TY - RPRT A1 - Martino, Luigi A1 - Deutschmann, Jörg A1 - Hielscher, Kai-Steffen A1 - German, Reinhard T1 - Towards a 5G Satellite Communication Framework for V2X T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - In recent years, satellite communication has been expanding its field of application in the world of computer networks. This paper aims to provide an overview of how a typical scenario involving 5G Non-Terrestrial Networks (NTNs) for vehicle to everything (V2X) applications is characterized. In particular, a first implementation of a system that integrates them together will be described. Such a framework will later be used to evaluate the performance of applications such as Vehicle Monitoring (VM), Remote Driving (RD), Voice Over IP (VoIP), and others. Different configuration scenarios such as Low Earth Orbit and Geostationary Orbit will be considered. KW - 5G KW - non-terrestrial networks KW - satellite communication Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322148 ER - TY - RPRT A1 - Mazigh, Sadok Mehdi A1 - Beausencourt, Marcel A1 - Bode, Max Julius A1 - Scheffler, Thomas T1 - Using P4-INT on Tofino for Measuring Device Performance Characteristics in a Network Lab T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - This paper presents a prototypical implementation of the In-band Network Telemetry (INT) specification in P4 and demonstrates a use case, where a Tofino Switch is used to measure device and network performance in a lab setting. This work is based on research activities in the area of P4 data plane programming conducted at the network lab of HTW Berlin. KW - P4-INT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322084 ER - TY - RPRT A1 - Metzger, Florian T1 - Crowdsensed QoE for the community - a concept to make QoE assessment accessible N2 - In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own. KW - Quality of Experience KW - Crowdsourcing KW - Crowdsensing KW - QoE Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203748 N1 - Originally written in 2017, but never published. ER - TY - RPRT A1 - Navade, Piyush A1 - Maile, Lisa A1 - German, Reinhard T1 - Multiple DCLC Routing Algorithms for Ultra-Reliable and Time-Sensitive Applications T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - This paper discusses the problem of finding multiple shortest disjoint paths in modern communication networks, which is essential for ultra-reliable and time-sensitive applications. Dijkstra’s algorithm has been a popular solution for the shortest path problem, but repetitive use of it to find multiple paths is not scalable. The Multiple Disjoint Path Algorithm (MDPAlg), published in 2021, proposes the use of a single full graph to construct multiple disjoint paths. This paper proposes modifications to the algorithm to include a delay constraint, which is important in time-sensitive applications. Different delay constraint least-cost routing algorithms are compared in a comprehensive manner to evaluate the benefits of the adapted MDPAlg algorithm. Fault tolerance, and thereby reliability, is ensured by generating multiple link-disjoint paths from source to destination. KW - Dijkstra’s algorithm KW - shortest path routing KW - disjoint multi-paths KW - delay constrained KW - least cost Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322177 ER - TY - RPRT A1 - Nguyen, Kien A1 - Loh, Frank A1 - Hoßfeld, Tobias T1 - Challenges of Serverless Deployment in Edge-MEC-Cloud T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - The emerging serverless computing may meet Edge Cloud in a beneficial manner as the two offer flexibility and dynamicity in optimizing finite hardware resources. However, the lack of proper study of a joint platform leaves a gap in literature about consumption and performance of such integration. To this end, this paper identifies the key questions and proposes a methodology to answer them. KW - Edge-MEC-Cloud Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322025 ER - TY - RPRT A1 - Odhah, Najib A1 - Grass, Eckhard A1 - Kraemer, Rolf T1 - Effective Rate of URLLC with Short Block-Length Information Theory T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon’s formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed. KW - Datennetz KW - URLLC KW - RRM KW - delay QoS exponent KW - decoding error rate KW - delay bound violation probability KW - short block-length KW - effective Bandwidth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280859 ER - TY - RPRT A1 - Raffeck, Simon A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - Towards Understanding the Signaling Traffic in 5G Core Networks T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - The Fifth Generation (5G) communication technology, its infrastructure and architecture, though already deployed in campus and small scale networks, is still undergoing continuous changes and research. Especially, in the light of future large scale deployments and industrial use cases, a detailed analysis of the performance and utilization with regard to latency and service times constraints is crucial. To this end, a fine granular investigation of the Network Function (NF) based core system and the duration for all the tasks performed by these services is necessary. This work presents the first steps towards analyzing the signaling traffic in 5G core networks, and introduces a tool to automatically extract sequence diagrams and service times for NF tasks from traffic traces. KW - signaling traffic KW - 5G core network Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322106 ER - TY - RPRT A1 - Raffeck, Simon A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices. KW - Datennetz KW - LoRa Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280809 ER - TY - RPRT A1 - Rauber, Christof A. O. A1 - Brechtel, Lukas A1 - Schotten, Hans D. T1 - JCAS-Enabled Sensing as a Service in 6th-Generation Mobile Communication Networks T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - The introduction of new types of frequency spectrum in 6G technology facilitates the convergence of conventional mobile communications and radar functions. Thus, the mobile network itself becomes a versatile sensor system. This enables mobile network operators to offer a sensing service in addition to conventional data and telephony services. The potential benefits are expected to accrue to various stakeholders, including individuals, the environment, and society in general. The paper discusses technological development, possible integration, and use cases, as well as future development areas. KW - Sensing-aaS KW - JCAS KW - 6G Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322135 ER - TY - RPRT A1 - Riegler, Clemens A1 - Kayal, Hakan T1 - VELEX: Venus Lightning Experiment N2 - Lightning has fascinated humanity since the beginning of our existence. Different types of lightning like sprites and blue jets were discovered, and many more are theorized. However, it is very likely that these phenomena are not exclusive to our home planet. Venus’s dense and active atmosphere is a place where lightning is to be expected. Missions like Venera, Pioneer, and Galileo have carried instruments to measure electromagnetic activity. These measurements have indeed delivered results. However, these results are not clear. They could be explained by other effects like cosmic rays, plasma noise, or spacecraft noise. Furthermore, these lightning seem different from those we know from our home planet. In order to tackle these issues, a different approach to measurement is proposed. When multiple devices in different spacecraft or locations can measure the same atmospheric discharge, most other explanations become increasingly less likely. Thus, the suggested instrument and method of VELEX incorporates multiple spacecraft. With this approach, the question about the existence of lightning on Venus could be settled. T3 - Raumfahrttechnik und Extraterrestrik - 3 KW - Venus KW - Lightning KW - CubeSat KW - Balloon KW - Autorotation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282481 ER -