TY - RPRT A1 - Nguyen, Kien A1 - Loh, Frank A1 - Hoßfeld, Tobias T1 - Challenges of Serverless Deployment in Edge-MEC-Cloud T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - The emerging serverless computing may meet Edge Cloud in a beneficial manner as the two offer flexibility and dynamicity in optimizing finite hardware resources. However, the lack of proper study of a joint platform leaves a gap in literature about consumption and performance of such integration. To this end, this paper identifies the key questions and proposes a methodology to answer them. KW - Edge-MEC-Cloud Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322025 ER - TY - JOUR A1 - Döllinger, Nina A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review JF - Frontiers in Virtual Reality N2 - Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions. KW - virtual reality KW - augmented reality KW - mindfulness KW - XR KW - meditation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259047 VL - 2 ER - TY - JOUR A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich A1 - Habel, Michael A1 - Roth, Daniel A1 - Seufert, Christian A1 - Grafe, Silke T1 - Breaking Bad Behaviors: A New Tool for Learning Classroom Management Using Virtual Reality JF - Frontiers in ICT N2 - This article presents an immersive virtual reality (VR) system for training classroom management skills, with a specific focus on learning to manage disruptive student behavior in face-to-face, one-to-many teaching scenarios. The core of the system is a real-time 3D virtual simulation of a classroom populated by twenty-four semi-autonomous virtual students. The system has been designed as a companion tool for classroom management seminars in a syllabus for primary and secondary school teachers. This will allow lecturers to link theory with practice using the medium of VR. The system is therefore designed for two users: a trainee teacher and an instructor supervising the training session. The teacher is immersed in a real-time 3D simulation of a classroom by means of a head-mounted display and headphone. The instructor operates a graphical desktop console, which renders a view of the class and the teacher whose avatar movements are captured by a marker less tracking system. This console includes a 2D graphics menu with convenient behavior and feedback control mechanisms to provide human-guided training sessions. The system is built using low-cost consumer hardware and software. Its architecture and technical design are described in detail. A first evaluation confirms its conformance to critical usability requirements (i.e., safety and comfort, believability, simplicity, acceptability, extensibility, affordability, and mobility). Our initial results are promising and constitute the necessary first step toward a possible investigation of the efficiency and effectiveness of such a system in terms of learning outcomes and experience. KW - virtual reality training KW - immersive classroom management KW - immersive classroom KW - virtual agent interaction KW - student simulation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147945 VL - 3 IS - 26 ER - TY - JOUR A1 - Pfitzner, Christian A1 - May, Stefan A1 - Nüchter, Andreas T1 - Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data JF - Sensors N2 - This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. KW - RGB-D KW - human body weight KW - image processing KW - kinect KW - machine learning KW - perception KW - segmentation KW - sensor fusion KW - stroke KW - thermal camera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176642 VL - 18 IS - 5 ER - TY - JOUR A1 - Becker, Martin A1 - Caminiti, Saverio A1 - Fiorella, Donato A1 - Francis, Louise A1 - Gravino, Pietro A1 - Haklay, Mordechai (Muki) A1 - Hotho, Andreas A1 - Loreto, Virrorio A1 - Mueller, Juergen A1 - Ricchiuti, Ferdinando A1 - Servedio, Vito D. P. A1 - Sirbu, Alina A1 - Tria, Franesca T1 - Awareness and Learning in Participatory Noise Sensing JF - PLOS ONE N2 - The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments. KW - exposure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127675 SN - 1932-6203 VL - 8 IS - 12 ER - TY - JOUR A1 - Krenzer, Adrian A1 - Heil, Stefan A1 - Fitting, Daniel A1 - Matti, Safa A1 - Zoller, Wolfram G. A1 - Hann, Alexander A1 - Puppe, Frank T1 - Automated classification of polyps using deep learning architectures and few-shot learning JF - BMC Medical Imaging N2 - Background Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. Methods We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. Results For the Paris classification, we achieve an accuracy of 89.35 %, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 % and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. Conclusion Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning. KW - machine learning KW - deep learning KW - endoscopy KW - gastroenterology KW - automation KW - image classification KW - transformer KW - deep metric learning KW - few-shot learning Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357465 VL - 23 ER - TY - JOUR A1 - Wolff, Alexander A1 - Rutter, Iganz T1 - Augmenting the Connectivity of Planar and Geometric Graphs JF - Journal of Graph Algorithms and Applications N2 - In this paper we study connectivity augmentation problems. Given a connected graph G with some desirable property, we want to make G 2-vertex connected (or 2-edge connected) by adding edges such that the resulting graph keeps the property. The aim is to add as few edges as possible. The property that we consider is planarity, both in an abstract graph-theoretic and in a geometric setting, where vertices correspond to points in the plane and edges to straight-line segments. We show that it is NP-hard to � nd a minimum-cardinality augmentation that makes a planar graph 2-edge connected. For making a planar graph 2-vertex connected this was known. We further show that both problems are hard in the geometric setting, even when restricted to trees. The problems remain hard for higher degrees of connectivity. On the other hand we give polynomial-time algorithms for the special case of convex geometric graphs. We also study the following related problem. Given a planar (plane geometric) graph G, two vertices s and t of G, and an integer c, how many edges have to be added to G such that G is still planar (plane geometric) and contains c edge- (or vertex-) disjoint s{t paths? For the planar case we give a linear-time algorithm for c = 2. For the plane geometric case we give optimal worst-case bounds for c = 2; for c = 3 we characterize the cases that have a solution. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97587 ER - TY - JOUR A1 - Mandel, Alexander A1 - Hörnlein, Alexander A1 - Ifland, Marianus A1 - Lüneburg, Edeltraud A1 - Deckert, Jürgen A1 - Puppe, Frank T1 - Aufwandsanalyse für computerunterstützte Multiple-Choice Papierklausuren T1 - Cost analysis for computer supported multiple-choice paper examinations JF - GMS Journal for Medical Education N2 - Introduction: Multiple-choice-examinations are still fundamental for assessment in medical degree programs. In addition to content related research, the optimization of the technical procedure is an important question. Medical examiners face three options: paper-based examinations with or without computer support or completely electronic examinations. Critical aspects are the effort for formatting, the logistic effort during the actual examination, quality, promptness and effort of the correction, the time for making the documents available for inspection by the students, and the statistical analysis of the examination results. Methods: Since three semesters a computer program for input and formatting of MC-questions in medical and other paper-based examinations is used and continuously improved at Wuerzburg University. In the winter semester (WS) 2009/10 eleven, in the summer semester (SS) 2010 twelve and in WS 2010/11 thirteen medical examinations were accomplished with the program and automatically evaluated. For the last two semesters the remaining manual workload was recorded. Results: The cost of the formatting and the subsequent analysis including adjustments of the analysis of an average examination with about 140 participants and about 35 questions was 5-7 hours for exams without complications in the winter semester 2009/2010, about 2 hours in SS 2010 and about 1.5 hours in the winter semester 2010/11. Including exams with complications, the average time was about 3 hours per exam in SS 2010 and 2.67 hours for the WS 10/11. Discussion: For conventional multiple-choice exams the computer-based formatting and evaluation of paper-based exams offers a significant time reduction for lecturers in comparison with the manual correction of paper-based exams and compared to purely electronically conducted exams it needs a much simpler technological infrastructure and fewer staff during the exam." N2 - Einleitung: Multiple-Choice-Klausuren spielen immer noch eine herausragende Rolle für fakultätsinterne medizinische Prüfungen. Neben inhaltlichen Arbeiten stellt sich die Frage, wie die technische Abwicklung optimiert werden kann. Für Dozenten in der Medizin gibt es zunehmend drei Optionen zur Durchführung von MC-Klausuren: Papierklausuren mit oder ohne Computerunterstützung oder vollständig elektronische Klausuren. Kritische Faktoren sind der Aufwand für die Formatierung der Klausur, der logistische Aufwand bei der Klausurdurchführung, die Qualität, Schnelligkeit und der Aufwand der Klausurkorrektur, die Bereitstellung der Dokumente für die Einsichtnahme, und die statistische Analyse der Klausurergebnisse. Methoden: An der Universität Würzburg wird seit drei Semestern ein Computerprogramm zur Eingabe und Formatierung der MC-Fragen in medizinischen und anderen Papierklausuren verwendet und optimiert, mit dem im Wintersemester (WS) 2009/2010 elf, im Sommersemester (SS) 2010 zwölf und im WS 2010/11 dreizehn medizinische Klausuren erstellt und anschließend die eingescannten Antwortblätter automatisch ausgewertet wurden. In den letzten beiden Semestern wurden die Aufwände protokolliert. Ergebnisse: Der Aufwand der Formatierung und der Auswertung einschl. nachträglicher Anpassung der Auswertung einer Durchschnittsklausur mit ca. 140 Teilnehmern und ca. 35 Fragen ist von 5-7 Stunden für Klausuren ohne Komplikation im WS 2009/2010 über ca. 2 Stunden im SS 2010 auf ca. 1,5 Stunden im WS 2010/11 gefallen. Einschließlich der Klausuren mit Komplikationen bei der Auswertung betrug die durchschnittliche Zeit im SS 2010 ca. 3 Stunden und im WS 10/11 ca. 2,67 Stunden pro Klausur. Diskussion: Für konventionelle Multiple-Choice-Klausuren bietet die computergestützte Formatierung und Auswertung von Papierklausuren einen beträchtlichen Zeitvorteil für die Dozenten im Vergleich zur manuellen Korrektur von Papierklausuren und benötigt im Vergleich zu rein elektronischen Klausuren eine deutlich einfachere technische Infrastruktur und weniger Personal bei der Klausurdurchführung. KW - Multiple-Choice Prüfungen KW - Automatisierte Prüfungskorrektur KW - Aufwandsanalyse KW - Educational Measurement (I2.399) KW - Self-Evaluation Programs (I2.399.780) KW - Multiple-Choice Examination KW - Cost Analysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134386 VL - 28 IS - 4 ER - TY - THES A1 - Kindermann, Philipp T1 - Angular Schematization in Graph Drawing N2 - Graphs are a frequently used tool to model relationships among entities. A graph is a binary relation between objects, that is, it consists of a set of objects (vertices) and a set of pairs of objects (edges). Networks are common examples of modeling data as a graph. For example, relationships between persons in a social network, or network links between computers in a telecommunication network can be represented by a graph. The clearest way to illustrate the modeled data is to visualize the graphs. The field of Graph Drawing deals with the problem of finding algorithms to automatically generate graph visualizations. The task is to find a "good" drawing, which can be measured by different criteria such as number of crossings between edges or the used area. In this thesis, we study Angular Schematization in Graph Drawing. By this, we mean drawings with large angles (for example, between the edges at common vertices or at crossing points). The thesis consists of three parts. First, we deal with the placement of boxes. Boxes are axis-parallel rectangles that can, for example, contain text. They can be placed on a map to label important sites, or can be used to describe semantic relationships between words in a word network. In the second part of the thesis, we consider graph drawings visually guide the viewer. These drawings generally induce large angles between edges that meet at a vertex. Furthermore, the edges are drawn crossing-free and in a way that makes them easy to follow for the human eye. The third and final part is devoted to crossings with large angles. In drawings with crossings, it is important to have large angles between edges at their crossing point, preferably right angles. N2 - Graphen sind häufig verwendete Werkzeuge zur Modellierung von Zusammenhängen zwischen Daten. Ein Graph ist eine binäre Relation zwischen Objekten, das heißt er besteht aus einer Menge von Objekten (Knoten) und einer Menge von Paaren von Objekten (Kanten). Netzwerke sind übliche Beispiele für das Modellieren von Daten als ein Graph. Beispielsweise lassen sich Beziehungen zwischen Personen in einem sozialen Netzwerk oder Netzanbindungen zwischen Computern in einem Telekommunikationsnetz als Graph darstellen. Die modellierten Daten können am anschaulichsten dargestellt werden, indem man die Graphen visualisiert. Der Bereich des Graphenzeichnens behandelt das Problem, Algorithmen zum automatischen Erzeugen von Graphenvisualisierungen zu finden. Das Ziel ist es, eine "gute" Zeichnung zu finden, was durch unterschiedliche Kriterien gemessen werden kann; zum Beispiel durch die Anzahl der Kreuzungen zwischen Kanten oder durch den Platzverbrauch. In dieser Arbeit beschäftigen wir uns mit Winkelschematisierung im Graphenzeichnen. Darunter verstehen wir Zeichnungen, in denen die Winkel (zum Beispiel zwischen Kanten an einem gemeinsamen Knoten oder einem Kreuzungspunkt) möglichst groß gestaltet sind. Die Arbeit besteht aus drei Teilen. Im ersten Teil betrachten wir die Platzierung von Boxen. Boxen sind achsenparallele Rechtecke, die zum Beispiel Text enthalten. Sie können beispielsweise auf einer Karte platziert werden, um wichtige Standorte zu beschriften, oder benutzt werden, um semantische Beziehungen zwischen Wörtern in einem Wortnetzwerk darzustellen. Im zweiten Teil der Arbeit untersuchen wir Graphenzeichnungen, die den Betrachter visuell führen. Im Allgemeinen haben diese Zeichnungen große Winkel zwischen Kanten, die sich in einem Knoten treffen. Außerdem werden die Verbindungen kreuzungsfrei und so gezeichnet, dass es dem menschlichen Auge leicht fällt, ihnen zu folgen. Im dritten und letzten Teil geht es um Kreuzungen mit großen Winkeln. In Zeichnungen mit Kreuzungen ist es wichtig, dass die Winkel zwischen Kanten an Kreuzungspunkten groß sind, vorzugsweise rechtwinklig. KW - graph drawing KW - angular schematization KW - boundary labeling KW - contact representation KW - word clouds KW - monotone drawing KW - smooth orthogonal drawing KW - simultaneous embedding KW - right angle crossing KW - independent crossing KW - Graphenzeichnen KW - Winkel KW - Kreuzung KW - v Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112549 SN - 978-3-95826-020-7 (print) SN - 978-3-95826-021-4 (online) PB - Würzburg University Press CY - Würzburg ER - TY - JOUR A1 - Greubel, André A1 - Andres, Daniela A1 - Hennecke, Martin T1 - Analyzing reporting on ransomware incidents: a case study JF - Social Sciences N2 - Knowledge about ransomware is important for protecting sensitive data and for participating in public debates about suitable regulation regarding its security. However, as of now, this topic has received little to no attention in most school curricula. As such, it is desirable to analyze what citizens can learn about this topic outside of formal education, e.g., from news articles. This analysis is both relevant to analyzing the public discourse about ransomware, as well as to identify what aspects of this topic should be included in the limited time available for this topic in formal education. Thus, this paper was motivated both by educational and media research. The central goal is to explore how the media reports on this topic and, additionally, to identify potential misconceptions that could stem from this reporting. To do so, we conducted an exploratory case study into the reporting of 109 media articles regarding a high-impact ransomware event: the shutdown of the Colonial Pipeline (located in the east of the USA). We analyzed how the articles introduced central terminology, what details were provided, what details were not, and what (mis-)conceptions readers might receive from them. Our results show that an introduction of the terminology and technical concepts of security is insufficient for a complete understanding of the incident. Most importantly, the articles may lead to four misconceptions about ransomware that are likely to lead to misleading conclusions about the responsibility for the incident and possible political and technical options to prevent such attacks in the future. KW - media analysis KW - informal education KW - IT security KW - ransomware KW - misconceptions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313746 SN - 2076-0760 VL - 12 IS - 5 ER -