TY - RPRT A1 - Gallenmüller, Sebastian A1 - Scholz, Dominik A1 - Stubbe, Henning A1 - Hauser, Eric A1 - Carle, Georg T1 - Reproducible by Design: Network Experiments with pos T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment. KW - Datennetz KW - Reproducibility KW - Testbed KW - Network Experiments KW - plain orchestrating service KW - pos Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280834 ER - TY - RPRT A1 - Odhah, Najib A1 - Grass, Eckhard A1 - Kraemer, Rolf T1 - Effective Rate of URLLC with Short Block-Length Information Theory T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon’s formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed. KW - Datennetz KW - URLLC KW - RRM KW - delay QoS exponent KW - decoding error rate KW - delay bound violation probability KW - short block-length KW - effective Bandwidth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280859 ER - TY - RPRT A1 - Raffeck, Simon A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices. KW - Datennetz KW - LoRa Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280809 ER - TY - JOUR A1 - Steinhaeusser, Sophia C. A1 - Oberdörfer, Sebastian A1 - von Mammen, Sebastian A1 - Latoschik, Marc Erich A1 - Lugrin, Birgit T1 - Joyful adventures and frightening places – designing emotion-inducing virtual environments JF - Frontiers in Virtual Reality N2 - Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games’ reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction. KW - virtual reality KW - virtual environments KW - immersion KW - emotions KW - design Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284831 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Prantl, Thomas A1 - Zeck, Timo A1 - Bauer, Andre A1 - Ten, Peter A1 - Prantl, Dominik A1 - Yahya, Ala Eddine Ben A1 - Ifflaender, Lukas A1 - Dmitrienko, Alexandra A1 - Krupitzer, Christian A1 - Kounev, Samuel T1 - A Survey on Secure Group Communication Schemes With Focus on IoT Communication JF - IEEE Access N2 - A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes. KW - Internet of Things KW - encryption KW - secure group communication Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300257 VL - 10 SP - 99944 EP - 99962 ER - TY - RPRT A1 - Savvidis, Dimitrios A1 - Roth, Robert A1 - Tutsch, Dietmar T1 - Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies. KW - Datennetz KW - SDN KW - topology KW - wheel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280715 ER - TY - JOUR A1 - Loh, Frank A1 - Wamser, Florian A1 - Poignée, Fabian A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis JF - Scientific Data N2 - Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases. KW - internet traffic KW - mobile streaming KW - YouTube Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300240 VL - 9 IS - 1 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Crouch, Samantha A. W. A1 - Giddins, Sara A1 - Dandekar, Thomas A1 - Dangwal, Seema T1 - Progeria and aging — Omics based comparative analysis JF - Biomedicines N2 - Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare “normal aging” (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression. KW - progeria KW - aging KW - omics KW - RNA sequencing KW - bioinformatics KW - sun exposure KW - HGPS KW - IGFBP2 KW - ACKR4 KW - WNT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289868 SN - 2227-9059 VL - 10 IS - 10 ER - TY - JOUR A1 - Latoschik, Marc Erich A1 - Wienrich, Carolin T1 - Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach JF - Frontiers in Virtual Reality N2 - Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model’s so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects. KW - XR KW - experience KW - presence KW - congruence KW - plausibility KW - coherence KW - theory KW - prediction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284787 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Landeck, Maximilian A1 - Alvarez Igarzábal, Federico A1 - Unruh, Fabian A1 - Habenicht, Hannah A1 - Khoshnoud, Shiva A1 - Wittmann, Marc A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - Journey through a virtual tunnel: Simulated motion and its effects on the experience of time JF - Frontiers in Virtual Reality N2 - This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients’ time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time. KW - passage of time KW - illusion of self-motion KW - vection KW - virtual tunnel KW - therapeutic application KW - virtual reality KW - extended reality (XR) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301519 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Obremski, David A1 - Friedrich, Paula A1 - Haak, Nora A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - The impact of mixed-cultural speech on the stereotypical perception of a virtual robot JF - Frontiers in Robotics and AI N2 - Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper’s contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot. KW - non-native accent KW - social robotics KW - intelligent virtual agents KW - stereotypes KW - mixed-cultural KW - culturally aware KW - socially interactive agents Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293531 SN - 2296-9144 VL - 9 ER - TY - JOUR A1 - Tsoulias, Nikos A1 - Jörissen, Sven A1 - Nüchter, Andreas T1 - An approach for monitoring temperature on fruit surface by means of thermal point cloud JF - MethodsX N2 - Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface. KW - point cloud KW - thermal point cloud KW - fruit temperature KW - sunburn KW - food quality KW - precision horticulture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300270 SN - 2215-0161 VL - 9 ER - TY - JOUR A1 - Seufert, Anika A1 - Poignée, Fabian A1 - Hoßfeld, Tobias A1 - Seufert, Michael T1 - Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown JF - Humanities and Social Sciences Communications N2 - The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people’s daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people’s behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion. KW - cultural and media studies KW - information systems and information technology KW - science, technology and society Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300261 VL - 9 ER - TY - JOUR A1 - Hentschel, Simon A1 - Kobs, Konstantin A1 - Hotho, Andreas T1 - CLIP knows image aesthetics JF - Frontiers in Artificial Intelligence N2 - Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks. KW - Image Aesthetic Assessment KW - CLIP KW - language-image pre-training KW - text supervision KW - prompt engineering KW - AVA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297150 SN - 2624-8212 VL - 5 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Minocha, Rashmi A1 - Thapa, Prithivi Jung A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective JF - International Journal of Molecular Sciences N2 - After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron. KW - COVID-19 KW - SARS-CoV-2 KW - origin KW - evolution KW - intermediate host KW - pangolin KW - mutation KW - recombination KW - adaptation KW - transmission KW - comparative sequence analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285995 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Darwish, Mostafa A. A1 - Abdelhamid, Al-Shaimaa M. A1 - Alrashedy, Gehad M. A1 - Othman, Othman Ali A1 - Naseem, Muhammad A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats JF - Biomedicines N2 - Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy. KW - cisplatin KW - hepatotoxicity KW - lymphotoxicity KW - oxidative stress KW - AKT KW - CD95 KW - caspase-3 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281686 SN - 2227-9059 VL - 10 IS - 7 ER - TY - JOUR A1 - Puppe, Frank T1 - Gesellschaftliche Perspektiven einer fachspezifischen KI für automatisierte Entscheidungen JF - Informatik Spektrum N2 - Die künstliche Intelligenz (KI) entwickelt sich rasant und hat bereits eindrucksvolle Erfolge zu verzeichnen, darunter übermenschliche Kompetenz in den meisten Spielen und vielen Quizshows, intelligente Suchmaschinen, individualisierte Werbung, Spracherkennung, -ausgabe und -übersetzung auf sehr hohem Niveau und hervorragende Leistungen bei der Bildverarbeitung, u. a. in der Medizin, der optischen Zeichenerkennung, beim autonomen Fahren, aber auch beim Erkennen von Menschen auf Bildern und Videos oder bei Deep Fakes für Fotos und Videos. Es ist zu erwarten, dass die KI auch in der Entscheidungsfindung Menschen übertreffen wird; ein alter Traum der Expertensysteme, der durch Lernverfahren, Big Data und Zugang zu dem gesammelten Wissen im Web in greifbare Nähe rückt. Gegenstand dieses Beitrags sind aber weniger die technischen Entwicklungen, sondern mögliche gesellschaftliche Auswirkungen einer spezialisierten, kompetenten KI für verschiedene Bereiche der autonomen, d. h. nicht nur unterstützenden Entscheidungsfindung: als Fußballschiedsrichter, in der Medizin, für richterliche Entscheidungen und sehr spekulativ auch im politischen Bereich. Dabei werden Vor- und Nachteile dieser Szenarien aus gesellschaftlicher Sicht diskutiert. KW - Künstliche Intelligenz KW - Ethik KW - Entscheidungsfindung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324197 SN - 0170-6012 VL - 45 IS - 2 ER - TY - JOUR A1 - Riedmann, Anna A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance JF - AI & Society N2 - Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning. KW - social robot KW - gamification KW - technology-supported learning KW - adult learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324208 SN - 0951-5666 ER - TY - CHAP A1 - Epplée, Rafael A1 - Langbehn, Eike T1 - Overlapping Architecture: Implementation of Impossible Spaces in Virtual Reality Games N2 - Natural walking in virtual reality games is constrained by the physical boundaries defined by the size of the player’s tracking space. Impossible spaces, a redirected walking technique, enlarge the virtual environment by creating overlapping architecture and letting multiple locations occupy the same physical space. Within certain thresholds, this is subtle to the player. In this paper, we present our approach to implement such impossible spaces and describe how we handled challenges like objects with simulated physics or precomputed global illumination. KW - virtual reality KW - games KW - locomotion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246045 ER - TY - JOUR A1 - Loh, Frank A1 - Poignée, Fabian A1 - Wamser, Florian A1 - Leidinger, Ferdinand A1 - Hoßfeld, Tobias T1 - Uplink vs. Downlink: Machine Learning-Based Quality Prediction for HTTP Adaptive Video Streaming JF - Sensors N2 - Streaming video is responsible for the bulk of Internet traffic these days. For this reason, Internet providers and network operators try to make predictions and assessments about the streaming quality for an end user. Current monitoring solutions are based on a variety of different machine learning approaches. The challenge for providers and operators nowadays is that existing approaches require large amounts of data. In this work, the most relevant quality of experience metrics, i.e., the initial playback delay, the video streaming quality, video quality changes, and video rebuffering events, are examined using a voluminous data set of more than 13,000 YouTube video streaming runs that were collected with the native YouTube mobile app. Three Machine Learning models are developed and compared to estimate playback behavior based on uplink request information. The main focus has been on developing a lightweight approach using as few features and as little data as possible, while maintaining state-of-the-art performance. KW - HTTP adaptive video streaming KW - quality of experience prediction KW - machine learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241121 SN - 1424-8220 VL - 21 IS - 12 ER - TY - CHAP A1 - Truman, Samuel A1 - von Mammen, Sebastian T1 - Interactive Self-Assembling Agent Ensembles T2 - Proceedings of the 1st Games Technology Summit N2 - In this paper, we bridge the gap between procedural content generation (PCG) and user-generated content (UGC) by proposing and demonstrating an interactive agent-based model of self-assembling ensembles that can be directed though user input. We motivate these efforts by considering the opportunities technology provides to pursue game designs based on according game design frameworks. We present three different use cases of the proposed model that emphasize its potential to (1) self-assemble into predefined 3D graphical assets, (2) define new structures in the context of virtual environments by self-assembling layers on the surfaces of arbitrary 3D objects, and (3) allow novel structures to self-assemble only considering the model’s configuration and no external dependencies. To address the performance restrictions in computer games, we realized the prototypical model implementation by means of an efficient entity component system (ECS). We conclude the paper with an outlook on future steps to further explore novel interactive, dynamic PCG mechanics and to ensure their efficiency. KW - procedural content generation KW - user-generated content KW - game mechanics KW - agent-based models KW - self-assembly Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246032 ER - TY - JOUR A1 - Halbig, Andreas A1 - Latoschik, Marc Erich T1 - A systematic review of physiological measurements, factors, methods, and applications in virtual reality JF - Frontiers in Virtual Reality N2 - Measurements of physiological parameters provide an objective, often non-intrusive, and (at least semi-)automatic evaluation and utilization of user behavior. In addition, specific hardware devices of Virtual Reality (VR) often ship with built-in sensors, i.e. eye-tracking and movements sensors. Hence, the combination of physiological measurements and VR applications seems promising. Several approaches have investigated the applicability and benefits of this combination for various fields of applications. However, the range of possible application fields, coupled with potentially useful and beneficial physiological parameters, types of sensor, target variables and factors, and analysis approaches and techniques is manifold. This article provides a systematic overview and an extensive state-of-the-art review of the usage of physiological measurements in VR. We identified 1,119 works that make use of physiological measurements in VR. Within these, we identified 32 approaches that focus on the classification of characteristics of experience, common in VR applications. The first part of this review categorizes the 1,119 works by field of application, i.e. therapy, training, entertainment, and communication and interaction, as well as by the specific target factors and variables measured by the physiological parameters. An additional category summarizes general VR approaches applicable to all specific fields of application since they target typical VR qualities. In the second part of this review, we analyze the target factors and variables regarding the respective methods used for an automatic analysis and, potentially, classification. For example, we highlight which measurement setups have been proven to be sensitive enough to distinguish different levels of arousal, valence, anxiety, stress, or cognitive workload in the virtual realm. This work may prove useful for all researchers wanting to use physiological data in VR and who want to have a good overview of prior approaches taken, their benefits and potential drawbacks. KW - virtual reality KW - use cases KW - sesnsors KW - tools KW - biosignals KW - psychophyisology KW - HMD (Head-Mounted Display) KW - systematic review Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260503 VL - 2 ER - TY - JOUR A1 - Carolus, Astrid A1 - Wienrich, Carolin A1 - Törke, Anna A1 - Friedel, Tobias A1 - Schwietering, Christian A1 - Sperzel, Mareike T1 - ‘Alexa, I feel for you!’ Observers’ empathetic reactions towards a conversational agent JF - Frontiers in Computer Science N2 - Conversational agents and smart speakers have grown in popularity offering a variety of options for use, which are available through intuitive speech operation. In contrast to the standard dyad of a single user and a device, voice-controlled operations can be observed by further attendees resulting in new, more social usage scenarios. Referring to the concept of ‘media equation’ and to research on the idea of ‘computers as social actors,’ which describes the potential of technology to trigger emotional reactions in users, this paper asks for the capacity of smart speakers to elicit empathy in observers of interactions. In a 2 × 2 online experiment, 140 participants watched a video of a man talking to an Amazon Echo either rudely or neutrally (factor 1), addressing it as ‘Alexa’ or ‘Computer’ (factor 2). Controlling for participants’ trait empathy, the rude treatment results in participants’ significantly higher ratings of empathy with the device, compared to the neutral treatment. The form of address had no significant effect. Results were independent of the participants’ gender and usage experience indicating a rather universal effect, which confirms the basic idea of the media equation. Implications for users, developers and researchers were discussed in the light of (future) omnipresent voice-based technology interaction scenarios. KW - conversational agent KW - empathy KW - smart speaker KW - media equation KW - computers as social actors KW - human-computer interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258807 VL - 3 ER - TY - JOUR A1 - Obremski, David A1 - Lugrin, Jean-Luc A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - Non-native speaker perception of Intelligent Virtual Agents in two languages: the impact of amount and type of grammatical mistakes JF - Journal on Multimodal User Interfaces N2 - Having a mixed-cultural membership becomes increasingly common in our modern society. It is thus beneficial in several ways to create Intelligent Virtual Agents (IVAs) that reflect a mixed-cultural background as well, e.g., for educational settings. For research with such IVAs, it is essential that they are classified as non-native by members of a target culture. In this paper, we focus on variations of IVAs’ speech to create the impression of non-native speakers that are identified as such by speakers of two different mother tongues. In particular, we investigate grammatical mistakes and identify thresholds beyond which the agents is clearly categorised as a non-native speaker. Therefore, we conducted two experiments: one for native speakers of German, and one for native speakers of English. Results of the German study indicate that beyond 10% of word order mistakes and 25% of infinitive mistakes German-speaking IVAs are perceived as non-native speakers. Results of the English study indicate that beyond 50% of omission mistakes and 50% of infinitive mistakes English-speaking IVAs are perceived as non-native speakers. We believe these thresholds constitute helpful guidelines for computational approaches of non-native speaker generation, simplifying research with IVAs in mixed-cultural settings. KW - mixed-cultural settings KW - Intelligent Virtual Agents KW - verbal behaviour Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269984 SN - 1783-8738 VL - 15 IS - 2 ER - TY - JOUR A1 - Wamser, Florian A1 - Seufert, Anika A1 - Hall, Andrew A1 - Wunderer, Stefan A1 - Hoßfeld, Tobias T1 - Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements JF - Network N2 - Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider. KW - mobile networks KW - crowdsourced measurements KW - statistical validity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284154 SN - 2673-8732 VL - 1 IS - 2 SP - 215 EP - 232 ER - TY - JOUR A1 - Döllinger, Nina A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review JF - Frontiers in Virtual Reality N2 - Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions. KW - virtual reality KW - augmented reality KW - mindfulness KW - XR KW - meditation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259047 VL - 2 ER - TY - JOUR A1 - Prakash, Subash A1 - Unnikrishnan, Vishnu A1 - Pryss, Rüdiger A1 - Kraft, Robin A1 - Schobel, Johannes A1 - Hannemann, Ronny A1 - Langguth, Berthold A1 - Schlee, Winfried A1 - Spiliopoulou, Myra T1 - Interactive system for similarity-based inspection and assessment of the well-being of mHealth users JF - Entropy N2 - Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported. KW - medical analytics KW - condition prediction KW - ecological momentary assessment KW - visual analytics KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252333 SN - 1099-4300 VL - 23 IS - 12 ER - TY - JOUR A1 - Pawellek, Ruben A1 - Krmar, Jovana A1 - Leistner, Adrian A1 - Djajić, Nevena A1 - Otašević, Biljana A1 - Protić, Ana A1 - Holzgrabe, Ulrike T1 - Charged aerosol detector response modeling for fatty acids based on experimental settings and molecular features: a machine learning approach JF - Journal of Cheminformatics N2 - The charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour. Considering both experimental conditions and molecular descriptors, a mixed quantitative structure-property relationship (QSPR) modeling was performed using Gradient Boosted Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth set at 5, and the sample rate set at 1.0) was able to explain approximately 99% (Q\(^2\): 0.987, RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test compound confirmed the high predictive ability of the model established (R-2: 0.990, RMSEP: 0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all independent variables during model building. Finally, it attributed the highest importance to the power function value, the flow rate of the mobile phase, evaporation temperature, the content of the organic solvent in the mobile phase and the molecular descriptors such as molecular weight (MW), Radial Distribution Function-080/weighted by mass (RDF080m) and average coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt). The identification of the factors most relevant to the CAD responsiveness has contributed to a better understanding of the underlying mechanisms of signal generation. An increased CAD response that was obtained for acetone as organic modifier demonstrated its potential to replace the more expensive and environmentally harmful acetonitrile. KW - High-performance liquid chromatography (HPLC) KW - Charged aerosol detector (CAD) KW - Gradient boosted trees (GBT) KW - Quantitative structure-property relationship modeling (QSPR) KW - Fatty acids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261618 VL - 13 IS - 1 ER - TY - JOUR A1 - Unruh, Fabian A1 - Landeck, Maximilian A1 - Oberdörfer, Sebastian A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - The Influence of Avatar Embodiment on Time Perception - Towards VR for Time-Based Therapy JF - Frontiers in Virtual Reality N2 - Psycho-pathological conditions, such as depression or schizophrenia, are often accompanied by a distorted perception of time. People suffering from this conditions often report that the passage of time slows down considerably and that they are “stuck in time.” Virtual Reality (VR) could potentially help to diagnose and maybe treat such mental conditions. However, the conditions in which a VR simulation could correctly diagnose a time perception deviation are still unknown. In this paper, we present an experiment investigating the difference in time experience with and without a virtual body in VR, also known as avatar. The process of substituting a person’s body with a virtual body is called avatar embodiment. Numerous studies demonstrated interesting perceptual, emotional, behavioral, and psychological effects caused by avatar embodiment. However, the relations between time perception and avatar embodiment are still unclear. Whether or not the presence or absence of an avatar is already influencing time perception is still open to question. Therefore, we conducted a between-subjects design with and without avatar embodiment as well as a real condition (avatar vs. no-avatar vs. real). A group of 105 healthy subjects had to wait for seven and a half minutes in a room without any distractors (e.g., no window, magazine, people, decoration) or time indicators (e.g., clocks, sunlight). The virtual environment replicates the real physical environment. Participants were unaware that they will be asked to estimate their waiting time duration as well as describing their experience of the passage of time at a later stage. Our main finding shows that the presence of an avatar is leading to a significantly faster perceived passage of time. It seems to be promising to integrate avatar embodiment in future VR time-based therapy applications as they potentially could modulate a user’s perception of the passage of time. We also found no significant difference in time perception between the real and the VR conditions (avatar, no-avatar), but further research is needed to better understand this outcome. KW - virtual reality KW - time perception KW - avatar embodiment KW - immersion KW - human computer interaction (HCI) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259076 VL - 2 ER - TY - JOUR A1 - Seufert, Anika A1 - Schröder, Svenja A1 - Seufert, Michael T1 - Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications JF - SN Computer Science N2 - To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation. KW - user experience KW - human-centered design KW - design cycle KW - application design KW - quality of experience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271762 SN - 2661-8907 VL - 2 IS - 6 ER - TY - CHAP ED - von Mammen, Sebastian ED - Klemke, Roland ED - Lorber, Martin T1 - Proceedings of the 1st Games Technology Summit BT - part of Clash of Realites 11th International Conference on the Technology and Theory of Digital Games N2 - As part of the Clash of Realities International Conference on the Technology and Theory of Digital Games, the Game Technology Summit is a premium venue to bring together experts from academia and industry to disseminate state-of-the-art research on trending technology topics in digital games. In this first iteration of the Game Technology Summit, we specifically paid attention on how the successes in AI in Natural User Interfaces have been impacting the games industry (industry track) and which scientific, state-of-the-art ideas and approaches are currently pursued (scientific track). KW - Veranstaltung KW - Künstliche Intelligenz KW - Mensch-Maschine-Kommunikation KW - Computerspiel KW - natural user interfaces KW - artificial intelligence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245776 SN - 978-3-945459-36-2 ER - TY - THES A1 - Löffler, Andre T1 - Constrained Graph Layouts: Vertices on the Outer Face and on the Integer Grid T1 - Graphzeichnen unter Nebenbedingungen: Knoten auf der Außenfacette und mit ganzzahligen Koordinaten N2 - Constraining graph layouts - that is, restricting the placement of vertices and the routing of edges to obey certain constraints - is common practice in graph drawing. In this book, we discuss algorithmic results on two different restriction types: placing vertices on the outer face and on the integer grid. For the first type, we look into the outer k-planar and outer k-quasi-planar graphs, as well as giving a linear-time algorithm to recognize full and closed outer k-planar graphs Monadic Second-order Logic. For the second type, we consider the problem of transferring a given planar drawing onto the integer grid while perserving the original drawings topology; we also generalize a variant of Cauchy's rigidity theorem for orthogonal polyhedra of genus 0 to those of arbitrary genus. N2 - Das Einschränken von Zeichnungen von Graphen, sodass diese bestimmte Nebenbedingungen erfüllen - etwa solche, die das Platzieren von Knoten oder den Verlauf von Kanten beeinflussen - sind im Graphzeichnen allgegenwärtig. In dieser Arbeit befassen wir uns mit algorithmischen Resultaten zu zwei speziellen Einschränkungen, nämlich dem Platzieren von Knoten entweder auf der Außenfacette oder auf ganzzahligen Koordinaten. Für die erste Einschränkung untersuchen wir die außen k-planaren und außen k-quasi-planaren Graphen und geben einen auf monadische Prädikatenlogik zweiter Stufe basierenden Algorithmus an, der überprüft, ob ein Graph voll außen k-planar ist. Für die zweite Einschränkung untersuchen wir das Problem, eine gegebene planare Zeichnung eines Graphen auf das ganzzahlige Koordinatengitter zu transportieren, ohne dabei die Topologie der Zeichnung zu verändern; außerdem generalisieren wir eine Variante von Cauchys Starrheitssatz für orthogonale Polyeder von Geschlecht 0 auf solche von beliebigem Geschlecht. KW - Graphenzeichnen KW - Komplexität KW - Algorithmus KW - Algorithmische Geometrie KW - Kombinatorik KW - Planare Graphen KW - Polyeder KW - Konvexe Zeichnungen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215746 SN - 978-3-95826-146-4 SN - 978-3-95826-147-1 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-146-4, 32,90 EUR PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - JOUR A1 - Linsenmann, Thomas A1 - März, Alexander A1 - Dufner, Vera A1 - Stetter, Christian A1 - Weiland, Judith A1 - Westermaier, Thomas T1 - Optimization of radiation settings for angiography using 3D fluoroscopy for imaging of intracranial aneurysms JF - Computer Assisted Surgery N2 - Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. We recently reported its use for imaging cerebral vascular malformations and aneurysms. This study was conducted to evaluate various radiation settings for the imaging of cerebral aneurysms before and after surgical occlusion. Eighteen patients with cerebral aneurysms with the indication for surgical clipping were included in this prospective analysis. Before surgery the patients were randomized into one of three different scan protocols according (default settings of the 3D fluoroscope): Group 1: 110 kV, 80 mA (enhanced cranial mode), group 2: 120 kV, 64 mA (lumbar spine mode), group 3: 120 kV, 25 mA (head/neck settings). Prior to surgery, a rotational fluoroscopy scan (duration 24 s) was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac(R) workstation, subtracted and reconstructed using OsiriX(R) MD 10.0 software. The procedure was repeated after clip placement. The image quality regarding preoperative aneurysm configuration and postoperative assessment of aneurysm occlusion and vessel patency was analyzed by 2 independent reviewers using a 6-grade scale. This technique quickly supplies images of adequate quality to depict intracranial aneurysms and distal vessel patency after aneurysm clipping. Regarding these features, a further optimization to our previous protocol seems possible lowering the voltage and increasing tube current. For quick intraoperative assessment, image subtraction seems not necessary. Thus, a native scan without a contrast agent is not necessary. Further optimization may be possible using a different contrast injection protocol. KW - 3D fluoroscopy KW - aneurysm KW - fluoroscopy KW - intraoperative imaging Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259251 VL - 26 IS - 1 ER - TY - RPRT A1 - Rossi, Angelo Pio A1 - Maurelli, Francesco A1 - Unnithan, Vikram A1 - Dreger, Hendrik A1 - Mathewos, Kedus A1 - Pradhan, Nayan A1 - Corbeanu, Dan-Andrei A1 - Pozzobon, Riccardo A1 - Massironi, Matteo A1 - Ferrari, Sabrina A1 - Pernechele, Claudia A1 - Paoletti, Lorenzo A1 - Simioni, Emanuele A1 - Maurizio, Pajola A1 - Santagata, Tommaso A1 - Borrmann, Dorit A1 - Nüchter, Andreas A1 - Bredenbeck, Anton A1 - Zevering, Jasper A1 - Arzberger, Fabian A1 - Reyes Mantilla, Camilo Andrés T1 - DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures BT - Open Space Innovation Platform (OSIP) Lunar Caves-System Study N2 - The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 21 KW - Lunar Caves KW - Spherical Robot KW - Lunar Exploration KW - Mapping KW - 3D Laser Scanning KW - Mond KW - Daedalus-Projekt KW - Lava Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227911 SN - 978-3-945459-33-1 SN - 1868-7466 ER - TY - JOUR A1 - Rodrigues, Johannes A1 - Weiß, Martin A1 - Hewig, Johannes A1 - Allen, John J. B. T1 - EPOS: EEG Processing Open-Source Scripts JF - Frontiers in Neuroscience N2 - Background: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers’ degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. New Method: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. Results: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. Comparison with existing methods: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. Conclusion: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research. KW - EEG KW - electroencephalography KW - event-related potentials-ERP KW - EEG processing KW - EEG preprocessing KW - EEG frequency band analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240221 SN - 1662-453X VL - 15 ER - TY - JOUR A1 - Hirth, Matthias A1 - Seufert, Michael A1 - Lange, Stanislav A1 - Meixner, Markus A1 - Tran-Gia, Phuoc T1 - Performance evaluation of hybrid crowdsensing and fixed sensor systems for event detection in urban environments JF - Sensors N2 - Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed data and provide sensor values where no crowdsensing data are typically available. In this work, we first used a simulation study to analyze a simple crowdsensing system concerning the detection performance of spatial events to highlight the potential and limitations of a pure crowdsourcing system. The results indicate that even if only a small share of inhabitants participate in crowdsensing, events that have locations correlated with the population density can be easily and quickly detected using such a system. On the contrary, events with uniformly randomly distributed locations are much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario. KW - crowdsensing KW - event detection KW - detection time simulation KW - performance analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245245 SN - 1424-8220 VL - 21 IS - 17 ER - TY - JOUR A1 - Scherer, Marc A1 - Fleishman, Sarel J. A1 - Jones, Patrik R. A1 - Dandekar, Thomas A1 - Bencurova, Elena T1 - Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals JF - Frontiers in Bioengineering and Biotechnology N2 - To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways. KW - computational KW - enzyme KW - engineering KW - design KW - biomanufacturing KW - biofuel KW - microbes KW - metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240598 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Kammerer, Klaus A1 - Göster, Manuel A1 - Reichert, Manfred A1 - Pryss, Rüdiger T1 - Ambalytics: a scalable and distributed system architecture concept for bibliometric network analyses JF - Future Internet N2 - A deep understanding about a field of research is valuable for academic researchers. In addition to technical knowledge, this includes knowledge about subareas, open research questions, and social communities (networks) of individuals and organizations within a given field. With bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research area by using bibliographic information on academic publications provided by bibliographic data providers. Bibliometric analyses include the calculation of bibliometric networks to describe affiliations or similarities of bibliometric entities (e.g., authors) and group them into clusters representing subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and time-consuming data science task that requires highly skilled individuals. In addition to domain knowledge, researchers must often provide statistical knowledge and programming skills or use software tools having limited functionality and usability. In this paper, we present the ambalytics bibliometric platform, which reduces the complexity of bibliometric network analysis and the visualization of results. It accompanies users through the process of bibliometric analysis and eliminates the need for individuals to have programming skills and statistical knowledge, while preserving advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed systems concepts and technologies. It is based on the microservice architecture concept and uses the Kubernetes framework for orchestration. This paper presents the initial building block of a comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for users as well as scalability. KW - system architecture design KW - bibliometric analysis KW - community detection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244916 SN - 1999-5903 VL - 13 IS - 8 ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Birnstiel, Sandra A1 - Latoschik, Marc Erich A1 - Grafe, Silke T1 - Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design JF - Frontiers in Education N2 - The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students’ overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar. KW - interdisciplinary education KW - virtual reality KW - augmented reality KW - serious games KW - learning environments KW - teacher education Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241612 SN - 2504-284X VL - 6 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - CHAP A1 - Davies, Richard A1 - Dewell, Nathan A1 - Harvey, Carlo T1 - A framework for interactive, autonomous and semantic dialogue generation in games T2 - Proceedings of the 1st Games Technology Summit N2 - Immersive virtual environments provide users with the opportunity to escape from the real world, but scripted dialogues can disrupt the presence within the world the user is trying to escape within. Both Non-Playable Character (NPC) to Player and NPC to NPC dialogue can be non-natural and the reliance on responding with pre-defined dialogue does not always meet the players emotional expectations or provide responses appropriate to the given context or world states. This paper investigates the application of Artificial Intelligence (AI) and Natural Language Processing to generate dynamic human-like responses within a themed virtual world. Each thematic has been analysed against humangenerated responses for the same seed and demonstrates invariance of rating across a range of model sizes, but shows an effect of theme and the size of the corpus used for fine-tuning the context for the game world. KW - natural language processing · · · KW - interactive authoring system KW - semantic understanding KW - artificial intelligence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246023 ER - TY - CHAP A1 - Sanusi, Khaleel Asyraaf Mat A1 - Klemke, Roland T1 - Immersive Multimodal Environments for Psychomotor Skills Training T2 - Proceedings of the 1st Games Technology Summit N2 - Modern immersive multimodal technologies enable the learners to completely get immersed in various learning situations in a way that feels like experiencing an authentic learning environment. These environments also allow the collection of multimodal data, which can be used with artificial intelligence to further improve the immersion and learning outcomes. The use of artificial intelligence has been widely explored for the interpretation of multimodal data collected from multiple sensors, thus giving insights to support learners’ performance by providing personalised feedback. In this paper, we present a conceptual approach for creating immersive learning environments, integrated with multi-sensor setup to help learners improve their psychomotor skills in a remote setting. KW - immersive learning technologies KW - multimodal learning KW - sensor devices KW - artificial intelligence KW - psychomotor training Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246016 ER - TY - JOUR A1 - Kern, Florian A1 - Kullmann, Peter A1 - Ganal, Elisabeth A1 - Korwisi, Kristof A1 - Stingl, René A1 - Niebling, Florian A1 - Latoschik, Marc Erich T1 - Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces JF - Frontiers in Virtual Reality N2 - This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework’s development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller’s motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it’s reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss). KW - virtual reality KW - augmented reality KW - handwriting KW - sketching KW - stylus KW - user interaction KW - usability evaluation KW - passive haptic feedback Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260219 VL - 2 ER - TY - JOUR A1 - Bartl, Andrea A1 - Wenninger, Stephan A1 - Wolf, Erik A1 - Botsch, Mario A1 - Latoschik, Marc Erich T1 - Affordable but not cheap: a case study of the effects of two 3D-reconstruction methods of virtual humans JF - Frontiers in Virtual Reality N2 - Realistic and lifelike 3D-reconstruction of virtual humans has various exciting and important use cases. Our and others’ appearances have notable effects on ourselves and our interaction partners in virtual environments, e.g., on acceptance, preference, trust, believability, behavior (the Proteus effect), and more. Today, multiple approaches for the 3D-reconstruction of virtual humans exist. They significantly vary in terms of the degree of achievable realism, the technical complexities, and finally, the overall reconstruction costs involved. This article compares two 3D-reconstruction approaches with very different hardware requirements. The high-cost solution uses a typical complex and elaborated camera rig consisting of 94 digital single-lens reflex (DSLR) cameras. The recently developed low-cost solution uses a smartphone camera to create videos that capture multiple views of a person. Both methods use photogrammetric reconstruction and template fitting with the same template model and differ in their adaptation to the method-specific input material. Each method generates high-quality virtual humans ready to be processed, animated, and rendered by standard XR simulation and game engines such as Unreal or Unity. We compare the results of the two 3D-reconstruction methods in an immersive virtual environment against each other in a user study. Our results indicate that the virtual humans from the low-cost approach are perceived similarly to those from the high-cost approach regarding the perceived similarity to the original, human-likeness, beauty, and uncanniness, despite significant differences in the objectively measured quality. The perceived feeling of change of the own body was higher for the low-cost virtual humans. Quality differences were perceived more strongly for one’s own body than for other virtual humans. KW - virtual humans KW - 3D-reconstruction methods KW - avatars KW - agents KW - user study Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260492 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - eXtended Artificial Intelligence: New Prospects of Human-AI Interaction Research JF - Frontiers in Virtual Reality N2 - Artificial Intelligence (AI) covers a broad spectrum of computational problems and use cases. Many of those implicate profound and sometimes intricate questions of how humans interact or should interact with AIs. Moreover, many users or future users do have abstract ideas of what AI is, significantly depending on the specific embodiment of AI applications. Human-centered-design approaches would suggest evaluating the impact of different embodiments on human perception of and interaction with AI. An approach that is difficult to realize due to the sheer complexity of application fields and embodiments in reality. However, here XR opens new possibilities to research human-AI interactions. The article’s contribution is twofold: First, it provides a theoretical treatment and model of human-AI interaction based on an XR-AI continuum as a framework for and a perspective of different approaches of XR-AI combinations. It motivates XR-AI combinations as a method to learn about the effects of prospective human-AI interfaces and shows why the combination of XR and AI fruitfully contributes to a valid and systematic investigation of human-AI interactions and interfaces. Second, the article provides two exemplary experiments investigating the aforementioned approach for two distinct AI-systems. The first experiment reveals an interesting gender effect in human-robot interaction, while the second experiment reveals an Eliza effect of a recommender system. Here the article introduces two paradigmatic implementations of the proposed XR testbed for human-AI interactions and interfaces and shows how a valid and systematic investigation can be conducted. In sum, the article opens new perspectives on how XR benefits human-centered AI design and development. KW - human-artificial intelligence interface KW - human-artificial intelligence interaction KW - XR-artificial intelligence continuum KW - XR-artificial intelligence combination KW - research methods KW - human-centered, human-robot KW - recommender system Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260296 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Carolus, Astrid T1 - Development of an Instrument to Measure Conceptualizations and Competencies About Conversational Agents on the Example of Smart Speakers JF - Frontiers in Computer Science N2 - The concept of digital literacy has been introduced as a new cultural technique, which is regarded as essential for successful participation in a (future) digitized world. Regarding the increasing importance of AI, literacy concepts need to be extended to account for AI-related specifics. The easy handling of the systems results in increased usage, contrasting limited conceptualizations (e.g., imagination of future importance) and competencies (e.g., knowledge about functional principles). In reference to voice-based conversational agents as a concrete application of AI, the present paper aims for the development of a measurement to assess the conceptualizations and competencies about conversational agents. In a first step, a theoretical framework of “AI literacy” is transferred to the context of conversational agent literacy. Second, the “conversational agent literacy scale” (short CALS) is developed, constituting the first attempt to measure interindividual differences in the “(il) literate” usage of conversational agents. 29 items were derived, of which 170 participants answered. An explanatory factor analysis identified five factors leading to five subscales to assess CAL: storage and transfer of the smart speaker’s data input; smart speaker’s functional principles; smart speaker’s intelligent functions, learning abilities; smart speaker’s reach and potential; smart speaker’s technological (surrounding) infrastructure. Preliminary insights into construct validity and reliability of CALS showed satisfying results. Third, using the newly developed instrument, a student sample’s CAL was assessed, revealing intermediated values. Remarkably, owning a smart speaker did not lead to higher CAL scores, confirming our basic assumption that usage of systems does not guarantee enlightened conceptualizations and competencies. In sum, the paper contributes to the first insights into the operationalization and understanding of CAL as a specific subdomain of AI-related competencies. KW - artificial intelligence literacy KW - artificial intelligence education KW - voice-based artificial intelligence KW - conversational agents KW - measurement Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260198 VL - 3 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Reitelbach, Clemens A1 - Carolus, Astrid T1 - The Trustworthiness of Voice Assistants in the Context of Healthcare Investigating the Effect of Perceived Expertise on the Trustworthiness of Voice Assistants, Providers, Data Receivers, and Automatic Speech Recognition JF - Frontiers in Computer Science N2 - As an emerging market for voice assistants (VA), the healthcare sector imposes increasing requirements on the users’ trust in the technological system. To encourage patients to reveal sensitive data requires patients to trust in the technological counterpart. In an experimental laboratory study, participants were presented a VA, which was introduced as either a “specialist” or a “generalist” tool for sexual health. In both conditions, the VA asked the exact same health-related questions. Afterwards, participants assessed the trustworthiness of the tool and further source layers (provider, platform provider, automatic speech recognition in general, data receiver) and reported individual characteristics (disposition to trust and disclose sexual information). Results revealed that perceiving the VA as a specialist resulted in higher trustworthiness of the VA and of the provider, the platform provider and automatic speech recognition in general. Furthermore, the provider’s trustworthiness affected the perceived trustworthiness of the VA. Presenting both a theoretical line of reasoning and empirical data, the study points out the importance of the users’ perspective on the assistant. In sum, this paper argues for further analyses of trustworthiness in voice-based systems and its effects on the usage behavior as well as the impact on responsible design of future technology. KW - voice assistant KW - trustworthiness KW - trust KW - anamnesis tool KW - expertise framing (Min5-Max 8) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260209 VL - 3 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Komma, Philipp A1 - Vogt, Stephanie A1 - Latoschik, Marc E. T1 - Spatial Presence in Mixed Realities – Considerations About the Concept, Measures, Design, and Experiments JF - Frontiers in Virtual Reality N2 - Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions. KW - mixed reality KW - virtual-reality-continuum KW - spatial presence KW - place-illusion KW - plausibility-illusion KW - transportation KW - realism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260328 VL - 2 ER - TY - JOUR A1 - Glémarec, Yann A1 - Lugrin, Jean-Luc A1 - Bosser, Anne-Gwenn A1 - Collins Jackson, Aryana A1 - Buche, Cédric A1 - Latoschik, Marc Erich T1 - Indifferent or Enthusiastic? Virtual Audiences Animation and Perception in Virtual Reality JF - Frontiers in Virtual Reality N2 - In this paper, we present a virtual audience simulation system for Virtual Reality (VR). The system implements an audience perception model controlling the nonverbal behaviors of virtual spectators, such as facial expressions or postures. Groups of virtual spectators are animated by a set of nonverbal behavior rules representing a particular audience attitude (e.g., indifferent or enthusiastic). Each rule specifies a nonverbal behavior category: posture, head movement, facial expression and gaze direction as well as three parameters: type, frequency and proportion. In a first user-study, we asked participants to pretend to be a speaker in VR and then create sets of nonverbal behaviour parameters to simulate different attitudes. Participants manipulated the nonverbal behaviours of single virtual spectator to match a specific levels of engagement and opinion toward them. In a second user-study, we used these parameters to design different types of virtual audiences with our nonverbal behavior rules and evaluated their perceptions. Our results demonstrate our system’s ability to create virtual audiences with three types of different perceived attitudes: indifferent, critical, enthusiastic. The analysis of the results also lead to a set of recommendations and guidelines regarding attitudes and expressions for future design of audiences for VR therapy and training applications. KW - virtual reality KW - perception KW - nonverbal behavior KW - interaction KW - virtual agent KW - virtual audience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259328 VL - 2 ER - TY - JOUR A1 - Hein, Rebecca M. A1 - Wienrich, Carolin A1 - Latoschik, Marc E. T1 - A systematic review of foreign language learning with immersive technologies (2001-2020) JF - AIMS Electronics and Electrical Engineering N2 - This study provides a systematic literature review of research (2001–2020) in the field of teaching and learning a foreign language and intercultural learning using immersive technologies. Based on 2507 sources, 54 articles were selected according to a predefined selection criteria. The review is aimed at providing information about which immersive interventions are being used for foreign language learning and teaching and where potential research gaps exist. The papers were analyzed and coded according to the following categories: (1) investigation form and education level, (2) degree of immersion, and technology used, (3) predictors, and (4) criterions. The review identified key research findings relating the use of immersive technologies for learning and teaching a foreign language and intercultural learning at cognitive, affective, and conative levels. The findings revealed research gaps in the area of teachers as a target group, and virtual reality (VR) as a fully immersive intervention form. Furthermore, the studies reviewed rarely examined behavior, and implicit measurements related to inter- and trans-cultural learning and teaching. Inter- and transcultural learning and teaching especially is an underrepresented investigation subject. Finally, concrete suggestions for future research are given. The systematic review contributes to the challenge of interdisciplinary cooperation between pedagogy, foreign language didactics, and Human-Computer Interaction to achieve innovative teaching-learning formats and a successful digital transformation. KW - foreign language learning and teaching KW - intercultural learning and teaching KW - immersive technologies KW - education KW - human-computer interaction KW - systematic literature review Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268811 VL - 5 IS - 2 ER - TY - JOUR A1 - Dumic, Emil A1 - Bjelopera, Anamaria A1 - Nüchter, Andreas T1 - Dynamic point cloud compression based on projections, surface reconstruction and video compression JF - Sensors N2 - In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections. KW - 3DTK toolkit KW - map projections KW - point cloud compression KW - point-to-point measure KW - point-to-plane measure KW - Poisson surface reconstruction KW - octree Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252231 SN - 1424-8220 VL - 22 IS - 1 ER - TY - JOUR A1 - Madeira, Octavia A1 - Gromer, Daniel A1 - Latoschik, Marc Erich A1 - Pauli, Paul T1 - Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze JF - Frontiers in Virtual Reality N2 - The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals’ levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects’ fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM. KW - elevated plus-maze KW - EPM KW - anxiety KW - virtual reality KW - translational neuroscience KW - acrophobia KW - trait anxiety Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258709 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Döllinger, Nina A1 - Hein, Rebecca T1 - Behavioral Framework of Immersive Technologies (BehaveFIT): How and why virtual reality can support behavioral change processes JF - Frontiers in Virtual Reality N2 - The design and evaluation of assisting technologies to support behavior change processes have become an essential topic within the field of human-computer interaction research in general and the field of immersive intervention technologies in particular. The mechanisms and success of behavior change techniques and interventions are broadly investigated in the field of psychology. However, it is not always easy to adapt these psychological findings to the context of immersive technologies. The lack of theoretical foundation also leads to a lack of explanation as to why and how immersive interventions support behavior change processes. The Behavioral Framework for immersive Technologies (BehaveFIT) addresses this lack by 1) presenting an intelligible categorization and condensation of psychological barriers and immersive features, by 2) suggesting a mapping that shows why and how immersive technologies can help to overcome barriers and finally by 3) proposing a generic prediction path that enables a structured, theory-based approach to the development and evaluation of immersive interventions. These three steps explain how BehaveFIT can be used, and include guiding questions for each step. Further, two use cases illustrate the usage of BehaveFIT. Thus, the present paper contributes to guidance for immersive intervention design and evaluation, showing that immersive interventions support behavior change processes and explain and predict 'why' and 'how' immersive interventions can bridge the intention-behavior-gap. KW - immersive technologies KW - behavior change KW - intervention design KW - intervention evaluation KW - framework KW - virtual reality KW - intention-behavior-gap KW - human-computer interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258796 VL - 2 ER - TY - JOUR A1 - Kraft, Robin A1 - Reichert, Manfred A1 - Pryss, Rüdiger T1 - Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: an experiment with Android devices JF - Sensors N2 - The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users' individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable. KW - mHealth KW - crowdsensing KW - tinnitus KW - noise measurement KW - environmental sound Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252246 SN - 1424-8220 VL - 22 IS - 1 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Shainberg, Liliia A1 - Hock, Michael A1 - Lohr, David A1 - Schreiber, Laura M. T1 - Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI JF - BMC Medical Imaging N2 - Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable. KW - deep learning KW - neural networks KW - cardiac magnetic resonance KW - sensitivity analysis KW - transformations KW - augmentation KW - segmentation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259169 VL - 21 IS - 1 ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Heidrich, David A1 - Birnstiel, Sandra A1 - Latoschik, Marc Erich T1 - Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making JF - Frontiers in Virtual Reality N2 - Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person’s decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment. KW - virtual reality KW - virtual environments KW - immersion KW - decision-making KW - iowa gambling task Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260101 VL - 2 ER - TY - JOUR A1 - Breves, Priska A1 - Dodel, Nicola T1 - The influence of cybersickness and the media devices’ mobility on the persuasive effects of 360° commercials JF - Multimedia Tools and Applications N2 - With the rise of immersive media, advertisers have started to use 360° commercials to engage and persuade consumers. Two experiments were conducted to address research gaps and to validate the positive impact of 360° commercials in realistic settings. The first study (N = 62) compared the effects of 360° commercials using either a mobile cardboard head-mounted display (HMD) or a laptop. This experiment was conducted in the participants’ living rooms and incorporated individual feelings of cybersickness as a moderator. The participants who experienced the 360° commercial with the HMD reported higher spatial presence and product evaluation, but their purchase intentions were only increased when their reported cybersickness was low. The second experiment (N = 197) was conducted online and analyzed the impact of 360° commercials that were experienced with mobile (smartphone/tablet) or static (laptop/desktop) devices instead of HMDs. The positive effects of omnidirectional videos were stronger when participants used mobile devices. KW - virtual reality KW - immersive advertising KW - spatial presence KW - cybersickness KW - advertising effectiveness Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269194 SN - 1573-7721 VL - 80 IS - 18 ER - TY - JOUR A1 - Steininger, Michael A1 - Kobs, Konstantin A1 - Davidson, Padraig A1 - Krause, Anna A1 - Hotho, Andreas T1 - Density-based weighting for imbalanced regression JF - Machine Learning N2 - In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point’s influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points. KW - supervised learning KW - imbalanced regression KW - cost-sensitive learning KW - sample weighting KW - Kerneldensity estimation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269177 SN - 1573-0565 VL - 110 IS - 8 ER - TY - JOUR A1 - Holfelder, Marc A1 - Mulansky, Lena A1 - Schlee, Winfried A1 - Baumeister, Harald A1 - Schobel, Johannes A1 - Greger, Helmut A1 - Hoff, Andreas A1 - Pryss, Rüdiger T1 - Medical device regulation efforts for mHealth apps during the COVID-19 pandemic — an experience report of Corona Check and Corona Health JF - J — Multidisciplinary Scientific Journal N2 - Within the healthcare environment, mobile health (mHealth) applications (apps) are becoming more and more important. The number of new mHealth apps has risen steadily in the last years. Especially the COVID-19 pandemic has led to an enormous amount of app releases. In most countries, mHealth applications have to be compliant with several regulatory aspects to be declared a “medical app”. However, the latest applicable medical device regulation (MDR) does not provide more details on the requirements for mHealth applications. When developing a medical app, it is essential that all contributors in an interdisciplinary team — especially software engineers — are aware of the specific regulatory requirements beforehand. The development process, however, should not be stalled due to integration of the MDR. Therefore, a developing framework that includes these aspects is required to facilitate a reliable and quick development process. The paper at hand introduces the creation of such a framework on the basis of the Corona Health and Corona Check apps. The relevant regulatory guidelines are listed and summarized as a guidance for medical app developments during the pandemic and beyond. In particular, the important stages and challenges faced that emerged during the entire development process are highlighted. KW - mHealth KW - mobile application KW - MDR KW - medical device regulation KW - medical device software Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285434 SN - 2571-8800 VL - 4 IS - 2 SP - 206 EP - 222 ER - TY - JOUR A1 - Koopmann, Tobias A1 - Stubbemann, Maximilian A1 - Kapa, Matthias A1 - Paris, Michael A1 - Buenstorf, Guido A1 - Hanika, Tom A1 - Hotho, Andreas A1 - Jäschke, Robert A1 - Stumme, Gerd T1 - Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research JF - Scientometrics N2 - Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity. KW - collaboration KW - dimensions of proximity KW - co-authorships KW - co-inventorships KW - embedding techniques Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269831 SN - 1588-2861 VL - 126 IS - 12 ER - TY - JOUR A1 - Schlör, Daniel A1 - Ring, Markus A1 - Hotho, Andreas T1 - iNALU: Improved Neural Arithmetic Logic Unit JF - Frontiers in Artificial Intelligence N2 - Neural networks have to capture mathematical relationships in order to learn various tasks. They approximate these relations implicitly and therefore often do not generalize well. The recently proposed Neural Arithmetic Logic Unit (NALU) is a novel neural architecture which is able to explicitly represent the mathematical relationships by the units of the network to learn operations such as summation, subtraction or multiplication. Although NALUs have been shown to perform well on various downstream tasks, an in-depth analysis reveals practical shortcomings by design, such as the inability to multiply or divide negative input values or training stability issues for deeper networks. We address these issues and propose an improved model architecture. We evaluate our model empirically in various settings from learning basic arithmetic operations to more complex functions. Our experiments indicate that our model solves stability issues and outperforms the original NALU model in means of arithmetic precision and convergence. KW - neural networks KW - machine learning KW - arithmetic calculations KW - neural architecture KW - experimental evaluation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212301 SN - 2624-8212 VL - 3 ER - TY - JOUR A1 - Li, Ningbo A1 - Guan, Lianwu A1 - Gao, Yanbin A1 - Du, Shitong A1 - Wu, Menghao A1 - Guang, Xingxing A1 - Cong, Xiaodan T1 - Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system JF - Remote Sensing N2 - Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80% success rate in navigation mode switching. KW - vehicular navigation KW - GNSS/INS integrated navigation KW - INS/LIDAR integrated navigation KW - switching navigation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216229 SN - 2072-4292 VL - 12 IS - 19 ER - TY - JOUR A1 - Kraft, Robin A1 - Birk, Ferdinand A1 - Reichert, Manfred A1 - Deshpande, Aniruddha A1 - Schlee, Winfried A1 - Langguth, Berthold A1 - Baumeister, Harald A1 - Probst, Thomas A1 - Spiliopoulou, Myra A1 - Pryss, Rüdiger T1 - Efficient processing of geospatial mHealth data using a scalable crowdsensing platform JF - Sensors N2 - Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case. KW - mHealth KW - crowdsensing KW - tinnitus KW - geospatial data KW - cloud-native KW - stream processing KW - scalability KW - architectural design Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207826 SN - 1424-8220 VL - 20 IS - 12 ER - TY - JOUR A1 - Davidson, Padraig A1 - Düking, Peter A1 - Zinner, Christoph A1 - Sperlich, Billy A1 - Hotho, Andreas T1 - Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study JF - Sensors N2 - The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 “Somewhat hard to hard” on Borg’s 6–20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 % for the whole dataset, 81.8 % for the trained runners, and 86.1 % for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions. KW - artificial intelligence KW - endurance KW - exercise intensity KW - precision training KW - prediction KW - wearable Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205686 SN - 1424-8220 VL - 20 IS - 9 ER - TY - RPRT ED - Hoßfeld, Tobias ED - Wunderer, Stefan T1 - White Paper on Crowdsourced Network and QoE Measurements – Definitions, Use Cases and Challenges N2 - The goal of the white paper at hand is as follows. The definitions of the terms build a framework for discussions around the hype topic ‘crowdsourcing’. This serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal to provide a commonly accepted definition in the community. The focus is on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE or regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted. This white paper is the outcome of the Würzburg seminar on “Crowdsourced Network and QoE Measurements” which took place from 25-26 September 2019 in Würzburg, Germany. International experts were invited from industry and academia. They are well known in their communities, having different backgrounds in crowdsourcing, mobile networks, network measurements, network performance, Quality of Service (QoS), and Quality of Experience (QoE). The discussions in the seminar focused on how crowdsourcing will support vendors, operators, and regulators to determine the Quality of Experience in new 5G networks that enable various new applications and network architectures. As a result of the discussions, the need for a white paper manifested, with the goal of providing a scientific discussion of the terms “crowdsourced network measurements” and “crowdsourced QoE measurements”, describing relevant use cases for such crowdsourced data, and its underlying challenges. During the seminar, those main topics were identified, intensively discussed in break-out groups, and brought back into the plenum several times. The outcome of the seminar is this white paper at hand which is – to our knowledge – the first one covering the topic of crowdsourced network and QoE measurements. KW - Crowdsourcing KW - Network Measurements KW - Quality of Service (QoS) KW - Quality of Experience (QoE) KW - crowdsourced network measurements KW - crowdsourced QoE measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202327 ER - TY - JOUR A1 - Kammerer, Klaus A1 - Pryss, Rüdiger A1 - Hoppenstedt, Burkhard A1 - Sommer, Kevin A1 - Reichert, Manfred T1 - Process-driven and flow-based processing of industrial sensor data JF - Sensors N2 - For machine manufacturing companies, besides the production of high quality and reliable machines, requirements have emerged to maintain machine-related aspects through digital services. The development of such services in the field of the Industrial Internet of Things (IIoT) is dealing with solutions such as effective condition monitoring and predictive maintenance. However, appropriate data sources are needed on which digital services can be technically based. As many powerful and cheap sensors have been introduced over the last years, their integration into complex machines is promising for developing digital services for various scenarios. It is apparent that for components handling recorded data of these sensors they must usually deal with large amounts of data. In particular, the labeling of raw sensor data must be furthered by a technical solution. To deal with these data handling challenges in a generic way, a sensor processing pipeline (SPP) was developed, which provides effective methods to capture, process, store, and visualize raw sensor data based on a processing chain. Based on the example of a machine manufacturing company, the SPP approach is presented in this work. For the company involved, the approach has revealed promising results. KW - data stream processing KW - cyber-physical systems KW - processing pipeline KW - sensor networks Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213089 SN - 1424-8220 VL - 20 IS - 18 ER - TY - RPRT A1 - Metzger, Florian T1 - Crowdsensed QoE for the community - a concept to make QoE assessment accessible N2 - In recent years several community testbeds as well as participatory sensing platforms have successfully established themselves to provide open data to everyone interested. Each of them with a specific goal in mind, ranging from collecting radio coverage data up to environmental and radiation data. Such data can be used by the community in their decision making, whether to subscribe to a specific mobile phone service that provides good coverage in an area or in finding a sunny and warm region for the summer holidays. However, the existing platforms are usually limiting themselves to directly measurable network QoS. If such a crowdsourced data set provides more in-depth derived measures, this would enable an even better decision making. A community-driven crowdsensing platform that derives spatial application-layer user experience from resource-friendly bandwidth estimates would be such a case, video streaming services come to mind as a prime example. In this paper we present a concept for such a system based on an initial prototype that eases the collection of data necessary to determine mobile-specific QoE at large scale. In addition we reason why the simple quality metric proposed here can hold its own. KW - Quality of Experience KW - Crowdsourcing KW - Crowdsensing KW - QoE Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203748 N1 - Originally written in 2017, but never published. ER - TY - JOUR A1 - Krupitzer, Christian A1 - Eberhardinger, Benedikt A1 - Gerostathopoulos, Ilias A1 - Raibulet, Claudia T1 - Introduction to the special issue “Applications in Self-Aware Computing Systems and their Evaluation” JF - Computers N2 - The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Umeå, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions. KW - self-aware computing systems KW - quality evaluation KW - measurements KW - quality assurance KW - autonomous KW - self-adaptive KW - self-managing systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203439 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Kaiser, Dennis A1 - Lesch, Veronika A1 - Rothe, Julian A1 - Strohmeier, Michael A1 - Spieß, Florian A1 - Krupitzer, Christian A1 - Montenegro, Sergio A1 - Kounev, Samuel T1 - Towards Self-Aware Multirotor Formations JF - Computers N2 - In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios. KW - self-aware computing KW - unmanned aerial vehicles KW - multirotors KW - quadcopters KW - intelligent transportation systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200572 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Grohmann, Johannes A1 - Herbst, Nikolas A1 - Chalbani, Avi A1 - Arian, Yair A1 - Peretz, Noam A1 - Kounev, Samuel T1 - A Taxonomy of Techniques for SLO Failure Prediction in Software Systems JF - Computers N2 - Failure prediction is an important aspect of self-aware computing systems. Therefore, a multitude of different approaches has been proposed in the literature over the past few years. In this work, we propose a taxonomy for organizing works focusing on the prediction of Service Level Objective (SLO) failures. Our taxonomy classifies related work along the dimensions of the prediction target (e.g., anomaly detection, performance prediction, or failure prediction), the time horizon (e.g., detection or prediction, online or offline application), and the applied modeling type (e.g., time series forecasting, machine learning, or queueing theory). The classification is derived based on a systematic mapping of relevant papers in the area. Additionally, we give an overview of different techniques in each sub-group and address remaining challenges in order to guide future research. KW - taxonomy KW - survey KW - failure prediction KW - anomaly prediction KW - anomaly detection KW - self-aware computing KW - self-adaptive systems KW - performance prediction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200594 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Du, Shitong A1 - Lauterbach, Helge A. A1 - Li, Xuyou A1 - Demisse, Girum G. A1 - Borrmann, Dorit A1 - Nüchter, Andreas T1 - Curvefusion — A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration JF - Sensors N2 - Mapping and localization of mobile robots in an unknown environment are essential for most high-level operations like autonomous navigation or exploration. This paper presents a novel approach for combining estimated trajectories, namely curvefusion. The robot used in the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D laser scanner and a GPS module. The proposed algorithm first combines trajectories from different sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods, our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories. Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor time calibration. Experiments show that the proposed fusion method can achieve relatively better accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method can still maintain a certain degree of accuracy in an environment where typical pose estimation methods have poor performance. In addition, the proposed time-calibration method also achieves high accuracy in estimating point correspondences. KW - mapping KW - continuous-time SLAM KW - deformation-based method KW - time calibration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219988 SN - 1424-8220 VL - 20 IS - 23 ER - TY - INPR A1 - Dandekar, Thomas T1 - Biological heuristics applied to cosmology suggests a condensation nucleus as start of our universe and inflation cosmology replaced by a period of rapid Weiss domain-like crystal growth N2 - Cosmology often uses intricate formulas and mathematics to derive new theories and concepts. We do something different in this paper: We look at biological processes and derive from these heuristics so that the revised cosmology agrees with astronomical observations but does also agree with standard biological observations. We show that we then have to replace any type of singularity at the start of the universe by a condensation nucleus and that the very early period of the universe usually assumed to be inflation has to be replaced by a period of rapid crystal growth as in Weiss magnetization domains. Impressively, these minor modifications agree well with astronomical observations including removing the strong inflation perturbations which were never observed in the recent BICEP2 experiments. Furthermore, looking at biological principles suggests that such a new theory with a condensation nucleus at start and a first rapid phase of magnetization-like growth of the ordered, physical laws obeying lattice we live in is in fact the only convincing theory of the early phases of our universe that also is compatible with current observations. We show in detail in the following that such a process of crystal creation, breaking of new crystal seeds and ultimate evaporation of the present crystal readily leads over several generations to an evolution and selection of better, more stable and more self-organizing crystals. Moreover, this explains the “fine-tuning” question why our universe is fine-tuned to favor life: Our Universe is so self-organizing to have enough offspring and the detailed physics involved is at the same time highly favorable for all self-organizing processes including life. This biological theory contrasts with current standard inflation cosmologies. The latter do not perform well in explaining any phenomena of sophisticated structure creation or self-organization. As proteins can only thermodynamically fold by increasing the entropy in the solution around them we suggest for cosmology a condensation nucleus for a universe can form only in a “chaotic ocean” of string-soup or quantum foam if the entropy outside of the nucleus rapidly increases. We derive an interaction potential for 1 to n-dimensional strings or quantum-foams and show that they allow only 1D, 2D, 4D or octonion interactions. The latter is the richest structure and agrees to the E8 symmetry fundamental to particle physics and also compatible with the ten dimensional string theory E8 which is part of the M-theory. Interestingly, any other interactions of other dimensionality can be ruled out using Hurwitz compositional theorem. Crystallization explains also extremely well why we have only one macroscopic reality and where the worldlines of alternative trajectories exist: They are in other planes of the crystal and for energy reasons they crystallize mostly at the same time, yielding a beautiful and stable crystal. This explains decoherence and allows to determine the size of Planck´s quantum h (very small as separation of crystal layers by energy is extremely strong). Ultimate dissolution of real crystals suggests an explanation for dark energy agreeing with estimates for the “big rip”. The halo distribution of dark matter favoring galaxy formation is readily explained by a crystal seed starting with unit cells made of normal and dark matter. That we have only matter and not antimatter can be explained as there may be right handed mattercrystals and left-handed antimatter crystals. Similarly, real crystals are never perfect and we argue that exactly such irregularities allow formation of galaxies, clusters and superclusters. Finally, heuristics from genetics suggest to look for a systems perspective to derive correct vacuum and Higgs Boson energies. KW - heuristics KW - inflation KW - cosmology KW - crystallization KW - crystal growth KW - E8 symmetry KW - Hurwitz theorem KW - evolution KW - Lee Smolin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183945 ER - TY - JOUR A1 - Gehrke, Alexander A1 - Balbach, Nico A1 - Rauch, Yong-Mi A1 - Degkwitz, Andreas A1 - Puppe, Frank T1 - Erkennung von handschriftlichen Unterstreichungen in Alten Drucken JF - Bibliothek Forschung und Praxis N2 - Die Erkennung handschriftlicher Artefakte wie Unterstreichungen in Buchdrucken ermöglicht Rückschlüsse auf das Rezeptionsverhalten und die Provenienzgeschichte und wird auch für eine OCR benötigt. Dabei soll zwischen handschriftlichen Unterstreichungen und waagerechten Linien im Druck (z. B. Trennlinien usw.) unterschieden werden, da letztere nicht ausgezeichnet werden sollen. Im Beitrag wird ein Ansatz basierend auf einem auf Unterstreichungen trainierten Neuronalen Netz gemäß der U-Net Architektur vorgestellt, dessen Ergebnisse in einem zweiten Schritt mit heuristischen Regeln nachbearbeitet werden. Die Evaluationen zeigen, dass Unterstreichungen sehr gut erkannt werden, wenn bei der Binarisierung der Scans nicht zu viele Pixel der Unterstreichung wegen geringem Kontrast verloren gehen. Zukünftig sollen die Worte oberhalb der Unterstreichung mit OCR transkribiert werden und auch andere Artefakte wie handschriftliche Notizen in alten Drucken erkannt werden. N2 - The recognition of handwritten artefacts like underlines in historical printings allows inference on the reception and provenance history and is necessary for OCR (optical character recognition). In this context it is important to differentiate between handwritten and printed lines, since the latter are common in printings, but should be ignored. We present an approach based on neural nets with the U-Net architecture, whose segmentation results are post processed with heuristic rules. The evaluations show that handwritten underlines are very well recognized if the binarisation of the scans is adequate. Future work includes transcription of the underlined words with OCR and recognition of other artefacts like handwritten notes in historical printings. T2 - Recognition of handwritten underlines in historical printings KW - Brüder Grimm Privatbibliothek KW - Erkennung handschriftlicher Artefakte KW - Convolutional Neural Network KW - regelbasierte Nachbearbeitung KW - Grimm brothers personal library KW - handwritten artefact recognition KW - convolutional neural network KW - rule based post processing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193377 SN - 1865-7648 SN - 0341-4183 N1 - Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. VL - 43 IS - 3 SP - 447 EP - 452 ER - TY - JOUR A1 - Wick, Christoph A1 - Hartelt, Alexander A1 - Puppe, Frank T1 - Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks JF - Applied Sciences N2 - Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th–12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96%. KW - optical music recognition KW - historical document analysis KW - medieval manuscripts KW - neume notation KW - fully convolutional neural networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197248 SN - 2076-3417 VL - 9 IS - 13 ER - TY - THES A1 - Peng, Dongliang T1 - An Optimization-Based Approach for Continuous Map Generalization T1 - Optimierung für die kontinuierliche Generalisierung von Landkarten N2 - Maps are the main tool to represent geographical information. Geographical information is usually scale-dependent, so users need to have access to maps at different scales. In our digital age, the access is realized by zooming. As discrete changes during the zooming tend to distract users, smooth changes are preferred. This is why some digital maps are trying to make the zooming as continuous as they can. The process of producing maps at different scales with smooth changes is called continuous map generalization. In order to produce maps of high quality, cartographers often take into account additional requirements. These requirements are transferred to models in map generalization. Optimization for map generalization is important not only because it finds optimal solutions in the sense of the models, but also because it helps us to evaluate the quality of the models. Optimization, however, becomes more delicate when we deal with continuous map generalization. In this area, there are requirements not only for a specific map but also for relations between maps at difference scales. This thesis is about continuous map generalization based on optimization. First, we show the background of our research topics. Second, we find optimal sequences for aggregating land-cover areas. We compare the A$^{\!\star}$\xspace algorithm and integer linear programming in completing this task. Third, we continuously generalize county boundaries to provincial boundaries based on compatible triangulations. We morph between the two sets of boundaries, using dynamic programming to compute the correspondence. Fourth, we continuously generalize buildings to built-up areas by aggregating and growing. In this work, we group buildings with the help of a minimum spanning tree. Fifth, we define vertex trajectories that allow us to morph between polylines. We require that both the angles and the edge lengths change linearly over time. As it is impossible to fulfill all of these requirements simultaneously, we mediate between them using least-squares adjustment. Sixth, we discuss the performance of some commonly used data structures for a specific spatial problem. Seventh, we conclude this thesis and present open problems. N2 - Maps are the main tool to represent geographical information. Users often zoom in and out to access maps at different scales. Continuous map generalization tries to make the changes between different scales smooth, which is essential to provide users with comfortable zooming experience. In order to achieve continuous map generalization with high quality, we optimize some important aspects of maps. In this book, we have used optimization in the generalization of land-cover areas, administrative boundaries, buildings, and coastlines. According to our experiments, continuous map generalization indeed benefits from optimization. N2 - Landkarten sind das wichtigste Werkzeug zur Repräsentation geografischer Information. Unter der Generalisierung von Landkarten versteht man die Aufbereitung von geografischen Informationen aus detaillierten Daten zur Generierung von kleinmaßstäbigen Karten. Nutzer von Online-Karten zoomen oft in eine Karte hinein oder aus einer Karte heraus, um mehr Details bzw. mehr Überblick zu bekommen. Die kontinuierliche Generalisierung von Landkarten versucht die Änderungen zwischen verschiedenen Maßstäben stetig zu machen. Dies ist wichtig, um Nutzern eine angenehme Zoom-Erfahrung zu bieten. Um eine qualitativ hochwertige kontinuierliche Generalisierung zu erreichen, kann man wichtige Aspekte bei der Generierung von Online-Karten optimieren. In diesem Buch haben wir Optimierung bei der Generalisierung von Landnutzungskarten, von administrativen Grenzen, Gebäuden und Küstenlinien eingesetzt. Unsere Experimente zeigen, dass die kontinuierliche Generalisierung von Landkarten in der Tat von Optimierung profitiert. KW - land-cover area KW - administrative boundary KW - building KW - morphing KW - data structure KW - zooming KW - Generalisierung KW - Landnutzungskartierung KW - Optimierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174427 SN - 978-3-95826-104-4 SN - 978-3-95826-105-1 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, 978-3-95826-104-4, 24,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Latoschik, Marc Erich T1 - Knowledge encoding in game mechanics: transfer-oriented knowledge learning in desktop-3D and VR JF - International Journal of Computer Games Technology N2 - Affine Transformations (ATs) are a complex and abstract learning content. Encoding the AT knowledge in Game Mechanics (GMs) achieves a repetitive knowledge application and audiovisual demonstration. Playing a serious game providing these GMs leads to motivating and effective knowledge learning. Using immersive Virtual Reality (VR) has the potential to even further increase the serious game’s learning outcome and learning quality. This paper compares the effectiveness and efficiency of desktop-3D and VR in respect to the achieved learning outcome. Also, the present study analyzes the effectiveness of an enhanced audiovisual knowledge encoding and the provision of a debriefing system. The results validate the effectiveness of the knowledge encoding in GMs to achieve knowledge learning. The study also indicates that VR is beneficial for the overall learning quality and that an enhanced audiovisual encoding has only a limited effect on the learning outcome. KW - games Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201159 VL - 2019 ER - TY - THES A1 - Niebler, Thomas T1 - Extracting and Learning Semantics from Social Web Data T1 - Extraktion und Lernen von Semantik aus Social Web-Daten N2 - Making machines understand natural language is a dream of mankind that existed since a very long time. Early attempts at programming machines to converse with humans in a supposedly intelligent way with humans relied on phrase lists and simple keyword matching. However, such approaches cannot provide semantically adequate answers, as they do not consider the specific meaning of the conversation. Thus, if we want to enable machines to actually understand language, we need to be able to access semantically relevant background knowledge. For this, it is possible to query so-called ontologies, which are large networks containing knowledge about real-world entities and their semantic relations. However, creating such ontologies is a tedious task, as often extensive expert knowledge is required. Thus, we need to find ways to automatically construct and update ontologies that fit human intuition of semantics and semantic relations. More specifically, we need to determine semantic entities and find relations between them. While this is usually done on large corpora of unstructured text, previous work has shown that we can at least facilitate the first issue of extracting entities by considering special data such as tagging data or human navigational paths. Here, we do not need to detect the actual semantic entities, as they are already provided because of the way those data are collected. Thus we can mainly focus on the problem of assessing the degree of semantic relatedness between tags or web pages. However, there exist several issues which need to be overcome, if we want to approximate human intuition of semantic relatedness. For this, it is necessary to represent words and concepts in a way that allows easy and highly precise semantic characterization. This also largely depends on the quality of data from which these representations are constructed. In this thesis, we extract semantic information from both tagging data created by users of social tagging systems and human navigation data in different semantic-driven social web systems. Our main goal is to construct high quality and robust vector representations of words which can the be used to measure the relatedness of semantic concepts. First, we show that navigation in the social media systems Wikipedia and BibSonomy is driven by a semantic component. After this, we discuss and extend methods to model the semantic information in tagging data as low-dimensional vectors. Furthermore, we show that tagging pragmatics influences different facets of tagging semantics. We then investigate the usefulness of human navigational paths in several different settings on Wikipedia and BibSonomy for measuring semantic relatedness. Finally, we propose a metric-learning based algorithm in adapt pre-trained word embeddings to datasets containing human judgment of semantic relatedness. This work contributes to the field of studying semantic relatedness between words by proposing methods to extract semantic relatedness from web navigation, learn highquality and low-dimensional word representations from tagging data, and to learn semantic relatedness from any kind of vector representation by exploiting human feedback. Applications first and foremest lie in ontology learning for the Semantic Web, but also semantic search or query expansion. N2 - Einer der großen Träume der Menschheit ist es, Maschinen dazu zu bringen, natürliche Sprache zu verstehen. Frühe Versuche, Computer dahingehend zu programmieren, dass sie mit Menschen vermeintlich intelligente Konversationen führen können, basierten hauptsächlich auf Phrasensammlungen und einfachen Stichwortabgleichen. Solche Ansätze sind allerdings nicht in der Lage, inhaltlich adäquate Antworten zu liefern, da der tatsächliche Inhalt der Konversation nicht erfasst werden kann. Folgerichtig ist es notwendig, dass Maschinen auf semantisch relevantes Hintergrundwissen zugreifen können, um diesen Inhalt zu verstehen. Solches Wissen ist beispielsweise in Ontologien vorhanden. Ontologien sind große Datenbanken von vernetztem Wissen über Objekte und Gegenstände der echten Welt sowie über deren semantische Beziehungen. Das Erstellen solcher Ontologien ist eine sehr kostspielige und aufwändige Aufgabe, da oft tiefgreifendes Expertenwissen benötigt wird. Wir müssen also Wege finden, um Ontologien automatisch zu erstellen und aktuell zu halten, und zwar in einer Art und Weise, dass dies auch menschlichem Empfinden von Semantik und semantischer Ähnlichkeit entspricht. Genauer gesagt ist es notwendig, semantische Entitäten und deren Beziehungen zu bestimmen. Während solches Wissen üblicherweise aus Textkorpora extrahiert wird, ist es möglich, zumindest das erste Problem - semantische Entitäten zu bestimmen - durch Benutzung spezieller Datensätze zu umgehen, wie zum Beispiel Tagging- oder Navigationsdaten. In diesen Arten von Datensätzen ist es nicht notwendig, Entitäten zu extrahieren, da sie bereits aufgrund inhärenter Eigenschaften bei der Datenakquise vorhanden sind. Wir können uns also hauptsächlich auf die Bestimmung von semantischen Relationen und deren Intensität fokussieren. Trotzdem müssen hier noch einige Hindernisse überwunden werden. Beispielsweise ist es notwendig, Repräsentationen für semantische Entitäten zu finden, so dass es möglich ist, sie einfach und semantisch hochpräzise zu charakterisieren. Dies hängt allerdings auch erheblich von der Qualität der Daten ab, aus denen diese Repräsentationen konstruiert werden. In der vorliegenden Arbeit extrahieren wir semantische Informationen sowohl aus Taggingdaten, von Benutzern sozialer Taggingsysteme erzeugt, als auch aus Navigationsdaten von Benutzern semantikgetriebener Social Media-Systeme. Das Hauptziel dieser Arbeit ist es, hochqualitative und robuste Vektordarstellungen von Worten zu konstruieren, die dann dazu benutzt werden können, die semantische Ähnlichkeit von Konzepten zu bestimmen. Als erstes zeigen wir, dass Navigation in Social Media Systemen unter anderem durch eine semantische Komponente getrieben wird. Danach diskutieren und erweitern wir Methoden, um die semantische Information in Taggingdaten als niedrigdimensionale sogenannte “Embeddings” darzustellen. Darüberhinaus demonstrieren wir, dass die Taggingpragmatik verschiedene Facetten der Taggingsemantik beeinflusst. Anschließend untersuchen wir, inwieweit wir menschliche Navigationspfade zur Bestimmung semantischer Ähnlichkeit benutzen können. Hierzu betrachten wir mehrere Datensätze, die Navigationsdaten in verschiedenen Rahmenbedingungen beinhalten. Als letztes stellen wir einen neuartigen Algorithmus vor, um bereits trainierte Word Embeddings im Nachhinein an menschliche Intuition von Semantik anzupassen. Diese Arbeit steuert wertvolle Beiträge zum Gebiet der Bestimmung von semantischer Ähnlichkeit bei: Es werden Methoden vorgestellt werden, um hochqualitative semantische Information aus Web-Navigation und Taggingdaten zu extrahieren, diese mittels niedrigdimensionaler Vektordarstellungen zu modellieren und selbige schließlich besser an menschliches Empfinden von semantischer Ähnlichkeit anzupassen, indem aus genau diesem Empfinden gelernt wird. Anwendungen liegen in erster Linie darin, Ontologien für das Semantic Web zu lernen, allerdings auch in allen Bereichen, die Vektordarstellungen von semantischen Entitäten benutzen. KW - Semantik KW - Maschinelles Lernen KW - Soziale Software KW - Semantics KW - User Behavior KW - Social Web KW - Machine Learning Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178666 ER - TY - JOUR A1 - Djebko, Kirill A1 - Puppe, Frank A1 - Kayal, Hakan T1 - Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite JF - Aerospace N2 - The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft’s housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach. KW - fault detection KW - model-based diagnosis KW - nano-satellite Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198836 SN - 2226-4310 VL - 6 IS - 10 ER - TY - JOUR A1 - Loda, Sophia A1 - Krebs, Jonathan A1 - Danhof, Sophia A1 - Schreder, Martin A1 - Solimando, Antonio G. A1 - Strifler, Susanne A1 - Rasche, Leo A1 - Kortüm, Martin A1 - Kerscher, Alexander A1 - Knop, Stefan A1 - Puppe, Frank A1 - Einsele, Hermann A1 - Bittrich, Max T1 - Exploration of artificial intelligence use with ARIES in multiple myeloma research JF - Journal of Clinical Medicine N2 - Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. KW - natural language processing KW - ontology KW - artificial intelligence KW - multiple myeloma KW - real world evidence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197231 SN - 2077-0383 VL - 8 IS - 7 ER - TY - JOUR A1 - Lopez-Arreguin, A. J. R. A1 - Montenegro, S. T1 - Improving engineering models of terramechanics for planetary exploration JF - Results in Engineering N2 - This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the formulated equations established here can have further implications in autonomy and control of rovers or planetary soil characterization. KW - Wheel KW - Terramechanics KW - Forces KW - Torque KW - Robotics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202490 VL - 3 ER - TY - GEN A1 - Funken, Matthias A1 - Tscherner, Michael T1 - Jahresbericht 2018 des Rechenzentrums der Universität Würzburg T1 - Annual Report 2018 of the Computer Center, University of Wuerzburg N2 - Eine Übersicht über die Aktivitäten des Rechenzentrums im Jahr 2018. T3 - Jahresbericht des Rechenzentrums der Universität Würzburg - 2018 KW - Julius-Maximilians-Universität Würzburg KW - Jahresbericht KW - Jahresbericht KW - Rechenzentrum KW - RZUW KW - annual report KW - Computer Center University of Wuerzburg Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188265 UR - https://www.rz.uni-wuerzburg.de/wir/publikationen/ ET - 1. Auflage ER - TY - JOUR A1 - Petschke, Danny A1 - Staab, Torsten E.M. T1 - DDRS4PALS: a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board JF - SoftwareX N2 - Lifetime techniques are applied to diverse fields of study including materials sciences, semiconductor physics, biology, molecular biophysics and photochemistry. Here we present DDRS4PALS, a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board (Paul Scherrer Institute, Switzerland) for time resolved measurements and digitization of detector output pulses. Artifact afflicted pulses can be corrected or rejected prior to the lifetime calculation to provide the generation of high-quality lifetime spectra, which are crucial for a profound analysis, i.e. the decomposition of the true information. Moreover, the pulses can be streamed on an (external) hard drive during the measurement and subsequently downloaded in the offline mode without being connected to the hardware. This allows the generation of various lifetime spectra at different configurations from one single measurement and, hence, a meaningful comparison in terms of analyzability and quality. Parallel processing and an integrated JavaScript based language provide convenient options to accelerate and automate time consuming processes such as lifetime spectra simulations. KW - Lifetime spectroscopy KW - Positron annihilation spectroscopy KW - Simulation KW - Time resolved measurements Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202276 VL - 10 ER - TY - THES A1 - Borrmann, Dorit T1 - Multi-modal 3D mapping - Combining 3D point clouds with thermal and color information T1 - Multi-modale 3D-Kartierung - Kombination von 3D-Punktwolken mit Thermo- und Farbinformation N2 - Imagine a technology that automatically creates a full 3D thermal model of an environment and detects temperature peaks in it. For better orientation in the model it is enhanced with color information. The current state of the art for analyzing temperature related issues is thermal imaging. It is relevant for energy efficiency but also for securing important infrastructure such as power supplies and temperature regulation systems. Monitoring and analysis of the data for a large building is tedious as stable conditions need to be guaranteed for several hours and detailed notes about the pose and the environment conditions for each image must be taken. For some applications repeated measurements are necessary to monitor changes over time. The analysis of the scene is only possible through expertise and experience. This thesis proposes a robotic system that creates a full 3D model of the environment with color and thermal information by combining thermal imaging with the technology of terrestrial laser scanning. The addition of a color camera facilitates the interpretation of the data and allows for other application areas. The data from all sensors collected at different positions is joined in one common reference frame using calibration and scan matching. The first part of the thesis deals with 3D point cloud processing with the emphasis on accessing point cloud data efficiently, detecting planar structures in the data and registering multiple point clouds into one common coordinate system. The second part covers the autonomous exploration and data acquisition with a mobile robot with the objective to minimize the unseen area in 3D space. Furthermore, the combination of different modalities, color images, thermal images and point cloud data through calibration is elaborated. The last part presents applications for the the collected data. Among these are methods to detect the structure of building interiors for reconstruction purposes and subsequent detection and classification of windows. A system to project the gathered thermal information back into the scene is presented as well as methods to improve the color information and to join separately acquired point clouds and photo series. A full multi-modal 3D model contains all the relevant geometric information about the recorded scene and enables an expert to fully analyze it off-site. The technology clears the path for automatically detecting points of interest thereby helping the expert to analyze the heat flow as well as localize and identify heat leaks. The concept is modular and neither limited to achieving energy efficiency nor restricted to the use in combination with a mobile platform. It also finds its application in fields such as archaeology and geology and can be extended by further sensors. N2 - Man stelle sich eine Technologie vor, die automatisch ein vollständiges 3D-Thermographiemodell einer Umgebung generiert und Temperaturspitzen darin erkennt. Zur besseren Orientierung innerhalb des Modells ist dieses mit Farbinformationen erweitert. In der Analyse temperaturrelevanter Fragestellungen sind Thermalbilder der Stand der Technik. Darunter fallen Energieeffizienz und die Sicherung wichtiger Infrastruktur, wie Energieversorgung und Systeme zur Temperaturregulierung. Die Überwachung und anschließende Analyse der Daten eines großen Gebäudes ist aufwändig, da über mehrere Stunden stabile Bedingungen garantiert und detaillierte Aufzeichnungen über die Aufnahmeposen und die Umgebungsverhältnisse für jedes Wärmebild erstellt werden müssen. Einige Anwendungen erfordern wiederholte Messungen, um Veränderungen über die Zeit zu beobachten. Eine Analyse der Szene ist nur mit Erfahrung und Expertise möglich. Diese Arbeit stellt ein Robotersystem vor, das durch Kombination von Thermographie mit terrestrischem Laserscanning ein vollständiges 3D Modell der Umgebung mit Farb- und Temperaturinformationen erstellt. Die ergänzende Farbkamera vereinfacht die Interpretation der Daten und eröffnet weitere Anwendungsfelder. Die an unterschiedlichen Positionen aufgenommenen Daten aller Sensoren werden durch Kalibrierung und Scanmatching in einem gemeinsamen Bezugssystem zusammengefügt. Der erste Teil der Arbeit behandelt 3D-Punktwolkenverarbeitung mit Schwerpunkt auf effizientem Punktzugriff, Erkennung planarer Strukturen und Registrierung mehrerer Punktwolken in einem gemeinsamen Koordinatensystem. Der zweite Teil beschreibt die autonome Erkundung und Datenakquise mit einem mobilen Roboter, mit dem Ziel, die bisher nicht erfassten Bereiche im 3D-Raum zu minimieren. Des Weiteren wird die Kombination verschiedener Modalitäten, Farbbilder, Thermalbilder und Punktwolken durch Kalibrierung ausgearbeitet. Den abschließenden Teil stellen Anwendungsszenarien für die gesammelten Daten dar, darunter Methoden zur Erkennung der Innenraumstruktur für die Rekonstruktion von Gebäuden und der anschließenden Erkennung und Klassifizierung von Fenstern. Ein System zur Rückprojektion der gesammelten Thermalinformation in die Umgebung wird ebenso vorgestellt wie Methoden zur Verbesserung der Farbinformationen und zum Zusammenfügen separat aufgenommener Punktwolken und Fotoreihen. Ein vollständiges multi-modales 3D Modell enthält alle relevanten geometrischen Informationen der aufgenommenen Szene und ermöglicht einem Experten, diese standortunabhängig zu analysieren. Diese Technologie ebnet den Weg für die automatische Erkennung relevanter Bereiche und für die Analyse des Wärmeflusses und vereinfacht somit die Lokalisierung und Identifikation von Wärmelecks für den Experten. Das vorgestellte modulare Konzept ist weder auf den Anwendungsfall Energieeffizienz beschränkt noch auf die Verwendung einer mobilen Plattform angewiesen. Es ist beispielsweise auch in Feldern wie der Archäologie und Geologie einsetzbar und kann durch zusätzliche Sensoren erweitert werden. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 14 KW - Punktwolke KW - Lidar KW - Thermografie KW - Robotik KW - 3D point cloud KW - Laser scanning KW - Robotics KW - 3D thermal mapping KW - Registration Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157085 SN - 978-3-945459-20-1 SN - 1868-7474 SN - 1868-7466 ER - TY - JOUR A1 - Pfitzner, Christian A1 - May, Stefan A1 - Nüchter, Andreas T1 - Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data JF - Sensors N2 - This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. KW - RGB-D KW - human body weight KW - image processing KW - kinect KW - machine learning KW - perception KW - segmentation KW - sensor fusion KW - stroke KW - thermal camera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176642 VL - 18 IS - 5 ER - TY - THES A1 - Fleszar, Krzysztof T1 - Network-Design Problems in Graphs and on the Plane T1 - Netzwerk-Design-Probleme in Graphen und auf der Ebene N2 - A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon. N2 - Ein Netzwerk-Design-Problem definiert eine unendliche Menge, deren Elemente, als Instanzen bezeichnet, Beziehungen und Beschränkungen in einem Netzwerk beschreiben. Die Lösung eines solchen Problems besteht aus einem Algorithmus, der auf die Eingabe einer beliebigen Instanz dieser Menge ein Netzwerk entwirft, welches die gegebenen Beschränkungen einhält und gleichzeitig ein gegebenes Kriterium optimiert. In meiner Dissertation habe ich Algorithmen entwickelt, deren Netzwerke stets optimal sind oder nachweisbar nahe am Optimum liegen. Zusätzlich habe ich die Berechnungskomplexität dieser Probleme untersucht. Dabei wurden Probleme aus zwei weiten Gebieten betrachtet: Graphen und der Euklidische Ebene. Im Maximum-Edge-Disjoint-Paths-Problem besteht die Eingabe aus einem Graphen und einer Teilmenge von Knotenpaaren, die wir mit Terminalpaare bezeichnen. Gesucht ist eine Menge von Pfaden, die Terminalpaare verbinden. Die Beschränkung ist, dass keine zwei Pfade einen gleichen inneren Knoten haben dürfen. Das Optimierungskriterium ist die Maximierung der Kardinalität dieser Menge. Im Hard-Capacitated-k-Facility-Location-Problem besteht die Eingabe aus einer Ganzzahl k und einem vollständigen Graphen, in welchem die Distanzen einer gegebenen Metrik unterliegen und in welchem jedem Knoten sowohl eine numerische Kapazität als auch ein Eröffnungskostenwert zugeschrieben ist. Gesucht ist eine Teilmenge von k Knoten, Facilities genannt, und eine Zuweisung aller Knoten, Clients genannt, zu den Facilities. Die Beschränkung ist, dass die Anzahl der Clients, die einer Facility zugewiesen sind, nicht deren Kapazität überschreiten darf. Das Optimierungskriterium ist die Minimierung der Gesamtkosten bestehend aus den Gesamteröffnungskosten der Facilities sowie der Gesamtdistanz zwischen den Clients und den ihnen zugewiesenen Facilities. Im Stabbing-Problem besteht die Eingabe aus einer Menge von achsenparallelen Rechtecken in der Ebene. Gesucht ist eine Menge von horizontalen Geradenstücken mit der Randbedingung, dass die linke und rechte Seite eines jeden Rechtecks von einem Geradenstück verbunden ist. Das Optimierungskriterium ist die Minimierung der Gesamtlänge aller Geradenstücke. Im k-Colored-Non-Crossing-Euclidean-Steiner-Forest-Problem besteht die Eingabe aus einer Ganzzahl k und einer endlichen Menge von Punkten in der Ebene, wobei jeder Punkt in einer von k Farben gefärbt ist. Gesucht ist für jede Farbe eine Zeichnung, in welcher alle Punkte der Farbe verbunden sind. Die Beschränkung ist, dass Zeichnungen verschiedener Farben sich nicht kreuzen dürfen. Das Optimierungskriterium ist die Minimierung des Gesamtintenverbrauchs, das heißt, der Gesamtlänge der Zeichnungen. Im Minimum-Rectilinear-Polygon-for-Given-Angle-Sequence-Problem besteht die Eingabe aus einer Folge von Links- (+90°) und Rechtsabbiegungen (-90°). Gesucht ist ein achsenparalleles Polygon dessen Eckpunkte die gegebene Folge ergeben, wenn man das Polygon gegen den Uhrzeigersinn entlangläuft. Die Optimierungskriterien sind die Minimierung des Umfangs und der inneren Fläche des Polygons sowie der Größe des notwendigen Zeichenblattes, d.h., des kleinsten Rechteckes, das das Polygon einschließt. N2 - Given points in the plane, connect them using minimum ink. Though the task seems simple, it turns out to be very time consuming. In fact, scientists believe that computers cannot efficiently solve it. So, do we have to resign? This book examines such NP-hard network-design problems, from connectivity problems in graphs to polygonal drawing problems on the plane. First, we observe why it is so hard to optimally solve these problems. Then, we go over to attack them anyway. We develop fast algorithms that find approximate solutions that are very close to the optimal ones. Hence, connecting points with slightly more ink is not hard. KW - Euklidische Ebene KW - Algorithmus KW - Komplexität KW - NP-schweres Problem KW - Graph KW - approximation algorithm KW - hardness KW - optimization KW - graphs KW - network KW - Optimierungsproblem KW - Approximationsalgorithmus KW - complexity KW - Euclidean plane Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154904 SN - 978-3-95826-076-4 (Print) SN - 978-3-95826-077-1 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-076-4, 28,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Wojtkowiak, Harald T1 - Planungssystem zur Steigerung der Autonomie von Kleinstsatelliten T1 - Planningsystem to increase the autonomy of small satellites N2 - Der Betrieb von Satelliten wird sich in Zukunft gravierend ändern. Die bisher ausgeübte konventionelle Vorgehensweise, bei der die Planung der vom Satelliten auszuführenden Aktivitäten sowie die Kontrolle hierüber ausschließlich vom Boden aus erfolgen, stößt bei heutigen Anwendungen an ihre Grenzen. Im schlimmsten Fall verhindert dieser Umstand sogar die Erschließung bisher ungenutzter Möglichkeiten. Der Gewinn eines Satelliten, sei es in Form wissenschaftlicher Daten oder der Vermarktung satellitengestützter Dienste, wird daher nicht optimal ausgeschöpft. Die Ursache für dieses Problem lässt sich im Grunde auf eine ausschlaggebende Tatsache zurückführen: Konventionelle Satelliten können ihr Verhalten, d.h. die Folge ihrer Tätigkeiten, nicht eigenständig anpassen. Stattdessen erstellt das Bedienpersonal am Boden - vor allem die Operatoren - mit Hilfe von Planungssoftware feste Ablaufpläne, die dann in Form von Kommandosequenzen von den Bodenstationen aus an die jeweiligen Satelliten hochgeladen werden. Dort werden die Befehle lediglich überprüft, interpretiert und strikt ausgeführt. Die Abarbeitung erfolgt linear. Situationsbedingte Änderungen, wie sie vergleichsweise bei der Codeausführung von Softwareprogrammen durch Kontrollkonstrukte, zum Beispiel Schleifen und Verzweigungen, üblich sind, sind typischerweise nicht vorgesehen. Der Operator ist daher die einzige Instanz, die das Verhalten des Satelliten mittels Kommandierung, per Upload, beeinflussen kann, und auch nur dann, wenn ein direkter Funkkontakt zwischen Satellit und Bodenstation besteht. Die dadurch möglichen Reaktionszeiten des Satelliten liegen bestenfalls bei einigen Sekunden, falls er sich im Wirkungsbereich der Bodenstation befindet. Außerhalb des Kontaktfensters kann sich die Zeitschranke, gegeben durch den Orbit und die aktuelle Position des Satelliten, von einigen Minuten bis hin zu einigen Stunden erstrecken. Die Signallaufzeiten der Funkübertragung verlängern die Reaktionszeiten um weitere Sekunden im erdnahen Bereich. Im interplanetaren Raum erstrecken sich die Zeitspannen aufgrund der immensen Entfernungen sogar auf mehrere Minuten. Dadurch bedingt liegt die derzeit technologisch mögliche, bodengestützte, Reaktionszeit von Satelliten bestenfalls im Bereich von einigen Sekunden. Diese Einschränkung stellt ein schweres Hindernis für neuartige Satellitenmissionen, bei denen insbesondere nichtdeterministische und kurzzeitige Phänomene (z.B. Blitze und Meteoreintritte in die Erdatmosphäre) Gegenstand der Beobachtungen sind, dar. Die langen Reaktionszeiten des konventionellen Satellitenbetriebs verhindern die Realisierung solcher Missionen, da die verzögerte Reaktion erst erfolgt, nachdem das zu beobachtende Ereignis bereits abgeschlossen ist. Die vorliegende Dissertation zeigt eine Möglichkeit, das durch die langen Reaktionszeiten entstandene Problem zu lösen, auf. Im Zentrum des Lösungsansatzes steht dabei die Autonomie. Im Wesentlichen geht es dabei darum, den Satelliten mit der Fähigkeit auszustatten, sein Verhalten, d.h. die Folge seiner Tätigkeiten, eigenständig zu bestimmen bzw. zu ändern. Dadurch wird die direkte Abhängigkeit des Satelliten vom Operator bei Reaktionen aufgehoben. Im Grunde wird der Satellit in die Lage versetzt, sich selbst zu kommandieren. Die Idee der Autonomie wurde im Rahmen der zugrunde liegenden Forschungsarbeiten umgesetzt. Das Ergebnis ist ein autonomes Planungssystem. Dabei handelt es sich um ein Softwaresystem, mit dem sich autonomes Verhalten im Satelliten realisieren lässt. Es kann an unterschiedliche Satellitenmissionen angepasst werden. Ferner deckt es verschiedene Aspekte des autonomen Satellitenbetriebs, angefangen bei der generellen Entscheidungsfindung der Tätigkeiten, über die zeitliche Ablaufplanung unter Einbeziehung von Randbedingungen (z.B. Ressourcen) bis hin zur eigentlichen Ausführung, d.h. Kommandierung, ab. Das Planungssystem kommt als Anwendung in ASAP, einer autonomen Sensorplattform, zum Einsatz. Es ist ein optisches System und dient der Detektion von kurzzeitigen Phänomenen und Ereignissen in der Erdatmosphäre. Die Forschungsarbeiten an dem autonomen Planungssystem, an ASAP sowie an anderen zu diesen in Bezug stehenden Systemen wurden an der Professur für Raumfahrttechnik des Lehrstuhls Informatik VIII der Julius-Maximilians-Universität Würzburg durchgeführt. N2 - Satellite operation will change thoroughly in future. So far the currently performed conventional approach of controlling satellites is hitting its limitation by todays application. This is due to the fact that activities of the satellite are planned and controlled exclusively by ground infrastructure. In the worst case this circumstance prevents the exploitation of potential but so far unused opportunities. Thus the yield of satellites, may it be in the form of scientific research data or the commercialization of satellite services, is not optimized. After all the cause of this problem can be tracked back to one crucial matter: Conventional satellites are not able to alter their behaviour, i.e. the order of their actions, themselves. Instead schedules are created by ground staff – mainly operators - utilizing specialized planning software. The output is then transformed into command sequences and uploaded to the dedicated satellite via ground stations. On-board the commands are solely checked, interpreted and strictly executed. The flow is linear. Situational changes, like in the code execution of software programs via control constructs, e.g. loops and branches, are typically not present. Thus the operator is the only instance which is able to change the behaviour of the satellite via command upload. Therefore a direct radio link between satellite and ground station is required. Reaction times are hereby restricted. In the best case, means when the satellite is inside the area of effect, the limitations are to a few seconds. Outside the contact window, the time bound may increase from minutes to hours. The exact timing are dependant from the orbit of the satellite and its position on it. The signal flow of the radio links adds additional reaction time from a few seconds in near earth up to some minutes in interplanetary space due to the vast distances. In sum the best achievable ground based reaction time lies in the area of some seconds. This restriction is a severe handicap for novel satellite missions with focus on non-deterministic and short-time phenomena, e.g. lightning and meteor entries into Earth atmosphere. The long reaction times of conventional satellite operations prevent the realization of such missions. This is due to the fact that delayed reactions take place after the event to observe has finished. This dissertation shows a possibility to solve the problem caused by long reaction times. Autonomy lies in the centre of the main approach. The key is to augment the satellite with the ability to alter its behaviour, i.e. the sequence of its actions, and to deliberate about it. Thus, the direct reaction dependency of the satellite from operators will be lifted. In principle the satellite will be able to command itself. The herein idea of autonomy is based on research work, which provides the context for design and implementation. The output is an autonomous planning system. It’s a software system which enables a satellite to behave autonomously and can be adapted to different types of satellite missions. Additionally, it covers different aspects of autonomous satellite operation, starting with general decision making of activities, going over to time scheduling inclusive constraint consideration, e.g. resources, and finishing at last with the actual execution, i.e. commanding. The autonomous planning system runs as one application of ASAP, an autonomous sensor platform. It is an optical system with the purpose to detect short-time phenomena and events in Earth atmosphere. The research work for the autonomous planning system, for ASAP and for other related systems has been executed at the professorship for space technology which is part of the department for computer science VIII at the Julius-Maximilians-Universität Würzburg. KW - Planungssystem KW - Autonomie KW - Satellit KW - Entscheidungsfindung KW - Ablaufplanung KW - Planausführung KW - System KW - Missionsbetrieb KW - decission finding KW - scheduling KW - plan execution KW - system KW - mission operation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163569 ER - TY - THES A1 - Baier, Pablo A. T1 - Simulator for Minimally Invasive Vascular Interventions: Hardware and Software T1 - VR-Simulation für das Training von Herzkathetereingriffen: Hard- und Softwarelösung N2 - A complete simulation system is proposed that can be used as an educational tool by physicians in training basic skills of Minimally Invasive Vascular Interventions. In the first part, a surface model is developed to assemble arteries having a planar segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like bifurcations. A continuous force vector field is described, representing the interaction between the catheter and the surface. The computation time of the force field is almost unaffected when the resolution of the artery is increased. The mechanical properties of arteries play an essential role in the study of the circulatory system dynamics, which has been becoming increasingly important in the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial to have a tissue model that responds in real time. In this work, the arteries are discretized by a two dimensional mesh and the nodes are connected by three kinds of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and, starting from the stretch-energy density, some of the elasticity tensor components are calculated. The physical model linearizes and homogenizes the material response, but it still contemplates the geometric nonlinearity. In general, if the arterial stretch varies by 1% or less, then the agreement between the linear and nonlinear models is trustworthy. In the last part, the physical model of the wire proposed by Konings is improved. As a result, a simpler and more stable method is obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. The physical and the geometrical methods are merged, resulting in efficient relaxations. Tests show that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions and the hardware to assemble the simulator has a low cost. N2 - Es wird ein vollständiges Simulationssystem entwickelt, das von Ärzten als Lehrmittel zur Ausbildung grundlegender Fertigkeiten bei Herzkathetereingriffen eingesetzt werden kann. Im ersten Teil wird ein Oberflächenmodell zur Erstellung von Arterien mit planarer Segmentierung entwickelt. Im zweiten Teil werden die Arterien durch ein zweidimensionales Netz diskretisiert, die Knoten werden durch drei Arten linearer Federn verbunden und ausgehend von einer Dehnungsenergie-Dichte-Funktion werden einige Komponenten des Elastizitätstensors berechnet. Im letzten Teil wird das von anderen Autoren vorgeschlagene physikalische Modell des Drahtes verbessert und eine neue geometrische Methode entwickelt. Der vorgeschlagene Algorithmus ermöglicht Echtzeit-Ausführungen. Die Hardware des Simulators hat geringe Herstellungskosten. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 15 KW - Computersimulation KW - Simulator KW - Arterie KW - Elastizitätstensor KW - Herzkatheter KW - Minimally invasive vascular intervention KW - Wire relaxation KW - Artery KW - Elasticity tensor KW - Stiffness KW - educational tool KW - Elastizitätstensor KW - Herzkathetereingriff KW - Software KW - Hardware Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161190 SN - 978-3-945459-22-5 ER - TY - JOUR A1 - Zimmerer, Chris A1 - Fischbach, Martin A1 - Latoschik, Marc Erich T1 - Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks JF - Multimodal Technologies and Interaction N2 - Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept’s feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality. KW - multimodal fusion KW - multimodal interface KW - semantic fusion KW - procedural fusion methods KW - natural interfaces KW - human-computer interaction Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197573 SN - 2414-4088 VL - 2 IS - 4 ER - TY - THES A1 - Budig, Benedikt T1 - Extracting Spatial Information from Historical Maps: Algorithms and Interaction T1 - Extraktion räumlicher Informationen aus historischen Landkarten: Algorithmen und Interaktion N2 - Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century. N2 - Historische Landkarten sind faszinierende Dokumente und eine wertvolle Informationsquelle für Wissenschaftler verschiedener Fächer. Viele dieser Karten liegen als gescannte Bitmap-Bilder vor, aber um sie auf nützliche Art durchsuchbar zu machen ist eine strukturierte Repräsentation der enthaltenen Informationen wünschenswert. Dieses Buch beschäftigt sich mit der Extraktion räumlicher Informationen aus historischen Landkarten. Man kann nicht erwarten, dass dies vollautomatisch geschieht (da komplizierte Semantik involviert ist), aber es ist auch zu aufwändig, um im großen Stil manuell durchgeführt zu werden. Die Methodik, die in diesem Buch verwendet wird, kombiniert die Stärken von Computern und Menschen: Es werden effiziente Algorithmen beschrieben, die Extraktionsaufgaben weitgehend automatisieren, und dazu passende Nutzerinteraktionen entworfen, mit denen Fälle gelöst werden, die die Algorithmen nicht vestehen. Die Effekitivität dieses Ansatzes wird anhand verschiedener räumlicher Dokumente aus dem 16. bis frühen 20. Jahrhundert gezeigt. KW - Karte KW - Effizienter Algorithmus KW - Interaktion KW - Information Extraction KW - Smart User Interaction KW - Historical Maps KW - Itineraries KW - Deep Georeferencing KW - Benutzerinteraktion KW - Historische Landkarten KW - Itinerare KW - Georeferenzierung KW - Historische Karte KW - Raumdaten Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160955 SN - 978-3-95826-092-4 SN - 978-3-95826-093-1 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-092-4, 32,90 Euro. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - GEN A1 - Funken, Matthias A1 - Tscherner, Michael T1 - Jahresbericht 2017 des Rechenzentrums der Universität Würzburg T1 - Annual Report 2017 of the Computer Center, University of Wuerzburg N2 - Eine Übersicht über die Aktivitäten des Rechenzentrums im Jahr 2017. T3 - Jahresbericht des Rechenzentrums der Universität Würzburg - 2017 KW - Julius-Maximilians-Universität Würzburg KW - RZUW KW - Jahresbericht KW - Rechenzentrum KW - Computer Center University of Wuerzburg KW - annual report Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168537 UR - https://www.rz.uni-wuerzburg.de/wir/publikationen/ ET - 1. Auflage ER - TY - JOUR A1 - Nagler, Matthias A1 - Nägele, Thomas A1 - Gilli, Christian A1 - Fragner, Lena A1 - Korte, Arthur A1 - Platzer, Alexander A1 - Farlow, Ashley A1 - Nordborg, Magnus A1 - Weckwerth, Wolfram T1 - Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field JF - Frontiers in Plant Science N2 - Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites. KW - eco-metabolomics KW - in situ analysis KW - metabolomics KW - metabolic modeling KW - SNP KW - natural variation KW - Jacobian matrix KW - green systems biology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189560 SN - 1664-462X VL - 9 IS - 1556 ER - TY - JOUR A1 - Petschke, Danny A1 - Staab, Torsten E.M. T1 - DLTPulseGenerator: a library for the simulation of lifetime spectra based on detector-output pulses JF - SoftwareX N2 - The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin. KW - lifetime spectroscopy KW - signal processing KW - pulse simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176883 VL - 7 ER - TY - THES A1 - Ostermayer, Ludwig T1 - Integration of Prolog and Java with the Connector Architecture CAPJa T1 - Integration von Prolog und Java mit Hilfe der Connector Architecture CAPJa N2 - Modern software is often realized as a modular combination of subsystems for, e. g., knowledge management, visualization, verification, or the interaction with users. As a result, software libraries from possibly different programming languages have to work together. Even more complex the case is if different programming paradigms have to be combined. This type of diversification of programming languages and paradigms in just one software application can only be mastered by mechanisms for a seamless integration of the involved programming languages. However, the integration of the common logic programming language Prolog and the popular object-oriented programming language Java is complicated by various interoperability problems which stem on the one hand from the paradigmatic gap between the programming languages, and on the other hand, from the diversity of the available Prolog systems. The subject of the thesis is the investigation of novel mechanisms for the integration of logic programming in Prolog and object–oriented programming in Java. We are particularly interested in an object–oriented, uniform approach which is not specific to just one Prolog system. Therefore, we have first identified several important criteria for the seamless integration of Prolog and Java from the object–oriented perspective. The main contribution of the thesis is a novel integration framework called the Connector Architecture for Prolog and Java (CAPJa). The framework is completely implemented in Java and imposes no modifications to the Java Virtual Machine or Prolog. CAPJa provides a semi–automated mechanism for the integration of Prolog predicates into Java. For compact, readable, and object–oriented queries to Prolog, CAPJa exploits lambda expressions with conditional and relational operators in Java. The communication between Java and Prolog is based on a fully automated mapping of Java objects to Prolog terms, and vice versa. In Java, an extensible system of gateways provides connectivity with various Prolog system and, moreover, makes any connected Prolog system easily interchangeable, without major adaption in Java. N2 - Moderne Software ist oft modular zusammengesetzt aus Subsystemen zur Wissensverwaltung, Visualisierung, Verfikation oder Benutzerinteraktion. Dabei müssen Programmbibliotheken aus möglicherweise verschiedenen Programmiersprachen miteinander zusammenarbeiten. Noch komplizierter ist der Fall, wenn auch noch verschiedene Programmierparadigmen miteinander kombiniert werden. Diese Art der Diversifikation an Programmiersprachen und –paradigmen in nur einer Software kann nur von nahtlosen Integrationsmechansimen für die beteiligten Programmiersprachen gemeistert werden. Gerade die Einbindung der gängigen Logikprogrammiersprache Prolog und der populären objektorientierten Programmiersprache Java wird durch zahlreiche Kompatibilitätsprobleme erschwert, welche auf der einen Seite von paradigmatischen Unterschieden der beiden Programmiersprachen herrühren und auf der anderen Seite von der Vielfalt der erhältlichen Prologimplementierungen. Gegenstand dieser Arbeit ist die Untersuchung von neuartigen Mechanismen für die Zusammenführung von Logikprogrammierung in Prolog und objektorienter Programmierung in Java. Besonders interessiert uns dabei ein objektorientierter, einheitlicher Ansatz, der nicht auf eine konkrete Prologimplementierung festgelegt ist. Aus diesem Grund haben wir zunächst wichtige Kriterien für die nahtlose Integration von Prolog und Java aus der objetorientierten Sicht identifziert. Der Hauptbeitrag dieser Arbeit ist ein neuartiges Integrationssystems, welches Connector Architecture for Prolog and Java (CAPJa) heißt. Das System ist komplett in Java implementiert und benötigt keine Anpassungen der Java Virtual Machine oder Prolog. CAPJa stellt einen halbautomatischen Mechanismus zur Vernetzung von Prolog Prädikaten mit Java zur Verfügung. Für kompakte, lesbare und objektorientierte Anfragen an Prolog nutzt CAPJa Lambdaausdrücke mit logischen und relationalen Operatoren in Java. Die Kommunikation zwischen Java und Prolog basiert auf einer automatisierten Abbildung von Java Objekten auf Prolog Terme, und umgekehrt. In Java bietet ein erweiterbares System von Schnittstellen Konnektivität zu einer Vielzahl an Prologimplmentierung und macht darüber hinaus jede verbundene Prologimplementierung einfach austauschbar, und zwar ohne größere Anpassung in Java. KW - Logische Programmierung KW - Objektorientierte Programmierung KW - PROLOG KW - Java KW - Multi-Paradigm Programming KW - Logic Programming KW - Object-Oriented Programming KW - Multi-Paradigm Programming Framework Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150713 ER - TY - THES A1 - Aschenbrenner, Doris T1 - Human Robot Interaction Concepts for Human Supervisory Control and Telemaintenance Applications in an Industry 4.0 Environment T1 - Mensch-Roboter-Interaktionskonzepte für Fernsteuerungs- und Fernwartungsanwendungen in einer Industrie 4.0 Umgebung N2 - While teleoperation of technical highly sophisticated systems has already been a wide field of research, especially for space and robotics applications, the automation industry has not yet benefited from its results. Besides the established fields of application, also production lines with industrial robots and the surrounding plant components are in need of being remotely accessible. This is especially critical for maintenance or if an unexpected problem cannot be solved by the local specialists. Special machine manufacturers, especially robotics companies, sell their technology worldwide. Some factories, for example in emerging economies, lack qualified personnel for repair and maintenance tasks. When a severe failure occurs, an expert of the manufacturer needs to fly there, which leads to long down times of the machine or even the whole production line. With the development of data networks, a huge part of those travels can be omitted, if appropriate teleoperation equipment is provided. This thesis describes the development of a telemaintenance system, which was established in an active production line for research purposes. The customer production site of Braun in Marktheidenfeld, a factory which belongs to Procter & Gamble, consists of a six-axis cartesian industrial robot by KUKA Industries, a two-component injection molding system and an assembly unit. The plant produces plastic parts for electric toothbrushes. In the research projects "MainTelRob" and "Bayern.digital", during which this plant was utilised, the Zentrum für Telematik e.V. (ZfT) and its project partners develop novel technical approaches and procedures for modern telemaintenance. The term "telemaintenance" hereby refers to the integration of computer science and communication technologies into the maintenance strategy. It is particularly interesting for high-grade capital-intensive goods like industrial robots. Typical telemaintenance tasks are for example the analysis of a robot failure or difficult repair operations. The service department of KUKA Industries is responsible for the worldwide distributed customers who own more than one robot. Currently such tasks are offered via phone support and service staff which travels abroad. They want to expand their service activities on telemaintenance and struggle with the high demands of teleoperation especially regarding security infrastructure. In addition, the facility in Marktheidenfeld has to keep up with the high international standards of Procter & Gamble and wants to minimize machine downtimes. Like 71.6 % of all German companies, P&G sees a huge potential for early information on their production system, but complains about the insufficient quality and the lack of currentness of data. The main research focus of this work lies on the human machine interface for all human tasks in a telemaintenance setup. This thesis provides own work in the use of a mobile device in context of maintenance, describes new tools on asynchronous remote analysis and puts all parts together in an integrated telemaintenance infrastructure. With the help of Augmented Reality, the user performance and satisfaction could be raised. A special regard is put upon the situation awareness of the remote expert realized by different camera viewpoints. In detail the work consists of: - Support of maintenance tasks with a mobile device - Development and evaluation of a context-aware inspection tool - Comparison of a new touch-based mobile robot programming device to the former teach pendant - Study on Augmented Reality support for repair tasks with a mobile device - Condition monitoring for a specific plant with industrial robot - Human computer interaction for remote analysis of a single plant cycle - A big data analysis tool for a multitude of cycles and similar plants - 3D process visualization for a specific plant cycle with additional virtual information - Network architecture in hardware, software and network infrastructure - Mobile device computer supported collaborative work for telemaintenance - Motor exchange telemaintenance example in running production environment - Augmented reality supported remote plant visualization for better situation awareness N2 - Die Fernsteuerung technisch hochentwickelter Systeme ist seit vielen Jahren ein breites Forschungsfeld, vor allem im Bereich von Weltraum- und Robotikanwendungen. Allerdings hat die Automatisierungsindustrie bislang zu wenig von den Ergebnissen dieses Forschungsgebiets profitiert. Auch Fertigungslinien mit Industrierobotern und weiterer Anlagenkomponenten müssen über die Ferne zugänglich sein, besonders bei Wartungsfällen oder wenn unvorhergesehene Probleme nicht von den lokalen Spezialisten gelöst werden können. Hersteller von Sondermaschinen wie Robotikfirmen verkaufen ihre Technologie weltweit. Kunden dieser Firmen besitzen beispielsweise Fabriken in Schwellenländern, wo es an qualifizierten Personal für Reparatur und Wartung mangelt. Wenn ein ernster Fehler auftaucht, muss daher ein Experte des Sondermaschinenherstellers zum Kunden fliegen. Das führt zu langen Stillstandzeiten der Maschine. Durch die Weiterentwicklung der Datennetze könnte ein großer Teil dieser Reisen unterbleiben, wenn eine passende Fernwartungsinfrastruktur vorliegen würde. Diese Arbeit beschreibt die Entwicklung eines Fernwartungssystems, welches in einer aktiven Produktionsumgebung für Forschungszwecke eingerichtet wurde. Die Fertigungsanlage des Kunden wurde von Procter & Gamble in Marktheidenfeld zur Verfügung gestellt und besteht aus einem sechsachsigen, kartesischen Industrieroboter von KUKA Industries, einer Zweikomponentenspritzgussanlage und einer Montageeinheit. Die Anlage produziert Plastikteile für elektrische Zahnbürsten. Diese Anlage wurde im Rahmen der Forschungsprojekte "MainTelRob" und "Bayern.digital" verwendet, in denen das Zentrum für Telematik e.V. (ZfT) und seine Projektpartner neue Ansätze und Prozeduren für moderne Fernwartungs-Technologien entwickeln. Fernwartung bedeutet für uns die umfassende Integration von Informatik und Kommunikationstechnologien in der Wartungsstrategie. Das ist vor allem für hochentwickelte, kapitalintensive Güter wie Industrierobotern interessant. Typische Fernwartungsaufgaben sind beispielsweise die Analyse von Roboterfehlermeldungen oder schwierige Reparaturmaßnahmen. Die Service-Abteilung von KUKA Industries ist für die weltweit verteilten Kunden zuständig, die teilweise auch mehr als einen Roboter besitzen. Aktuell werden derartige Aufgaben per Telefonauskunft oder mobilen Servicekräften, die zum Kunden reisen, erledigt. Will man diese komplizierten Aufgaben durch Fernwartung ersetzen um die Serviceaktivitäten auszuweiten muss man mit den hohen Anforderungen von Fernsteuerung zurechtkommen, besonders in Bezug auf Security Infrastruktur. Eine derartige umfassende Herangehensweise an Fernwartung bietet aber auch einen lokalen Mehrwert beim Kunden: Die Fabrik in Marktheidenfeld muss den hohen internationalen Standards von Procter & Gamble folgen und will daher die Stillstandzeiten weiter verringern. Wie 71,6 Prozent aller deutschen Unternehmen sieht auch P&G Marktheidenfeld ein großes Potential für frühe Informationen aus ihrem Produktionssystem, haben aber aktuell noch Probleme mit der Aktualität und Qualität dieser Daten. Der Hauptfokus der hier vorgestellten Forschung liegt auf der Mensch-Maschine-Schnittstelle für alle Aufgaben eines umfassenden Fernwartungskontextes. Diese Arbeit stellt die eigene Arbeiten bei der Verwendung mobiler Endgeräte im Kontext der Wartung und neue Softwarewerkzeuge für die asynchrone Fernanalyse vor und integriert diese Aspekte in eine Fernwartungsinfrastruktur. In diesem Kontext kann gezeigt werden, dass der Einsatz von Augmented Reality die Nutzerleistung und gleichzeitig die Zufriedenheit steigern kann. Dabei wird auf das sogenannte "situative Bewusstsein" des entfernten Experten besonders Wert gelegt. Im Detail besteht die Arbeit aus: - Unterstützung von Wartungsaufgaben mit mobilen Endgeräten - Entwicklung und Evaluation kontextsensitiver Inspektionssoftware - Vergleich von touch-basierten Roboterprogrammierung mit der Vorgängerversion des Programmierhandgeräts - Studien über die Unterstützung von Reparaturaufgaben durch Augmented Reality - Zustandsüberwachung für eine spezielle Anlage mit Industrieroboter - Mensch-Maschine Interaktion für die Teleanalyse eines Produktionszyklus - Grafische Big Data Analyse einer Vielzahl von Produktionszyklen - 3D Prozess Visualisierung und Anreicherung mit virtuellen Informationen - Hardware, Software und Netzwerkarchitektur für die Fernwartung - Computerunterstützte Zusammenarbeit mit Verwendung mobiler Endgeräte für die Fernwartung - Fernwartungsbeispiel: Durchführung eines Motortauschs in der laufenden Produktion - Augmented Reality unterstütze Visualisierung des Anlagenkontextes für die Steigerung des situativen Bewusstseins T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 13 KW - Fernwartung KW - Robotik KW - Mensch-Maschine-Schnittstelle KW - Erweiterte Realität KW - Situation Awareness KW - Industrie 4.0 KW - Industrial internet Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150520 SN - 978-3-945459-18-8 ER - TY - THES A1 - Houshiar, Hamidreza T1 - Documentation and mapping with 3D point cloud processing T1 - Dokumentation und Kartierung mittels 3D-Punktwolkenverarbeitung N2 - 3D point clouds are a de facto standard for 3D documentation and modelling. The advances in laser scanning technology broadens the usability and access to 3D measurement systems. 3D point clouds are used in many disciplines such as robotics, 3D modelling, archeology and surveying. Scanners are able to acquire up to a million of points per second to represent the environment with a dense point cloud. This represents the captured environment with a very high degree of detail. The combination of laser scanning technology with photography adds color information to the point clouds. Thus the environment is represented more realistically. Full 3D models of environments, without any occlusion, require multiple scans. Merging point clouds is a challenging process. This thesis presents methods for point cloud registration based on the panorama images generated from the scans. Image representation of point clouds introduces 2D image processing methods to 3D point clouds. Several projection methods for the generation of panorama maps of point clouds are presented in this thesis. Additionally, methods for point cloud reduction and compression based on the panorama maps are proposed. Due to the large amounts of data generated from the 3D measurement systems these methods are necessary to improve the point cloud processing, transmission and archiving. This thesis introduces point cloud processing methods as a novel framework for the digitisation of archeological excavations. The framework replaces the conventional documentation methods for excavation sites. It employs point clouds for the generation of the digital documentation of an excavation with the help of an archeologist on-site. The 3D point cloud is used not only for data representation but also for analysis and knowledge generation. Finally, this thesis presents an autonomous indoor mobile mapping system. The mapping system focuses on the sensor placement planning method. Capturing a complete environment requires several scans. The sensor placement planning method solves for the minimum required scans to digitise large environments. Combining this method with a navigation system on a mobile robot platform enables it to acquire data fully autonomously. This thesis introduces a novel hole detection method for point clouds to detect obscured parts of a captured environment. The sensor placement planning method selects the next scan position with the most coverage of the obscured environment. This reduces the required number of scans. The navigation system on the robot platform consist of path planning, path following and obstacle avoidance. This guarantees the safe navigation of the mobile robot platform between the scan positions. The sensor placement planning method is designed as a stand alone process that could be used with a mobile robot platform for autonomous mapping of an environment or as an assistant tool for the surveyor on scanning projects. N2 - 3D-Punktwolken sind der de facto Standard bei der Dokumentation und Modellierung in 3D. Die Fortschritte in der Laserscanningtechnologie erweitern die Verwendbarkeit und die Verfügbarkeit von 3D-Messsystemen. 3D-Punktwolken werden in vielen Disziplinen verwendet, wie z.B. in der Robotik, 3D-Modellierung, Archäologie und Vermessung. Scanner sind in der Lage bis zu einer Million Punkte pro Sekunde zu erfassen, um die Umgebung mit einer dichten Punktwolke abzubilden und mit einem hohen Detaillierungsgrad darzustellen. Die Kombination der Laserscanningtechnologie mit Methoden der Photogrammetrie fügt den Punktwolken Farbinformationen hinzu. Somit wird die Umgebung realistischer dargestellt. Vollständige 3D-Modelle der Umgebung ohne Verschattungen benötigen mehrere Scans. Punktwolken zusammenzufügen ist eine anspruchsvolle Aufgabe. Diese Arbeit stellt Methoden zur Punktwolkenregistrierung basierend auf aus den Scans erzeugten Panoramabildern vor. Die Darstellung einer Punktwolke als Bild bringt Methoden der 2D-Bildverarbeitung an 3D-Punktwolken heran. Der Autor stellt mehrere Projektionsmethoden zur Erstellung von Panoramabildern aus 3D-Punktwolken vor. Außerdem werden Methoden zur Punktwolkenreduzierung und -kompression basierend auf diesen Panoramabildern vorgeschlagen. Aufgrund der großen Datenmenge, die von 3D-Messsystemen erzeugt wird, sind diese Methoden notwendig, um die Punktwolkenverarbeitung, -übertragung und -archivierung zu verbessern. Diese Arbeit präsentiert Methoden der Punktwolkenverarbeitung als neuartige Ablaufstruktur für die Digitalisierung von archäologischen Ausgrabungen. Durch diesen Ablauf werden konventionellen Methoden auf Ausgrabungsstätten ersetzt. Er verwendet Punktwolken für die Erzeugung der digitalen Dokumentation einer Ausgrabung mithilfe eines Archäologen vor Ort. Die 3D-Punktwolke kommt nicht nur für die Anzeige der Daten, sondern auch für die Analyse und Wissensgenerierung zum Einsatz. Schließlich stellt diese Arbeit ein autonomes Indoor-Mobile-Mapping-System mit Fokus auf der Positionsplanung des Messgeräts vor. Die Positionsplanung bestimmt die minimal benötigte Anzahl an Scans, um großflächige Umgebungen zu digitalisieren. Kombiniert mit einem Navigationssystem auf einer mobilen Roboterplattform ermöglicht diese Methode die vollautonome Datenerfassung. Diese Arbeit stellt eine neuartige Erkennungsmethode für Lücken in Punktwolken vor, um verdeckte Bereiche der erfassten Umgebung zu bestimmen. Die Positionsplanung bestimmt als nächste Scanposition diejenige mit der größten Abdeckung der verdeckten Umgebung. Das Navigationssystem des Roboters besteht aus der Pfadplanung, der Pfadverfolgung und einer Hindernisvermeidung um eine sichere Fortbewegung der mobilen Roboterplattform zwischen den Scanpositionen zu garantieren. Die Positionsplanungsmethode wurde als eigenständiges Verfahren entworfen, das auf einer mobilen Roboterplattform zur autonomen Kartierung einer Umgebung zum Einsatz kommen oder einem Vermesser bei einem Scanprojekt als Unterstützung dienen kann. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 12 KW - 3D Punktwolke KW - Robotik KW - Registrierung KW - 3D Pointcloud KW - Feature Based Registration KW - Compression KW - Computer Vision KW - Robotics KW - Panorama Images Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144493 SN - 978-3-945459-14-0 ER - TY - JOUR A1 - Kaltdorf, Kristin Verena A1 - Schulze, Katja A1 - Helmprobst, Frederik A1 - Kollmannsberger, Philip A1 - Dandekar, Thomas A1 - Stigloher, Christian T1 - Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms JF - PLoS Computational Biology N2 - Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial. KW - Biology KW - Vesicles KW - Caenorhabditis elegans KW - Zebrafish KW - Septins KW - Synaptic vesicles KW - Neuromuscular junctions KW - Computer software KW - Synapses Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172112 VL - 13 IS - 1 ER - TY - GEN T1 - Jahresbericht 2016 des Rechenzentrums der Universität Würzburg T1 - Annual Report 2016 of the Computer Center, University of Wuerzburg N2 - Das Dokument umfasst eine jährliche Zusammenfassung der Aktivitäten des Rechenzentrums als zentraler IT-Dienstleister der Universität Würzburg T3 - Jahresbericht des Rechenzentrums der Universität Würzburg - 2016 KW - Jahresbericht KW - Julius-Maximilians-Universität Würzburg KW - Rechenzentrum KW - annual report KW - Computer Center University of Wuerzburg KW - RZUW Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153558 UR - https://www.rz.uni-wuerzburg.de/wir/publikationen/ ET - 1. Auflage ER - TY - JOUR A1 - von Mammen, Sebastian Albrecht A1 - Wagner, Daniel A1 - Knote, Andreas A1 - Taskin, Umut T1 - Interactive simulations of biohybrid systems JF - Frontiers in Robotics and AI N2 - In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1) agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2) interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems. KW - biohybrid systems KW - augmented reality KW - virtual reality KW - user interfaces KW - biological development KW - generative systems Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195755 SN - 2296-9144 VL - 4 ER - TY - JOUR A1 - Fisseler, Denis A1 - Müller, Gerfrid G. W. A1 - Weichert, Frank T1 - Web-Based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research JF - Informatics N2 - The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability. KW - cuneiform KW - 3D viewer KW - WebGL KW - Hittitology KW - 3D collation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197958 SN - 2227-9709 VL - 4 IS - 4 ER - TY - JOUR A1 - Kunz, Meik A1 - Liang, Chunguang A1 - Nilla, Santosh A1 - Cecil, Alexander A1 - Dandekar, Thomas T1 - The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development JF - Database N2 - The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. KW - drug-minded protein KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147369 VL - 2016 ER -