TY - RPRT A1 - Deutschmann, Jörg A1 - Hielscher, Kai-Steffen A1 - German, Reinhard T1 - Next-Generation Satellite Communication Networks T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - This paper gives an overview of our recent activities in the field of satellite communication networks, including an introduction to geostationary satellite systems and Low Earth Orbit megaconstellations. To mitigate the high latencies of geostationary satellite networks, TCP-splitting Performance Enhancing Proxies are deployed. However, these cannot be applied in the case of encrypted transport headers as it is the case for VPNs or QUIC. We summarize performance evaluation results from multiple measurement campaigns. In a recently concluded project, multipath communication was used to combine the advantages of very heterogeneous communication paths: low data rate, low latency (e.g., DSL light) and high data rate, high latency (e.g., geostationary satellite). KW - Datennetz KW - satellite communication KW - Performance Enhancing Proxies KW - transport protocols KW - VPN KW - QUIC KW - multipath communication KW - hybrid access Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280732 ER - TY - RPRT A1 - Elsayed, Karim A1 - Rizk, Amr T1 - Response Times in Time-to-Live Caching Hierarchies under Random Network Delays T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Time-to-Live (TTL) caches decouple the occupancy of objects in cache through object-specific validity timers. Stateof- the art techniques provide exact methods for the calculation of object-specific hit probabilities given entire cache hierarchies with random inter-cache network delays. The system hit probability is a provider-centric metric as it relates to the origin offload, i.e., the decrease in the number of requests that are served by the content origin server. In this paper we consider a user-centric metric, i.e., the response time, which is shown to be structurally different from the system hit probability. Equipped with the state-of-theart exact modeling technique using Markov-arrival processes we derive expressions for the expected object response time and pave a way for its optimization under network delays. KW - Datennetz KW - TTL Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280843 ER - TY - RPRT A1 - Alfredsson, Rebecka A1 - Kassler, Andreas A1 - Vestin, Jonathan A1 - Pieska, Marcus A1 - Amend, Markus T1 - Accelerating a Transport Layer based 5G Multi-Access Proxy on SmartNIC T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Utilizing multiple access technologies such as 5G, 4G, and Wi-Fi within a coherent framework is currently standardized by 3GPP within 5G ATSSS. Indeed, distributing packets over multiple networks can lead to increased robustness, resiliency and capacity. A key part of such a framework is the multi-access proxy, which transparently distributes packets over multiple paths. As the proxy needs to serve thousands of customers, scalability and performance are crucial for operator deployments. In this paper, we leverage recent advancements in data plane programming, implement a multi-access proxy based on the MP-DCCP tunneling approach in P4 and hardware accelerate it by deploying the pipeline on a smartNIC. This is challenging due to the complex scheduling and congestion control operations involved. We present our pipeline and data structures design for congestion control and packet scheduling state management. Initial measurements in our testbed show that packet latency is in the range of 25 μs demonstrating the feasibility of our approach. KW - Datennetz KW - multipath KW - MP-DCCP KW - 5G-ATSSS KW - networking KW - dataplane programming KW - P4 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280798 ER - TY - RPRT A1 - Lhamo, Osel A1 - Nguyen, Giang T. A1 - Fitzek, Frank H. P. T1 - Virtual Queues for QoS Compliance of Haptic Data Streams in Teleoperation T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Tactile Internet aims at allowing perceived real-time interactions between humans and machines. This requires satisfying a stringent latency requirement of haptic data streams whose data rates vary drastically as the results of perceptual codecs. This introduces a complex problem for the underlying network infrastructure to fulfill the pre-defined level of Quality of Service (QoS). However, novel networking hardware with data plane programming capability allows processing packets differently and opens up a new opportunity. For example, a dynamic and network-aware resource management strategy can help satisfy the QoS requirements of different priority flows without wasting precious bandwidth. This paper introduces virtual queues for service differentiation between different types of traffic streams, leveraging protocol independent switch architecture (PISA). We propose coordinating the management of all the queues and dynamically adapting their sizes to minimize packet loss and delay due to network congestion and ensure QoS compliance. KW - Datennetz KW - data plane programming KW - software defined network KW - P4 KW - virtual queue KW - haptic data Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280762 ER - TY - RPRT A1 - Vomhoff, Viktoria A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - Identification of Signaling Patterns in Mobile IoT Signaling Traffic T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - We attempt to identify sequences of signaling dialogs, to strengthen our understanding of the signaling behavior of IoT devices by examining a dataset containing over 270.000 distinct IoT devices whose signaling traffic has been observed over a 31-day period in a 2G network [4]. We propose a set of rules that allows the assembly of signaling dialogs into so-called sessions in order to identify common patterns and lay the foundation for future research in the areas of traffic modeling and anomaly detection. KW - Datennetz KW - IoT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280819 ER - TY - RPRT A1 - Loh, Frank A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - LoRaWAN Network Planning in Smart Environments: Towards Reliability, Scalability, and Cost Reduction T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - The goal in this work is to present a guidance for LoRaWAN planning to improve overall reliability for message transmissions and scalability. At the end, the cost component is discussed. Therefore, a five step approach is presented that helps to plan a LoRaWAN deployment step by step: Based on the device locations, an initial gateway placement is suggested followed by in-depth frequency and channel access planning. After an initial planning phase, updates for channel access and the initial gateway planning is suggested that should also be done periodically during network operation. Since current gateway placement approaches are only studied with random channel access, there is a lot of potential in the cell planning phase. Furthermore, the performance of different channel access approaches is highly related on network load, and thus cell size and sensor density. Last, the influence of different cell planning ideas on expected costs are discussed. KW - Datennetz KW - LoRaWan Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280829 ER - TY - RPRT A1 - Sertbas Bülbül, Nurefsan A1 - Ergenc, Doganalp A1 - Fischer, Mathias T1 - Evaluating Dynamic Path Reconfiguration for Time Sensitive Networks T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - In time-sensitive networks (TSN) based on 802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise transmission schedules and, paths are used to ensure end-to-end deterministic communication. Such resource reservations for data flows are usually established at the startup time of an application and remain untouched until the flow ends. There is no way to migrate existing flows easily to alternative paths without inducing additional delay or wasting resources. Therefore, some of the new flows cannot be embedded due to capacity limitations on certain links which leads to sub-optimal flow assignment. As future networks will need to support a large number of lowlatency flows, accommodating new flows at runtime and adapting existing flows accordingly becomes a challenging problem. In this extended abstract we summarize a previously published paper of us [1]. We combine software-defined networking (SDN), which provides better control of network flows, with TSN to be able to seamlessly migrate time-sensitive flows. For that, we formulate an optimization problem and propose different dynamic path configuration strategies under deterministic communication requirements. Our simulation results indicate that regularly reconfiguring the flow assignments can improve the latency of time-sensitive flows and can increase the number of flows embedded in the network around 4% in worst-case scenarios while still satisfying individual flow deadlines. KW - Datennetz KW - SDN KW - dynamic flow migration KW - reconfiguration KW - TSN KW - path computation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280743 ER - TY - RPRT A1 - Le, Duy Thanh A1 - Großmann, Marcel A1 - Krieger, Udo R. T1 - Cloudless Resource Monitoring in a Fog Computing System Enabled by an SDN/NFV Infrastructure T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Today’s advanced Internet-of-Things applications raise technical challenges on cloud, edge, and fog computing. The design of an efficient, virtualized, context-aware, self-configuring orchestration system of a fog computing system constitutes a major development effort within this very innovative area of research. In this paper we describe the architecture and relevant implementation aspects of a cloudless resource monitoring system interworking with an SDN/NFV infrastructure. It realizes the basic monitoring component of the fundamental MAPE-K principles employed in autonomic computing. Here we present the hierarchical layering and functionality within the underlying fog nodes to generate a working prototype of an intelligent, self-managed orchestrator for advanced IoT applications and services. The latter system has the capability to monitor automatically various performance aspects of the resource allocation among multiple hosts of a fog computing system interconnected by SDN. KW - Datennetz KW - fog computing KW - SDN/NVF KW - container virtualization KW - autonomic orchestration KW - docker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280723 ER - TY - RPRT A1 - Höweler, Malte A1 - Xiang, Zuo A1 - Höpfner, Franz A1 - Nguyen, Giang T. A1 - Fitzek, Frank H. P. T1 - Towards Stateless Core Networks: Measuring State Access Patterns T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Future mobile communication networks, such as 5G and beyond, can benefit from Virtualized Network Functions (VNFs) when deployed on cloud infrastructures to achieve elasticity and scalability. However, new challenges arise as to managing states of Network Functions (NFs). Especially control plane VNFs, which are mainly found in cellular core networks like the 5G Core (5GC), received little attention since the shift towards virtualizing NFs. Most existing solutions for these core networks are often complex, intrusive, and are seldom compliant with the standard. With the emergence of 5G campus networks, UEs will be mainly machine-type devices. These devices communicate more deterministically, bringing new opportunities for elaborated state management. This work presents an emulation environment to perform rigorous measurements on state access patterns. The emulation comes with a fully parameterized Markov model for the UE to examine a wide variety of different devices. These measurements can then be used as a solid base for designing an efficient, simple, and standard conform state management solution that brings us further towards stateless core networks. KW - Datennetz KW - 5GC KW - VNF KW - SBA KW - measurements KW - MTC Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280770 ER - TY - RPRT A1 - Grigorjew, Alexej A1 - Diederich, Philip A1 - Hoßfeld, Tobias A1 - Kellerer, Wolfgang T1 - Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter. KW - Datennetz KW - latency Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280751 ER -