TY - JOUR A1 - Scherer, Marc A1 - Fleishman, Sarel J. A1 - Jones, Patrik R. A1 - Dandekar, Thomas A1 - Bencurova, Elena T1 - Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals JF - Frontiers in Bioengineering and Biotechnology N2 - To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways. KW - computational KW - enzyme KW - engineering KW - design KW - biomanufacturing KW - biofuel KW - microbes KW - metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240598 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Appel, Mirjam A1 - Scholz, Claus-Jürgen A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - König, Christian A1 - Bockstaller, Marie A1 - Oguz, Tuba A1 - Khalili, Afshin A1 - Antwi-Adjei, Emmanuel A1 - Schauer, Tamas A1 - Margulies, Carla A1 - Tanimoto, Hiromu A1 - Yarali, Ayse T1 - Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster JF - PLoS ONE N2 - Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. KW - functional analysis KW - disruption project KW - natural variation KW - complex traits KW - networks KW - behavior KW - flies KW - temperature KW - genetics KW - painful Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152006 VL - 10 IS - 5 ER -