TY - JOUR A1 - Steininger, Michael A1 - Kobs, Konstantin A1 - Davidson, Padraig A1 - Krause, Anna A1 - Hotho, Andreas T1 - Density-based weighting for imbalanced regression JF - Machine Learning N2 - In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point’s influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points. KW - supervised learning KW - imbalanced regression KW - cost-sensitive learning KW - sample weighting KW - Kerneldensity estimation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269177 SN - 1573-0565 VL - 110 IS - 8 ER - TY - JOUR A1 - Döllinger, Nina A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review JF - Frontiers in Virtual Reality N2 - Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions. KW - virtual reality KW - augmented reality KW - mindfulness KW - XR KW - meditation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259047 VL - 2 ER - TY - JOUR A1 - Klemz, Boris A1 - Rote, Günter T1 - Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs JF - Algorithmica N2 - A bipartite graph G=(U,V,E) is convex if the vertices in V can be linearly ordered such that for each vertex u∈U, the neighbors of u are consecutive in the ordering of V. An induced matching H of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and m weighted edges, an induced matching of maximum total weight can be computed in O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex u∈U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in O(n+m) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of O(n\(^{2}\)) (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. https://doi.org/10.1016/j.tcs.2007.04.006). The weighted case has not been considered before. KW - dynamic programming KW - graph algorithm KW - induced matching KW - chain cover KW - convex bipartite graph KW - certifying algorithm Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267876 SN - 1432-0541 VL - 84 IS - 4 ER - TY - JOUR A1 - Davidson, Padraig A1 - Düking, Peter A1 - Zinner, Christoph A1 - Sperlich, Billy A1 - Hotho, Andreas T1 - Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study JF - Sensors N2 - The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 “Somewhat hard to hard” on Borg’s 6–20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 % for the whole dataset, 81.8 % for the trained runners, and 86.1 % for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions. KW - artificial intelligence KW - endurance KW - exercise intensity KW - precision training KW - prediction KW - wearable Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205686 SN - 1424-8220 VL - 20 IS - 9 ER - TY - JOUR A1 - Koopmann, Tobias A1 - Stubbemann, Maximilian A1 - Kapa, Matthias A1 - Paris, Michael A1 - Buenstorf, Guido A1 - Hanika, Tom A1 - Hotho, Andreas A1 - Jäschke, Robert A1 - Stumme, Gerd T1 - Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research JF - Scientometrics N2 - Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity. KW - collaboration KW - dimensions of proximity KW - co-authorships KW - co-inventorships KW - embedding techniques Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269831 SN - 1588-2861 VL - 126 IS - 12 ER - TY - JOUR A1 - Unruh, Fabian A1 - Landeck, Maximilian A1 - Oberdörfer, Sebastian A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - The Influence of Avatar Embodiment on Time Perception - Towards VR for Time-Based Therapy JF - Frontiers in Virtual Reality N2 - Psycho-pathological conditions, such as depression or schizophrenia, are often accompanied by a distorted perception of time. People suffering from this conditions often report that the passage of time slows down considerably and that they are “stuck in time.” Virtual Reality (VR) could potentially help to diagnose and maybe treat such mental conditions. However, the conditions in which a VR simulation could correctly diagnose a time perception deviation are still unknown. In this paper, we present an experiment investigating the difference in time experience with and without a virtual body in VR, also known as avatar. The process of substituting a person’s body with a virtual body is called avatar embodiment. Numerous studies demonstrated interesting perceptual, emotional, behavioral, and psychological effects caused by avatar embodiment. However, the relations between time perception and avatar embodiment are still unclear. Whether or not the presence or absence of an avatar is already influencing time perception is still open to question. Therefore, we conducted a between-subjects design with and without avatar embodiment as well as a real condition (avatar vs. no-avatar vs. real). A group of 105 healthy subjects had to wait for seven and a half minutes in a room without any distractors (e.g., no window, magazine, people, decoration) or time indicators (e.g., clocks, sunlight). The virtual environment replicates the real physical environment. Participants were unaware that they will be asked to estimate their waiting time duration as well as describing their experience of the passage of time at a later stage. Our main finding shows that the presence of an avatar is leading to a significantly faster perceived passage of time. It seems to be promising to integrate avatar embodiment in future VR time-based therapy applications as they potentially could modulate a user’s perception of the passage of time. We also found no significant difference in time perception between the real and the VR conditions (avatar, no-avatar), but further research is needed to better understand this outcome. KW - virtual reality KW - time perception KW - avatar embodiment KW - immersion KW - human computer interaction (HCI) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259076 VL - 2 ER - TY - JOUR A1 - Wick, Christoph A1 - Hartelt, Alexander A1 - Puppe, Frank T1 - Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks JF - Applied Sciences N2 - Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th–12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96%. KW - optical music recognition KW - historical document analysis KW - medieval manuscripts KW - neume notation KW - fully convolutional neural networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197248 SN - 2076-3417 VL - 9 IS - 13 ER - TY - JOUR A1 - Seufert, Anika A1 - Schröder, Svenja A1 - Seufert, Michael T1 - Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications JF - SN Computer Science N2 - To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation. KW - user experience KW - human-centered design KW - design cycle KW - application design KW - quality of experience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271762 SN - 2661-8907 VL - 2 IS - 6 ER - TY - JOUR A1 - Krupitzer, Christian A1 - Eberhardinger, Benedikt A1 - Gerostathopoulos, Ilias A1 - Raibulet, Claudia T1 - Introduction to the special issue “Applications in Self-Aware Computing Systems and their Evaluation” JF - Computers N2 - The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Umeå, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions. KW - self-aware computing systems KW - quality evaluation KW - measurements KW - quality assurance KW - autonomous KW - self-adaptive KW - self-managing systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203439 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Pfitzner, Christian A1 - May, Stefan A1 - Nüchter, Andreas T1 - Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data JF - Sensors N2 - This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. KW - RGB-D KW - human body weight KW - image processing KW - kinect KW - machine learning KW - perception KW - segmentation KW - sensor fusion KW - stroke KW - thermal camera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176642 VL - 18 IS - 5 ER -