TY - THES A1 - Zhou, Yang T1 - The Exploitation of Opsin-based Optogenetic Tools for Application in Higher Plants T1 - Die Nutzung von optogenetischen Werkzeugen auf Opsin-Basis für die Anwendung in höheren Pflanzen N2 - The discovery, heterologous expression, and characterization of channelrhodopsin-2 (ChR2) – a light-sensitive cation channel found in the green alga Chlamydomonas reinhardtii – led to the success of optogenetics as a powerful technology, first in neuroscience. ChR2 was employed to induce action potentials by blue light in genetically modified nerve cells. In optogenetics, exogenous photoreceptors are expressed in cells to manipulate cellular activity. These photoreceptors were in the beginning mainly microbial opsins. During nearly two decades, many microbial opsins and their mutants were explored for their application in neuroscience. Until now, however, the application of optogenetics to plant studies is limited to very few reports. Several optogenetic strategies for plant research were demonstrated, in which most attempts are based on non-opsin optogenetic tools. Opsins need retinal (vitamin A) as a cofactor to generate the functional protein, the rhodopsin. As most animals have eyes that contain animal rhodopsins, they also have the enzyme - a 15, 15'-Dioxygenase - for retinal production from food-supplied provitamin A (beta-carotene). However, higher plants lack a similar enzyme, making it difficult to express functional rhodopsins successfully in plants. But plant chloroplasts contain plenty of beta-carotene. I introduced a gene, coding for a 15, 15'-Dioxygenase with a chloroplast target peptide, to tobacco plants. This enzyme converts a molecule of β-carotene into two of all-trans-retinal. After expressing this enzyme in plants, the concentration of all-trans-retinal was increased greatly. The increased retinal concentration led to increased expression of several microbial opsins, tested in model higher plants. Unfortunately, most opsins were observed intracellularly and not in the plasma membrane. To improve their localization in the plasma membrane, some reported signal peptides were fused to the N- or C-terminal end of opsins. Finally, I helped to identify three microbial opsins -- GtACR1 (a light-gated anion channel), ChR2 (a light-gated cation channel), PPR (a light-gated proton pump) which express and work well in the plasma membrane of plants. The transgene plants were grown under red light to prevent activation of the expressed opsins. Upon illumination with blue or green light, the activation of these opsins then induced the expected change of the membrane potential, dramatically changing the phenotype of plants with activated rhodopsins. This study is the first which shows the potential of microbial opsins for optogenetic research in higher plants, using the ubq10 promoter for ubiquitous expression. I expect this to be just the beginning, as many different opsins and tissue-specific promoters for selective expression now can be tested for their usefulness. It is further to be expected that the here established method will help investigators to exploit more optogenetic tools and explore the secrets, kept in the plant kingdom. N2 - Die Entdeckung, heterologe Expression und Charakterisierung von Channelrhodopsin-2 (ChR2) - einem lichtempfindlichen Kationenkanal, der in der Grünalge Chlamydomonas reinhardtii vorkommt - führte zum Erfolg der Optogenetik als leistungsfähige Technologie, zunächst in den Neurowissenschaften. ChR2 wurde eingesetzt, um in genetisch veränderten Nervenzellen durch blaues Licht Aktionspotentiale zu induzieren. Bei der Optogenetik werden exogene Photorezeptoren in Zellen exprimiert, um die zelluläre Aktivität zu manipulieren. Diese Photorezeptoren waren anfangs hauptsächlich mikrobielle Opsine. Im Laufe von fast zwei Jahrzehnten wurden viele mikrobielle Opsine und ihre Mutanten für ihre Anwendung in den Neurowissenschaften erforscht. Bis jetzt ist die Anwendung der Optogenetik in der Pflanzenforschung jedoch auf sehr wenige Arbeiten beschränkt. Es wurden mehrere optogenetische Strategien für die Pflanzenforschung aufgezeigt, wobei die meisten Versuche auf optogenetischen Werkzeugen, die nicht Opsine sind, beruhen. Opsine benötigen Retinal (Vitamin A) als Kofaktor, um das funktionelle Protein, das Rhodopsin, zu generieren. Da die meisten Tiere Augen haben, die tierische Rhodopsine enthalten, verfügen sie auch über das Enzym - eine 15, 15'-Dioxygenase - zur Retinalproduktion aus mit der Nahrung zugeführtem Provitamin A (Beta-Carotin). Höheren Pflanzen fehlt jedoch ein ähnliches Enzym, was es schwierig macht, funktionale Rhodopsine erfolgreich in Pflanzen zu exprimieren. Aber die Chloroplasten der Pflanzen enthalten reichlich Beta-Carotin. Ich führte ein Gen, das für eine 15, 15'-Dioxygenase mit einem Chloroplasten-Zielpeptid kodiert, in Tabakpflanzen ein. Dieses Enzym wandelt ein Molekül β-Carotin in zwei Moleküle all-trans-Retinal um. Nach Expression dieses Enzyms in Pflanzen wurde die Konzentration von all-trans-Retinal stark erhöht. ... KW - optogenetics KW - opsins KW - higher plants Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236960 ER - TY - THES A1 - Muralidhara, Prathibha T1 - Perturbations in plant energy homeostasis alter lateral root plasticity via SnRK1-bZIP63-ARF19 signalling T1 - Störungen in der pflanzlichen Energiehomöostase verändern die laterale Wurzelplastizität vermittelt durch das SnRK1-bZIP63-ARF19-Signalmodul N2 - Photosynthetic plants have a remarkable ability to modify their metabolism and development according to ever changing environmental conditions. The root system displays continuous growth of the primary root and formation of lateral roots enabling efficient water and nutrient uptake and anchorage of the plant in soil. With regard to lateral roots, development is post-embryonic, originating from the pericycle of the primary root. Coordinated activity of several molecular signalling pathways controlled by the hormone auxin is important throughout all stages of lateral root development.At first, two adjacent Xylem Pole Pericycle (XPP) cells are activated and the nuclei of these cells migrate towards a common cell wall.This is followed by XPP cells acquiring volume thus swelling up.The XPP cells then undergo anticlinal cell division, followed by a series of periclinal and anticlinal divisions,leading to lateral root primordia.These break through the radial cell layers and emerge out the primary root. Although root system plasticity is well-described in response to environmental cues such as ion nutrition in the soil, little is known on how root development is shaped according to the endogenous energy status of the plant.In this study, we were able to connect limited perturbations in photosynthetic energy supply to lateral root development.We established two experimental systems – treatment with low light and unexpected darkness which led to short-term energy imbalance in the plant.These short perturbations administered, showed an increase in the emerged lateral root density and decrease in root hexose availability and activation of the low energy marker gene ASN1 (ASPARAGINE SYNTHETASE 1).Although not demonstrated, presumably, these disturbances in the plant energy homeo-stasis activates SnRK1 (SNF1 RELATED KINASE 1),an evolutionary conserved kinase mediat-ing metabolic and transcriptional responses towards low energy conditions. In A. thaliana, two catalytic α-subunits of this kinase (SnRK1.α1 and SnRK1.α2) are functionally active and form ternary complexes with the regulatory β- and γ- subunits. Whereas unexpected darkness results in an increase in emerged lateral root density, the snrk1.α1 loss-of-function mutant displayed decrease in emerged lateral root density. As this effect is not that pronounced in the snrk1.α2 loss-of-function mutant, the α1 catalytic subunit is important for the observed lateral root phenotype under short-term energy perturbations. Moreover, root expression patterns of SnRK1.α1:GFP supports a role of this catalytic subunit in lateral root development. Furthermore, the lateral root response during short-term perturbations requires the SnRK1 downstream transcriptional regulator bZIP63 (BASIC LEU-CINE ZIPPER 63), as demonstrated here by a loss-of-function approach. Phenotypic studies showed that in comparison to wild-type, bzip63 mutants displayed decreased lateral root density upon low-light and unexpected darkness conditions. Previous work has demonstrat-ed that SnRK1 directly phosphorylates bZIP63 at three serine residues. Alanine-exchange mutants of the SnRK1 dependent bZIP63 phosphorylation sites behave similarly to bzip63 loss-of-function mutants and do not display increased lateral root density upon short-term unexpected darkness. This data strongly supports an impact of SnRK1-bZIP63 signalling in mediating the observed lateral root density phenotype. Plants expressing a bZIP63:YFP fu-sion protein showed specific localization patterns in primary root and in all developmental stages of the lateral root. bzip63 loss-of-function mutant lines displayed reduced early stage lateral root initiation events under unexpected darkness as demonstrated by Differen-tial Interference Contrast microscopy (DIC) and the use of a GATA23 reporter line. This data supports a role of bZIP63 in early lateral root initiation. Next, by employing Chromatin Immunoprecitation (ChIP) sequencing, we were able to iden-tify global binding targets of bZIP63, including the auxin-regulated transcription factor (TF) ARF19 (AUXIN RESPONSE FACTOR 19), a well-described central regulator of lateral root development. Additional ChIP experiments confirmed direct binding of bZIP63 to an ARF19 promoter region harboring a G-Box cis-element, a well-established bZIP63 binding site. We also observed that short-term energy perturbation upon unexpected darkness induced tran-scription of ARF19, which was impaired in the bzip63 loss-of-function mutant. These results propose that bZIP63 mediates lateral root development under short-term energy perturba-tion via ARF19. In conclusion, this study provides a novel mechanistic link between energy homeostasis and plant development. By employing reverse genetics, confocal imaging and high-throughput sequencing strategies, we were able to propose a SnRK1-bZIP63-ARF19 signalling module in integrating energy signalling into lateral root developmental programs. N2 - Photosynthestisch aktive Pflanzen haben die bemerkenswerte Fähigkeit, ihren Stoffwechsel und ihre Entwicklung an sich ständig ändernde Umweltbedingungen anzupassen. Das pflanz- liche Wurzelsystem weist ein kontinuierliches Primärwurzelwachstum und eine Ausbildung von Seitenwurzeln auf, wodurch eine effiziente Wasser- und Nährstoffaufnahme sowie die Verankerung der Pflanze im Boden ermöglicht werden. Die Entwicklung der Seitenwurzeln verläuft post-embryonal, ausgehend vom Perizykel der Primärwurzel. Die koordinierte Aktivi- tät mehrerer molekularer Signalwege, die durch das Hormon Auxin gesteuert werden, ist in allen Stadien der Seitenwurzelentwicklung wichtig. Bei diesem Prozess werden zunächst zwei benachbarte Xylem-Pol-Perizykel-Zellen (XPP) aktiviert, deren Zellkerne zu einer gemeinsa- men Zellwand migrieren. Daraufhin schwillt das Volumen der XPP-Zellen an, bevor sich diese zunächst antiklinal teilen. Durch sukzessive periklinale und antiklinale Teilungen entstehen so Seitenwurzel-Primordien. Diese durchbrechen die radialen Zellschichten und treten aus der Primärwurzel aus. Während die Plastizität des Wurzelsystems als Reaktion auf Umwelteinflüsse, wie z.B. die Ver- sorgung mit Ionen aus dem Boden, bereits umfassend erforscht wurde, so ist die Abhängigkeit der Wurzelentwicklung vom endogenen Energiezustand der Pflanze weitgehend unbekannt. In dieser Arbeit konnten wir geringfügige Störungen der photosynthetischen Energieversor- gung mit der Seitenwurzelentwicklung in Verbindung bringen. Pflanzen wurden Schwachlicht oder unerwarteter Dunkelheit ausgesetzt und damit ein kurzzeitiges Energieungleichgewicht erzeugt. Hierdurch zeigte sich eine Zunahme der Seitenwurzeldichte bei gleichzeitiger Ab- nahme der Verfügbarkeit von Hexosen in der Wurzel und Aktivierung des Energieverarmungs- Markergens ASN1 (ASPARAGIN-SYNTHETASE 1). Obwohl dieser Mechanismus noch nicht ge- klärt ist, aktiviert die Störung der pflanzlichen Energie-Homöostase vermutlich SnRK1 (SNF1 RELATED KINASE 1), eine evolutionär konservierte Kinase, die metabolische und transkriptio- nelle Reaktionen auf niederenergetische Bedingungen vermittelt. In Arabidopsis sind zwei ka- talytische α-Untereinheiten dieser Kinase (SnRK1.α1 und SnRK1.α2) funktionell aktiv und bil- den ternäre Komplexe mit den regulatorischen β- und γ-Untereinheiten. Während eine uner- wartete Dunkelheit zu einer Zunahme der Dichte der auswachsenden Seitenwurzeln führt, zeigte die Snrk1.α1 Funktionsverlustmutante den gegenteiligen Effekt. Da dieser Effekt in der Funktionsverlustmutante von snrk1.α2 weniger stark ausgeprägt ist, scheint die katalytische Untereinheit α1 für den beobachteten Seitenwurzel-Phänotyp unter kurzfristigen Energiestö- rungen eine wichtige Rolle zu spielen. Das Expressionsmuster von SnRK1.α1:GFP in der Wur- zel unterstützt die mögliche Rolle dieser katalytischen Untereinheit bei der Seitenwurzelent- wicklung weiter. Darüber hinaus erfordert die Seitenwurzelbildung während kurzfristiger Störung des pflanzli- chen Energiehaushalts den SnRK1-nachgeschalteten Transkriptionsregulator bZIP63 (BASIC LEUCINE ZIPPER 63). Phänotypische Studien zeigten, dass bzip63-Funktionsverlust-Mutanten im Vergleich zum Wildtyp nach der Kultivierung unter Schwachlicht oder nach unerwarteter Dunkelheit eine geringere Seitenwurzeldichte aufwiesen. Frühere Arbeiten haben gezeigt, dass SnRK1 bZIP63 direkt an drei Serinresten phosphoryliert. Alanin-Austauschmutanten der SnRK1-abhängigen bZIP63-Phosphorylierungsstellen verhielten sich ähnlich wie bzip63-Funk- tionsverlustmutanten und zeigten bei kurzzeitiger unerwarteter Dunkelheit keine erhöhte Seitenwurzeldichte. Diese Daten weisen deutlich auf einen Einfluss des SnRK1-bZIP63-Signal- wegs auf den beobachteten Seitenwurzeldichte Phänotyp hin. Pflanzen, die ein bZIP63:YFP- Fusionsprotein exprimieren, zeigten ein spezifisches bZIP63 Lokalisierungsmuster in der Pri- märwurzel, sowie in allen Entwicklungsstadien der Seitenwurzel. bzip63-Funktionsverlustmu- tantenlinien zeigten reduzierte Seitenwurzel- Initiationsereignisse bei unerwarteter Dunkel- heit, wie durch Differentialinterferenzkontrast-Mikroskopie (DIC) und der Verwendung einer GATA23-Reporterlinie nachgewiesen wurde. Diese Ergebnisse deuten auf eine Rolle von bZIP63 bei der frühen Seitenwurzel-Initiierung hin. Durch die Anwendung der Chromatin-Immunopräzipitation (ChIP)-Sequenzierungsmethode konnten wir daraufhin globale Bindungsziele von bZIP63 identifizieren, einschließlich des au- xinregulierten Transkriptionsfaktors ARF19 (AUXIN RESPONSE FACTOR 19), einem gut be- schriebenen zentralen Regulator der Seitenwurzelentwicklung. Zusätzliche ChIP-Experimente bestätigten die direkte Bindung von bZIP63 an eine ARF19-Promotorregion, die ein G-Box cis- Element, eine bekannte bZIP63-Bindungsstelle, beherbergt. Wir beobachteten auch, dass kurzfristige Energiestörungen bei unerwarteter Dunkelheit die Transkription von ARF19 indu- zierte, die in der bzip63-Funktionsverlustmutante beeinträchtigt war. Diese Ergebnisse legen nahe, dass bZIP63 die Seitenwurzelentwicklung unter kurzfristiger Energiestörung über ARF19 vermittelt. Zusammenfassend lässt sich sagen, dass diese Studie eine neuartige mechanistische Verbin- dung zwischen Energiehomöostase und Pflanzenentwicklung herstellt. Durch den Einsatz von reverser Genetik, konfokaler Mikroskopie und Hochdurchsatz-Sequenzierungsstrategien konnten wir einen SnRK1-bZIP63-ARF19-Signalweg zur Integration von Energiesignalen in Sei- tenwurzelentwicklungsprogramme aufdecken. KW - Arabidopsis thaliana KW - Lateral root development KW - SnRK1-bZIP complex Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205636 ER - TY - THES A1 - Pedrotti, Lorenzo T1 - The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation T1 - Das SnRK1-C/S1-bZIP-Netzwerk: ein Signalknoten in der Regulation des Arabidopsis Energie-Metabolismus N2 - The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages. N2 - Die Kontrolle der Energiehomöostase ist für alle lebenden Organismen von großer Bedeutung. In den letzten Jahren kam die Idee auf, dass viele Stressantworten, die scheinbar unabhängig voneinander sind, durch den Energiebedarf doch miteinander verbunden sind. Das sogenannte Energie-Signaling wird von vielen verschiedenen Stress- Arten aktiviert und ist verantwortlich für die Aktivierung der allgemeinen Stressantwort. In Arabidopsis thaliana ist die Proteinfamilie der SnF1-verwandten Proteinkinasen (SnRK1) an der Regulation vieler physiologischer Prozesse beteiligt. Auch bei der Regulation der Energiehomöostase als Folge von Stress spielen SnRK1-Kinasen eine wichtige Rolle. Proteine aus der SnRK1-Familie sind SnRK1.1, auch als KIN10 bezeichnet, SnRK1.2 (KIN11) und SnRK1.3 (KIN12). SnRK1-Proteine können die Aktivität von metabolischen Enzyme oder bestimmten Transkriptionsfaktoren (TF) direkt regulieren. Bislang wurde nur für den basischen Leucin-Zipper (bZIP) TF bZIP63 die Regulation durch SnRK1 gezeigt. bZIP63 gehört zur Gruppe C der bZIP Proteinfamilie (C-bZIP). Ebenfalls zu Gruppe C werden bZIP9, bZIP10 und bZIP25 zugeordnet. SnRK1.1 phosphoryliert das bZIP63- Protein an Serin (S) 29, S294 und S300. Der Grad der Phosphorylierung von bZIP63 steht in direktem Zusammenhang mit dem Energiehaushalt der Pflanze. Unter normalen Bedingungen wird bZIP63 kaum phosphoryliert, während bei verlängerter Nacht bZIP63 stark phosphoryliert wird. bZIP TF bilden untereinander Dimere aus und binden so an die DNA um die Expression ihrer Zielgene zu regulieren. C-bZIP TF bilden bevorzugt Dimere mit bZIP TF der Gruppe S1, bekannt als das C/S1-bZIP-Netzwerk. Die SnRK1-abhängige Phosphorylierung von bZIP63 steuert das Aktivierungspotential und die Dimerisierungseigenschaften. Besonders bei bZIP63 ändern sich die Dimerisierungspartner in Abhängigkeit des Phosphorylierungsgrads. Nicht-phosphoryliert dimerisiert bZIP61 mit bZIP1, im phosphorylierten Zustand dagegen bildet bZIP63 Dimere neben bZIP1 auch mit bZIP11 und bZIP63. S1-bZIP TF sowie bZIP63 sind wichtige Regulatoren der transkriptionellen Reprogrammierung, die durch SnRK1 bei verlängerter Dunkelheit induziert wird. S1-bZIP TF regulieren die Expression von 4'000 der 10'000 durch SnRK1 regulierten Gene in der Energieverarmungsantwort. Besonders S1-bZIP TF sind sehr wichtig für die Regulation vieler Gene, die für Enzyme aus dem Aminosäuremetabolismus codieren und als alternative Energiequelle der Pflanze bekannt sind. Wird die Nacht für einige Stunden verlängert, greift die Pflanze auf jede mögliche Energiequelle zurück. Als Energiequelle werden besonders Aminosäuren, aber auch Lipiden und Proteinen herangezogen. Interessanterweise regulieren S1-bZIP TF die Expression von ETFQO. ETFQO ist ein besonderes Protein, das die Elektronen aus dem Metabolismus verzweigter Aminosäuren in die mitochondriale Elektronentransportkette steuert. Das Dimer aus bZIP63 und bZIP2 rekrutiert SnRK1.1 direkt an das Chromatin des ETFQO-Promotors. Dieser Rekrutierung folgt die Acetylierung des Histonproteins 3 (K14H3) am Lysin 14. Diese Modifikation des Chromatins führt normalerweise zu einem euchromatischen Status der DNA und der nachfolgenden transkriptionellen Aktivierung. Neben der Regulation des ETFQO-Gens sind S1-bZIP TF auch an der Regulation von vielen anderen Genen in Folge von verschiedenen Stressen beteiligt. bZIP1 ist beispielsweise ein wichtiger Regulator der Antwort auf Salz-Stress. Auch der primäre Kohlenstoff- und Stickstoffmetabolismus werden von bZIP1 reguliert. Es wird angenommen, dass die Expression von bZIP1 wie auch von bZIP53 und bZIP63 in der Antwort auf Salzstress und Energieverarmung durch SnRK1 gesteuert wird. Abgesehen von der Regulation der Antwort auf Energieverarmung und Salzstress spielen SnRK1-Proteine auch bei der Aktivierung des Lipidmetabolismus während der Keimung eine Rolle. SnRK1 kontrolliert die Expression von CALEOSINs und OLEOSINs. Diese beiden Proteine sind sehr wichtig für die Mobilisierung von Lipiden aus Öltröpfchen. In Abwesenheit von SnRK1 finden aufgrund von Energiemangel weder die Keimung noch die nachfolgende Entwicklung statt. KW - Ackerschmalwand KW - Homöostase KW - Proteinkinasen KW - Stress-Syndrom KW - SnRK1 KW - bZIPs KW - mitochondria KW - energy metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116080 ER - TY - THES A1 - Zhang, Yi T1 - Regulation of Agrobacterial Oncogene Expression in Host Plants T1 - Regulierung der Expression der Onkogene aus Agrobakterien in Wirtspflanzen N2 - Virulent Agrobacterium tumefaciens strains transfer and integrate a DNA region of the tumor-inducing (Ti) plasmid, the T-DNA, into the plant genome and thereby cause crown gall disease. The most essential genes required for crown gall development are the T-DNA-encoded oncogenes, IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) for auxin, and Ipt (isopentenyl transferase) for cytokinin biosynthesis. When these oncogenes are expressed in the host cell, the levels of auxin and cytokinin increase and cause cell proliferation. The aim of this study was to unravel the molecular mechanisms, which regulate expression of the agrobacterial oncogenes in plant cells. Transcripts of the three oncogenes were expressed in Arabidopsis thaliana crown galls induced by A. tumefaciens strain C58 and the intergenic regions (IGRs) between their coding sequences (CDS) were proven to have promoter activity in plant cells. These promoters possess eukaryotic sequence structures and contain cis-regulatory elements for the binding of plant transcription factors. The high-throughput protoplast transactivation (PTA) system was used and identified the Arabidopsis thaliana transcription factors WRKY18, WRKY40, WRKY60 and ARF5 to activate the Ipt oncogene promoter. No transcription factor promoted the activity of the IaaH and IaaM promoters, despite the fact that the sequences contained binding elements for type B ARR transcription factors. Likewise, the treatment of Arabidopsis mesophyll protoplasts with cytokinin (trans-zeatin) and auxin (1-NAA) exerted no positive effect on IaaH and IaaM promoter activity. In contrast, the Ipt promoter strongly responded to a treatment with auxin and only modestly to cytokinin. The three Arabidopsis WRKYs play a role in crown gall development as the wrky mutants developed smaller crown galls than wild-type plants. The WRKY40 and WRKY60 genes responded very quickly to pathogen infection, two and four hours post infection, respectively. Transcription of the WRKY18 gene was induced upon buffer infiltration, which implicates a response to wounding. The three WRKY proteins interacted with ARF5 and with each other in the plant nucleus, but only WRKY40 together with ARF5 increased activation of the Ipt promoter. Moreover, ARF5 activated the Ipt promoter in an auxin-dependent manner. The severe developmental phenotype of the arf5 mutant prevented studies on crown gall development, nevertheless, the reduced crown gall growth on the transport inhibitor response 1 (TIR1) tir1 mutant, lacking the auxin sensor, suggested that auxin signaling is required for optimal crown gall development. In conclusion, A. tumefaciens recruits the pathogen defense related WRKY40 pathway to activate Ipt expression in T-DNA-transformed plant cells. IaaH and IaaM gene expression seems not to be controlled by transcriptional activators, but the increasing auxin levels are signaled via ARF5. The auxin-depended activation of ARF5 boosts expression of the Ipt gene in combination with WRKY40 to increase cytokinin levels and induce crown gall development. N2 - Virulente Bakterien des Stamms Agrobakterium tumefaciens, transferieren und integrieren einen Teil ihrer DNA, die T-DNA aus dem Tumor induzierenden Plasmid (Ti), in das Pflanzengenom. Dadurch wird die Tumorbildung induziert und die Krankheit bricht aus. Die wichtigsten Gene, die für die Entwicklung eines Tumors benötigt werden, sind auf der T-DNA lokalisierte Onkogene: IaaH (indole-3-aceetamide hydrolase), IaaM (tryptophan monooxygenase) für die Auxin Biosynthese und Ipt (isopentenyl transferase) für die Cytokinin Biosynthese. Werden diese Onkogene in der Wirtszelle exprimiert, steigt der Gehalt an Auxin und Cytokinin und fördert die Zellteilung. Das Ziel dieser Arbeit war es die molekularen Mechanismen, die die Expression der agrobakteriellen Onkogene in Pflanzenzellen regulieren, aufzuklären. Transkripte der drei Onkogene wurden in Tumoren an Arabidopsis thaliana exprimiert. Die Tumore wurden durch den A. tumefaciens Stamm C58 induziert. Dabei konnte gezeigt werden, dass die Sequenzabschnitte zwischen den Onkogenen (IGRs: intergenic regions) eine Promoteraktivität in der Pflanzenzelle besitzen. Diese Promoter haben eukaryotische Sequenzstrukturen und enthalten cis-Elemente, an die pflanzliche Transkriptionsfaktoren binden. Mit Hilfe der PTA (high-throughput protoplast transactivation) Methode wurden die pflanzlichen Transkriptionsfaktoren WRKY18, WRKY40, WRKY60 und ARF5 von Arabidopsis thaliana identifiziert, welche den Promoter des Ipt Onkogens aktivieren. Für IaaH und IaaM konnte kein Transkriptionsfaktor, der die Promotersequenzen aktiviert, identifiziert werden, obwohl die Promotersequenzen Bindedomänen für den Typ B ARR Transkriptionsfaktor enthalten. Ebenso zeigte die Behandlung von Arabidopsis Protoplasten aus dem Mesophyll mit Cytokinin (trans-zeatin) und Auxin (1-NAA) keinen positiven Effekt auf die Aktivität des IaaH und des IaaM Promoters, wohingegen der Ipt Promoter stark auf eine Behandlung mit Auxin und leicht auf eine Behandlung mit Cytokinin reagierte. Die drei WRKYs aus Arabidopsis spielen eine Rolle in der Tumorentwicklung, da die wrky Mutante kleinere Tumore zeigt, als die Wild Typ Pflanzen. Die Gene WRKY40 und WRKY60 reagieren sehr schnell, innerhalb von zwei, beziehungsweise vier Stunden, auf eine Pathogen Infektion. Die Transkription des WRKY18 Gens wurde durch die Infiltration von Puffer in Blätter induziert, dies lässt auf eine Reaktion im Zusammenhang mit Wunderzeugung schließen. Die drei WRKY Proteine interagieren mit einander und mit ARF5 im Zellekern der Pflanzenzelle, aber nur WRKY40 und ARF5 können gemeinsam den Ipt Promoter aktivieren. Zusätzlich kann ARF5 den Ipt Promoter, in Abhängigkeit von Auxin, aktivieren. Wegen starker Entwicklungsstörungen der arf5 Mutante, konnte das Tumorwachstum an dieser Mutante nicht untersucht werden. Das reduzierte Tumorwachstum an der tri1 (transport inhibitor response, TIR) Mutante, der ein Auxinsensor fehlt, deutet auf die Notwendigkeit des Auxinsignalwegs für optimales Tumorwachstum hin. Zusammengefasst benutzt A. tumefaciens den WRKY40 Signalweg, der mit der Pathogen Abwehr verbunden ist, um die Ipt Expression in der mit T-DNA transformierten Pflanzenzelle zu aktivieren. Die Genexpression von IaaH und IaaM schein nicht von Transkriptionsfaktoren abhängig zu sein, aber erhöhte Auxin Werte werden von ARF5 erkannt. Die Auxin abhängige Aktivierung von ARF5 verstärkt die Expression des Ipt Gens gemeinsam mit WRKY40 um die Cytokin Werte in der Pflanzenzelle zu erhöhen und somit die Tumorentwicklung einzuleiten. KW - Agrobacterium tumefaciens KW - Transcription factor KW - Onkogen KW - Genexpression KW - Oncogene KW - Regulation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102578 ER -