TY - JOUR A1 - Gageik, Nils A1 - Strohmeier, Michael A1 - Montenegro, Sergio T1 - Waypoint flight parameter comparison of an autonomous UAV JF - International Journal of Artificial Intelligence & Applications (IJAIA) N2 - The present paper compares the effect of different waypoint parameters on the flight performance of a special autonomous indoor UAV (unmanned aerial vehicle) fusing ultrasonic, inertial, pressure and optical sensors for 3D positioning and controlling. The investigated parameters are the acceptance threshold for reaching a waypoint as well as the maximal waypoint step size or block size. The effect of these parameters on the flight time and accuracy of the flight path is investigated. Therefore the paper addresses how the acceptance threshold and step size influence the speed and accuracy of the autonomous flight and thus influence the performance of the presented autonomous quadrocopter under real indoor navigation circumstances. Furthermore the paper demonstrates a drawback of the standard potential field method for navigation of such autonomous quadrocopters and points to an improvement. KW - autonomous UAV KW - Quadrocopter KW - Quadrotor KW - waypoint parameter KW - navigation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96833 ER - TY - JOUR A1 - Becker, Martin A1 - Caminiti, Saverio A1 - Fiorella, Donato A1 - Francis, Louise A1 - Gravino, Pietro A1 - Haklay, Mordechai (Muki) A1 - Hotho, Andreas A1 - Loreto, Virrorio A1 - Mueller, Juergen A1 - Ricchiuti, Ferdinando A1 - Servedio, Vito D. P. A1 - Sirbu, Alina A1 - Tria, Franesca T1 - Awareness and Learning in Participatory Noise Sensing JF - PLOS ONE N2 - The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments. KW - exposure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127675 SN - 1932-6203 VL - 8 IS - 12 ER - TY - JOUR A1 - Gageik, Nils A1 - Strohmeier, Michael A1 - Montenegro, Sergio T1 - An Autonomous UAV with an Optical Flow Sensor for Positioning and Navigation JF - International Journal of Advanced Robotic Systems N2 - A procedure to control all six DOF (degrees of freedom) of a UAV (unmanned aerial vehicle) without an external reference system and to enable fully autonomous flight is presented here. For 2D positioning the principle of optical flow is used. Together with the output of height estimation, fusing ultrasonic, infrared and inertial and pressure sensor data, the 3D position of the UAV can be computed, controlled and steered. All data processing is done on the UAV. An external computer with a pathway planning interface is for commanding purposes only. The presented system is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application. The focus of this paper is 2D positioning using an optical flow sensor. As a result of the performed evaluation, it can be concluded that for position hold, the standard deviation of the position error is 10cm and after landing the position error is about 30cm. KW - Autonomous UAV KW - Quadrocopter KW - Quadrotor KW - Optical Flow KW - positioning KW - navigation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96368 ER -