TY - JOUR A1 - Müller, Konstantin A1 - Leppich, Robert A1 - Geiß, Christian A1 - Borst, Vanessa A1 - Pelizari, Patrick Aravena A1 - Kounev, Samuel A1 - Taubenböck, Hannes T1 - Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery JF - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing N2 - In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7%. KW - Deep learning KW - multiscale encoder KW - sentinel KW - surface model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349424 SN - 1939-1404 VL - 16 ER - TY - JOUR A1 - Ali, Qasim A1 - Montenegro, Sergio T1 - Decentralized control for scalable quadcopter formations JF - International Journal of Aerospace Engineering N2 - An innovative framework has been developed for teamwork of two quadcopter formations, each having its specified formation geometry, assigned task, and matching control scheme. Position control for quadcopters in one of the formations has been implemented through a Linear Quadratic Regulator Proportional Integral (LQR PI) control scheme based on explicit model following scheme. Quadcopters in the other formation are controlled through LQR PI servomechanism control scheme. These two control schemes are compared in terms of their performance and control effort. Both formations are commanded by respective ground stations through virtual leaders. Quadcopters in formations are able to track desired trajectories as well as hovering at desired points for selected time duration. In case of communication loss between ground station and any of the quadcopters, the neighboring quadcopter provides the command data, received from the ground station, to the affected unit. Proposed control schemes have been validated through extensive simulations using MATLAB®/Simulink® that provided favorable results. KW - scalable quadcopter Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146704 VL - 2016 ER - TY - JOUR A1 - Du, Shitong A1 - Lauterbach, Helge A. A1 - Li, Xuyou A1 - Demisse, Girum G. A1 - Borrmann, Dorit A1 - Nüchter, Andreas T1 - Curvefusion — A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration JF - Sensors N2 - Mapping and localization of mobile robots in an unknown environment are essential for most high-level operations like autonomous navigation or exploration. This paper presents a novel approach for combining estimated trajectories, namely curvefusion. The robot used in the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D laser scanner and a GPS module. The proposed algorithm first combines trajectories from different sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods, our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories. Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor time calibration. Experiments show that the proposed fusion method can achieve relatively better accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method can still maintain a certain degree of accuracy in an environment where typical pose estimation methods have poor performance. In addition, the proposed time-calibration method also achieves high accuracy in estimating point correspondences. KW - mapping KW - continuous-time SLAM KW - deformation-based method KW - time calibration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219988 SN - 1424-8220 VL - 20 IS - 23 ER - TY - JOUR A1 - Steininger, Michael A1 - Abel, Daniel A1 - Ziegler, Katrin A1 - Krause, Anna A1 - Paeth, Heiko A1 - Hotho, Andreas T1 - ConvMOS: climate model output statistics with deep learning JF - Data Mining and Knowledge Discovery N2 - Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts. KW - Klima KW - Modell KW - Deep learning KW - Neuronales Netz KW - climate KW - neural networks KW - model output statistics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324213 SN - 1384-5810 VL - 37 IS - 1 ER - TY - JOUR A1 - Glémarec, Yann A1 - Lugrin, Jean-Luc A1 - Bosser, Anne-Gwenn A1 - Buche, Cédric A1 - Latoschik, Marc Erich T1 - Controlling the stage: a high-level control system for virtual audiences in Virtual Reality JF - Frontiers in Virtual Reality N2 - This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker’s performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker’s performance, adjusting and allowing it to quickly react to the user’s behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user’s performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users. KW - virtual reality KW - virtual agent KW - behavior perception KW - public speaking KW - education Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284601 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Latoschik, Marc Erich A1 - Wienrich, Carolin T1 - Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach JF - Frontiers in Virtual Reality N2 - Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model’s so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects. KW - XR KW - experience KW - presence KW - congruence KW - plausibility KW - coherence KW - theory KW - prediction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284787 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Böhler, Elmar A1 - Creignou, Nadia A1 - Galota, Matthias A1 - Reith, Steffen A1 - Schnoor, Henning A1 - Vollmer, Heribert T1 - Complexity Classifications for Different Equivalence and Audit Problems for Boolean Circuits JF - Logical Methods in Computer Science N2 - We study Boolean circuits as a representation of Boolean functions and conskier different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard. KW - hierarchy KW - satisfiability problems Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131121 VL - 8 IS - 3:27 SP - 1 EP - 25 ER - TY - JOUR A1 - Hossfeld, Tobias A1 - Heegaard, Poul E. A1 - Kellerer, Wolfgang T1 - Comparing the scalability of communication networks and systems JF - IEEE Access N2 - Scalability is often mentioned in literature, but a stringent definition is missing. In particular, there is no general scalability assessment which clearly indicates whether a system scales or not or whether a system scales better than another. The key contribution of this article is the definition of a scalability index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system, e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from literature, which are specialized cases of our SI. The primary target of our scalability framework is, however, benchmarking of two systems, which does not require any reference system. The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system load, (2) the availability of a communication system depending on the size and structure of the network, (3) scalability comparison of different location selection mechanisms in fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI for the comparison and benchmarking of systems, which is the primary target of our scalability analysis. KW - communication networks KW - performance KW - availability KW - scalability Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349403 VL - 11 ER - TY - JOUR A1 - Hentschel, Simon A1 - Kobs, Konstantin A1 - Hotho, Andreas T1 - CLIP knows image aesthetics JF - Frontiers in Artificial Intelligence N2 - Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks. KW - Image Aesthetic Assessment KW - CLIP KW - language-image pre-training KW - text supervision KW - prompt engineering KW - AVA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297150 SN - 2624-8212 VL - 5 ER - TY - JOUR A1 - Döllinger, Nina A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review JF - Frontiers in Virtual Reality N2 - Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions. KW - virtual reality KW - augmented reality KW - mindfulness KW - XR KW - meditation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259047 VL - 2 ER -