalibrierungsbasierten Modellierung des korrigierenden Magnetfeldes basierte. Zudem wurde der Einfluss technischer Limitationen der Hardware auf das Shimming, insbesondere das dynamische Shimming, in dieser Studie erörtert. Schließlich wurde die entwickelte neuartige Shimming-Strategie in vivo evaluiert, welche zu diesem Zeitpunkt die erste Implementierung einer herzspezifischen Shimming-Strategie in der humanen kardialen UHF-MRT darstellte. Räumlich wies das B0-Feld, welches im Rahmen dieser Studie im Herzen gemessen wurde, lokalisierte Inhomogenitäten im Myokardium auf. Diese variierten zudem in ihrer Größe sowie der Stärke der B0-Inhomogenität zeitlich über den Herzzyklus hinweg und ließen sich mittels anatomisch angepasstem, kalibrierungsbasiertem Shimming deutlich reduzieren. Erzeugt man ein korrigierendes Magnetfeld mittels einer Shim-Spule, so werden jedoch Wirbelströme in nahen leitenden Strukturen und weiterhin ein zusätzliches, unerwünschtes Magnetfeld erzeugt. Berücksichtigt man diese Wechselwirkungen zwischen den verschiedenen Shim-Spulen, konnte erstmalig der Vorteil von korrigierenden Magnetfeldern in der Form von Kugelflächenfunktionen der dritten Ordnung für die kardiale UHF-MRT gezeigt werden. Hierbei waren jedoch die erforderlichen, besonders starken Ströme in den Shim-Spulen zu berücksichtigen, welche über den Herzzyklus hinweg oszillierten und für dynamisches Shimming angepasst werden sollten. Die erste in vivo Anwendung der neu entwickelten Shim-Strategie stimmte gut mit den vorigen Simulationen überein. Die vorgestellten technischen Entwicklungen stellen grundlegende Anforderungen an die quantitative und funktionelle kardialer UHF-MRT dar. Klinische Studien zu kardialen Erkrankungen wie der Herzinsuffizienz erscheinen nun ebenso in Reichweite wie weitere Forschung zu kardialem B0-Shimming basierend auf angepasstem passiven Shimming sowie Multikanal-Spulen. KW - Kernspintomografie KW - Bildgebendes Verfahren KW - 7 T KW - B0 KW - Cardiac MRI KW - Shimming KW - Ultrahigh field Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348213 ER -