TY - JOUR A1 - Seufert, Anika A1 - Poignée, Fabian A1 - Seufert, Michael A1 - Hoßfeld, Tobias T1 - Share and multiply: modeling communication and generated traffic in private WhatsApp groups JF - IEEE Access N2 - Group-based communication is a highly popular communication paradigm, which is especially prominent in mobile instant messaging (MIM) applications, such as WhatsApp. Chat groups in MIM applications facilitate the sharing of various types of messages (e.g., text, voice, image, video) among a large number of participants. As each message has to be transmitted to every other member of the group, which multiplies the traffic, this has a massive impact on the underlying communication networks. However, most chat groups are private and network operators cannot obtain deep insights into MIM communication via network measurements due to end-to-end encryption. Thus, the generation of traffic is not well understood, given that it depends on sizes of communication groups, speed of communication, and exchanged message types. In this work, we provide a huge data set of 5,956 private WhatsApp chat histories, which contains over 76 million messages from more than 117,000 users. We describe and model the properties of chat groups and users, and the communication within these chat groups, which gives unprecedented insights into private MIM communication. In addition, we conduct exemplary measurements for the most popular message types, which empower the provided models to estimate the traffic over time in a chat group. KW - communication models KW - group-based communication KW - mobile instant messaging KW - mobile messaging application KW - private chat groups KW - WhatsApp Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349430 VL - 11 ER - TY - JOUR A1 - Bayer, Daniel A1 - Pruckner, Marco T1 - A digital twin of a local energy system based on real smart meter data JF - Energy Informatics N2 - The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data. KW - digital twin KW - simulation KW - local energy system KW - decision support system KW - smart meter data utilization KW - future energy grid exploration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357456 VL - 6 ER - TY - JOUR A1 - Lesch, Veronika A1 - König, Maximilian A1 - Kounev, Samuel A1 - Stein, Anthony A1 - Krupitzer, Christian T1 - Tackling the rich vehicle routing problem with nature-inspired algorithms JF - Applied Intelligence N2 - In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorporate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art algorithms shows that our approach handles all given constraints in a reasonable time. KW - logistics KW - rich vehicle routing problem KW - ant-colony optimization KW - genetic algorithm KW - real-world application Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268942 SN - 1573-7497 VL - 52 ER - TY - JOUR A1 - Reinhard, Sebastian A1 - Helmerich, Dominic A. A1 - Boras, Dominik A1 - Sauer, Markus A1 - Kollmannsberger, Philip T1 - ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy JF - BMC Bioinformatics N2 - Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility. KW - compressed sensing KW - AI KW - SMLM KW - FLIMbee KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299768 VL - 23 IS - 1 ER - TY - JOUR A1 - Bencurova, Elena A1 - Shityakov, Sergey A1 - Schaack, Dominik A1 - Kaltdorf, Martin A1 - Sarukhanyan, Edita A1 - Hilgarth, Alexander A1 - Rath, Christin A1 - Montenegro, Sergio A1 - Roth, Günter A1 - Lopez, Daniel A1 - Dandekar, Thomas T1 - Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration JF - Frontiers in Bioengineering and Biotechnology N2 - The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories. KW - nanocellulose KW - DNA storage KW - light-gated proteins KW - single-electron transistors KW - protein chip Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283033 SN - 2296-4185 VL - 10 ER - TY - JOUR A1 - Krenzer, Adrian A1 - Makowski, Kevin A1 - Hekalo, Amar A1 - Fitting, Daniel A1 - Troya, Joel A1 - Zoller, Wolfram G. A1 - Hann, Alexander A1 - Puppe, Frank T1 - Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists JF - BioMedical Engineering OnLine N2 - Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object’s annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source. KW - object detection KW - machine learning KW - deep learning KW - annotation KW - endoscopy KW - gastroenterology KW - automation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300231 VL - 21 IS - 1 ER - TY - JOUR A1 - Klemz, Boris A1 - Rote, Günter T1 - Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs JF - Algorithmica N2 - A bipartite graph G=(U,V,E) is convex if the vertices in V can be linearly ordered such that for each vertex u∈U, the neighbors of u are consecutive in the ordering of V. An induced matching H of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and m weighted edges, an induced matching of maximum total weight can be computed in O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex u∈U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in O(n+m) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of O(n\(^{2}\)) (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. https://doi.org/10.1016/j.tcs.2007.04.006). The weighted case has not been considered before. KW - dynamic programming KW - graph algorithm KW - induced matching KW - chain cover KW - convex bipartite graph KW - certifying algorithm Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267876 SN - 1432-0541 VL - 84 IS - 4 ER - TY - JOUR A1 - Glémarec, Yann A1 - Lugrin, Jean-Luc A1 - Bosser, Anne-Gwenn A1 - Buche, Cédric A1 - Latoschik, Marc Erich T1 - Controlling the stage: a high-level control system for virtual audiences in Virtual Reality JF - Frontiers in Virtual Reality N2 - This article presents a novel method for controlling a virtual audience system (VAS) in Virtual Reality (VR) application, called STAGE, which has been originally designed for supervised public speaking training in university seminars dedicated to the preparation and delivery of scientific talks. We are interested in creating pedagogical narratives: narratives encompass affective phenomenon and rather than organizing events changing the course of a training scenario, pedagogical plans using our system focus on organizing the affects it arouses for the trainees. Efficiently controlling a virtual audience towards a specific training objective while evaluating the speaker’s performance presents a challenge for a seminar instructor: the high level of cognitive and physical demands required to be able to control the virtual audience, whilst evaluating speaker’s performance, adjusting and allowing it to quickly react to the user’s behaviors and interactions. It is indeed a critical limitation of a number of existing systems that they rely on a Wizard of Oz approach, where the tutor drives the audience in reaction to the user’s performance. We address this problem by integrating with a VAS a high-level control component for tutors, which allows using predefined audience behavior rules, defining custom ones, as well as intervening during run-time for finer control of the unfolding of the pedagogical plan. At its core, this component offers a tool to program, select, modify and monitor interactive training narratives using a high-level representation. The STAGE offers the following features: i) a high-level API to program pedagogical narratives focusing on a specific public speaking situation and training objectives, ii) an interactive visualization interface iii) computation and visualization of user metrics, iv) a semi-autonomous virtual audience composed of virtual spectators with automatic reactions to the speaker and surrounding spectators while following the pedagogical plan V) and the possibility for the instructor to embody a virtual spectator to ask questions or guide the speaker from within the Virtual Environment. We present here the design, and implementation of the tutoring system and its integration in STAGE, and discuss its reception by end-users. KW - virtual reality KW - virtual agent KW - behavior perception KW - public speaking KW - education Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284601 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Hein, Rebecca M. A1 - Latoschik, Marc Erich A1 - Wienrich, Carolin T1 - Inter- and transcultural learning in cocial virtual reality: a proposal for an inter- and transcultural virtual object database to be used in the implementation, reflection, and evaluation of virtual encounters JF - Multimodal Technologies and Interaction N2 - Visual stimuli are frequently used to improve memory, language learning or perception, and understanding of metacognitive processes. However, in virtual reality (VR), there are few systematically and empirically derived databases. This paper proposes the first collection of virtual objects based on empirical evaluation for inter-and transcultural encounters between English- and German-speaking learners. We used explicit and implicit measurement methods to identify cultural associations and the degree of stereotypical perception for each virtual stimuli (n = 293) through two online studies, including native German and English-speaking participants. The analysis resulted in a final well-describable database of 128 objects (called InteractionSuitcase). In future applications, the objects can be used as a great interaction or conversation asset and behavioral measurement tool in social VR applications, especially in the field of foreign language education. For example, encounters can use the objects to describe their culture, or teachers can intuitively assess stereotyped attitudes of the encounters. KW - virtual stimuli KW - implicit association test KW - virtual reality KW - social VR KW - InteractionSuitcase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278974 SN - 2414-4088 VL - 6 IS - 7 ER - TY - JOUR A1 - Loh, Frank A1 - Mehling, Noah A1 - Hoßfeld, Tobias T1 - Towards LoRaWAN without data loss: studying the performance of different channel access approaches JF - Sensors N2 - The Long Range Wide Area Network (LoRaWAN) is one of the fastest growing Internet of Things (IoT) access protocols. It operates in the license free 868 MHz band and gives everyone the possibility to create their own small sensor networks. The drawback of this technology is often unscheduled or random channel access, which leads to message collisions and potential data loss. For that reason, recent literature studies alternative approaches for LoRaWAN channel access. In this work, state-of-the-art random channel access is compared with alternative approaches from the literature by means of collision probability. Furthermore, a time scheduled channel access methodology is presented to completely avoid collisions in LoRaWAN. For this approach, an exhaustive simulation study was conducted and the performance was evaluated with random access cross-traffic. In a general theoretical analysis the limits of the time scheduled approach are discussed to comply with duty cycle regulations in LoRaWAN. KW - LoRaWAN KW - IoT KW - channel management KW - scheduling KW - collision Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302418 SN - 1424-8220 VL - 22 IS - 2 ER - TY - JOUR A1 - Steinhaeusser, Sophia C. A1 - Oberdörfer, Sebastian A1 - von Mammen, Sebastian A1 - Latoschik, Marc Erich A1 - Lugrin, Birgit T1 - Joyful adventures and frightening places – designing emotion-inducing virtual environments JF - Frontiers in Virtual Reality N2 - Virtual environments (VEs) can evoke and support emotions, as experienced when playing emotionally arousing games. We theoretically approach the design of fear and joy evoking VEs based on a literature review of empirical studies on virtual and real environments as well as video games’ reviews and content analyses. We define the design space and identify central design elements that evoke specific positive and negative emotions. Based on that, we derive and present guidelines for emotion-inducing VE design with respect to design themes, colors and textures, and lighting configurations. To validate our guidelines in two user studies, we 1) expose participants to 360° videos of VEs designed following the individual guidelines and 2) immerse them in a neutral, positive and negative emotion-inducing VEs combining all respective guidelines in Virtual Reality. The results support our theoretically derived guidelines by revealing significant differences in terms of fear and joy induction. KW - virtual reality KW - virtual environments KW - immersion KW - emotions KW - design Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284831 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Prantl, Thomas A1 - Zeck, Timo A1 - Bauer, Andre A1 - Ten, Peter A1 - Prantl, Dominik A1 - Yahya, Ala Eddine Ben A1 - Ifflaender, Lukas A1 - Dmitrienko, Alexandra A1 - Krupitzer, Christian A1 - Kounev, Samuel T1 - A Survey on Secure Group Communication Schemes With Focus on IoT Communication JF - IEEE Access N2 - A key feature for Internet of Things (IoT) is to control what content is available to each user. To handle this access management, encryption schemes can be used. Due to the diverse usage of encryption schemes, there are various realizations of 1-to-1, 1-to-n, and n-to-n schemes in the literature. This multitude of encryption methods with a wide variety of properties presents developers with the challenge of selecting the optimal method for a particular use case, which is further complicated by the fact that there is no overview of existing encryption schemes. To fill this gap, we envision a cryptography encyclopedia providing such an overview of existing encryption schemes. In this survey paper, we take a first step towards such an encyclopedia by creating a sub-encyclopedia for secure group communication (SGC) schemes, which belong to the n-to-n category. We extensively surveyed the state-of-the-art and classified 47 different schemes. More precisely, we provide (i) a comprehensive overview of the relevant security features, (ii) a set of relevant performance metrics, (iii) a classification for secure group communication schemes, and (iv) workflow descriptions of the 47 schemes. Moreover, we perform a detailed performance and security evaluation of the 47 secure group communication schemes. Based on this evaluation, we create a guideline for the selection of secure group communication schemes. KW - Internet of Things KW - encryption KW - secure group communication Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300257 VL - 10 SP - 99944 EP - 99962 ER - TY - JOUR A1 - Loh, Frank A1 - Wamser, Florian A1 - Poignée, Fabian A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - YouTube Dataset on Mobile Streaming for Internet Traffic Modeling and Streaming Analysis JF - Scientific Data N2 - Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases. KW - internet traffic KW - mobile streaming KW - YouTube Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300240 VL - 9 IS - 1 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Crouch, Samantha A. W. A1 - Giddins, Sara A1 - Dandekar, Thomas A1 - Dangwal, Seema T1 - Progeria and aging — Omics based comparative analysis JF - Biomedicines N2 - Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare “normal aging” (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression. KW - progeria KW - aging KW - omics KW - RNA sequencing KW - bioinformatics KW - sun exposure KW - HGPS KW - IGFBP2 KW - ACKR4 KW - WNT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289868 SN - 2227-9059 VL - 10 IS - 10 ER - TY - JOUR A1 - Latoschik, Marc Erich A1 - Wienrich, Carolin T1 - Congruence and plausibility, not presence: pivotal conditions for XR experiences and effects, a novel approach JF - Frontiers in Virtual Reality N2 - Presence is often considered the most important quale describing the subjective feeling of being in a computer-generated and/or computer-mediated virtual environment. The identification and separation of orthogonal presence components, i.e., the place illusion and the plausibility illusion, has been an accepted theoretical model describing Virtual Reality (VR) experiences for some time. This perspective article challenges this presence-oriented VR theory. First, we argue that a place illusion cannot be the major construct to describe the much wider scope of virtual, augmented, and mixed reality (VR, AR, MR: or XR for short). Second, we argue that there is no plausibility illusion but merely plausibility, and we derive the place illusion caused by the congruent and plausible generation of spatial cues and similarly for all the current model’s so-defined illusions. Finally, we propose congruence and plausibility to become the central essential conditions in a novel theoretical model describing XR experiences and effects. KW - XR KW - experience KW - presence KW - congruence KW - plausibility KW - coherence KW - theory KW - prediction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284787 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Landeck, Maximilian A1 - Alvarez Igarzábal, Federico A1 - Unruh, Fabian A1 - Habenicht, Hannah A1 - Khoshnoud, Shiva A1 - Wittmann, Marc A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - Journey through a virtual tunnel: Simulated motion and its effects on the experience of time JF - Frontiers in Virtual Reality N2 - This paper examines the relationship between time and motion perception in virtual environments. Previous work has shown that the perception of motion can affect the perception of time. We developed a virtual environment that simulates motion in a tunnel and measured its effects on the estimation of the duration of time, the speed at which perceived time passes, and the illusion of self-motion, also known as vection. When large areas of the visual field move in the same direction, vection can occur; observers often perceive this as self-motion rather than motion of the environment. To generate different levels of vection and investigate its effects on time perception, we developed an abstract procedural tunnel generator. The generator can simulate different speeds and densities of tunnel sections (visibly distinguishable sections that form the virtual tunnel), as well as the degree of embodiment of the user avatar (with or without virtual hands). We exposed participants to various tunnel simulations with different durations, speeds, and densities in a remote desktop and a virtual reality (VR) laboratory study. Time passed subjectively faster under high-speed and high-density conditions in both studies. The experience of self-motion was also stronger under high-speed and high-density conditions. Both studies revealed a significant correlation between the perceived passage of time and perceived self-motion. Subjects in the virtual reality study reported a stronger self-motion experience, a faster perceived passage of time, and shorter time estimates than subjects in the desktop study. Our results suggest that a virtual tunnel simulation can manipulate time perception in virtual reality. We will explore these results for the development of virtual reality applications for therapeutic approaches in our future work. This could be particularly useful in treating disorders like depression, autism, and schizophrenia, which are known to be associated with distortions in time perception. For example, the tunnel could be therapeutically applied by resetting patients’ time perceptions by exposing them to the tunnel under different conditions, such as increasing or decreasing perceived time. KW - passage of time KW - illusion of self-motion KW - vection KW - virtual tunnel KW - therapeutic application KW - virtual reality KW - extended reality (XR) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301519 SN - 2673-4192 VL - 3 ER - TY - JOUR A1 - Obremski, David A1 - Friedrich, Paula A1 - Haak, Nora A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - The impact of mixed-cultural speech on the stereotypical perception of a virtual robot JF - Frontiers in Robotics and AI N2 - Despite the fact that mixed-cultural backgrounds become of increasing importance in our daily life, the representation of multiple cultural backgrounds in one entity is still rare in socially interactive agents (SIAs). This paper’s contribution is twofold. First, it provides a survey of research on mixed-cultured SIAs. Second, it presents a study investigating how mixed-cultural speech (in this case, non-native accent) influences how a virtual robot is perceived in terms of personality, warmth, competence and credibility. Participants with English or German respectively as their first language watched a video of a virtual robot speaking in either standard English or German-accented English. It was expected that the German-accented speech would be rated more positively by native German participants as well as elicit the German stereotypes credibility and conscientiousness for both German and English participants. Contrary to the expectations, German participants rated the virtual robot lower in terms of competence and credibility when it spoke with a German accent, whereas English participants perceived the virtual robot with a German accent as more credible compared to the version without an accent. Both the native English and native German listeners classified the virtual robot with a German accent as significantly more neurotic than the virtual robot speaking standard English. This work shows that by solely implementing a non-native accent in a virtual robot, stereotypes are partly transferred. It also shows that the implementation of a non-native accent leads to differences in the perception of the virtual robot. KW - non-native accent KW - social robotics KW - intelligent virtual agents KW - stereotypes KW - mixed-cultural KW - culturally aware KW - socially interactive agents Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293531 SN - 2296-9144 VL - 9 ER - TY - JOUR A1 - Tsoulias, Nikos A1 - Jörissen, Sven A1 - Nüchter, Andreas T1 - An approach for monitoring temperature on fruit surface by means of thermal point cloud JF - MethodsX N2 - Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify thresholds, above of which several physiological disorders such as sunburn may occur in apple. The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. • The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D thermal point cloud. • The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to predict several physiological disorders including sunburn on fruit surface. KW - point cloud KW - thermal point cloud KW - fruit temperature KW - sunburn KW - food quality KW - precision horticulture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300270 SN - 2215-0161 VL - 9 ER - TY - JOUR A1 - Seufert, Anika A1 - Poignée, Fabian A1 - Hoßfeld, Tobias A1 - Seufert, Michael T1 - Pandemic in the digital age: analyzing WhatsApp communication behavior before, during, and after the COVID-19 lockdown JF - Humanities and Social Sciences Communications N2 - The strict restrictions introduced by the COVID-19 lockdowns, which started from March 2020, changed people’s daily lives and habits on many different levels. In this work, we investigate the impact of the lockdown on the communication behavior in the mobile instant messaging application WhatsApp. Our evaluations are based on a large dataset of 2577 private chat histories with 25,378,093 messages from 51,973 users. The analysis of the one-to-one and group conversations confirms that the lockdown severely altered the communication in WhatsApp chats compared to pre-pandemic time ranges. In particular, we observe short-term effects, which caused an increased message frequency in the first lockdown months and a shifted communication activity during the day in March and April 2020. Moreover, we also see long-term effects of the ongoing pandemic situation until February 2021, which indicate a change of communication behavior towards more regular messaging, as well as a persisting change in activity during the day. The results of our work show that even anonymized chat histories can tell us a lot about people’s behavior and especially behavioral changes during the COVID-19 pandemic and thus are of great relevance for behavioral researchers. Furthermore, looking at the pandemic from an Internet provider perspective, these insights can be used during the next pandemic, or if the current COVID-19 situation worsens, to adapt communication networks to the changed usage behavior early on and thus avoid network congestion. KW - cultural and media studies KW - information systems and information technology KW - science, technology and society Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300261 VL - 9 ER - TY - JOUR A1 - Hentschel, Simon A1 - Kobs, Konstantin A1 - Hotho, Andreas T1 - CLIP knows image aesthetics JF - Frontiers in Artificial Intelligence N2 - Most Image Aesthetic Assessment (IAA) methods use a pretrained ImageNet classification model as a base to fine-tune. We hypothesize that content classification is not an optimal pretraining task for IAA, since the task discourages the extraction of features that are useful for IAA, e.g., composition, lighting, or style. On the other hand, we argue that the Contrastive Language-Image Pretraining (CLIP) model is a better base for IAA models, since it has been trained using natural language supervision. Due to the rich nature of language, CLIP needs to learn a broad range of image features that correlate with sentences describing the image content, composition, environments, and even subjective feelings about the image. While it has been shown that CLIP extracts features useful for content classification tasks, its suitability for tasks that require the extraction of style-based features like IAA has not yet been shown. We test our hypothesis by conducting a three-step study, investigating the usefulness of features extracted by CLIP compared to features obtained from the last layer of a comparable ImageNet classification model. In each step, we get more computationally expensive. First, we engineer natural language prompts that let CLIP assess an image's aesthetic without adjusting any weights in the model. To overcome the challenge that CLIP's prompting only is applicable to classification tasks, we propose a simple but effective strategy to convert multiple prompts to a continuous scalar as required when predicting an image's mean aesthetic score. Second, we train a linear regression on the AVA dataset using image features obtained by CLIP's image encoder. The resulting model outperforms a linear regression trained on features from an ImageNet classification model. It also shows competitive performance with fully fine-tuned networks based on ImageNet, while only training a single layer. Finally, by fine-tuning CLIP's image encoder on the AVA dataset, we show that CLIP only needs a fraction of training epochs to converge, while also performing better than a fine-tuned ImageNet model. Overall, our experiments suggest that CLIP is better suited as a base model for IAA methods than ImageNet pretrained networks. KW - Image Aesthetic Assessment KW - CLIP KW - language-image pre-training KW - text supervision KW - prompt engineering KW - AVA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297150 SN - 2624-8212 VL - 5 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Minocha, Rashmi A1 - Thapa, Prithivi Jung A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective JF - International Journal of Molecular Sciences N2 - After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron. KW - COVID-19 KW - SARS-CoV-2 KW - origin KW - evolution KW - intermediate host KW - pangolin KW - mutation KW - recombination KW - adaptation KW - transmission KW - comparative sequence analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285995 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Darwish, Mostafa A. A1 - Abdelhamid, Al-Shaimaa M. A1 - Alrashedy, Gehad M. A1 - Othman, Othman Ali A1 - Naseem, Muhammad A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Kinetin ameliorates cisplatin-induced hepatotoxicity and lymphotoxicity via attenuating oxidative damage, cell apoptosis and inflammation in rats JF - Biomedicines N2 - Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy. KW - cisplatin KW - hepatotoxicity KW - lymphotoxicity KW - oxidative stress KW - AKT KW - CD95 KW - caspase-3 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281686 SN - 2227-9059 VL - 10 IS - 7 ER - TY - JOUR A1 - Puppe, Frank T1 - Gesellschaftliche Perspektiven einer fachspezifischen KI für automatisierte Entscheidungen JF - Informatik Spektrum N2 - Die künstliche Intelligenz (KI) entwickelt sich rasant und hat bereits eindrucksvolle Erfolge zu verzeichnen, darunter übermenschliche Kompetenz in den meisten Spielen und vielen Quizshows, intelligente Suchmaschinen, individualisierte Werbung, Spracherkennung, -ausgabe und -übersetzung auf sehr hohem Niveau und hervorragende Leistungen bei der Bildverarbeitung, u. a. in der Medizin, der optischen Zeichenerkennung, beim autonomen Fahren, aber auch beim Erkennen von Menschen auf Bildern und Videos oder bei Deep Fakes für Fotos und Videos. Es ist zu erwarten, dass die KI auch in der Entscheidungsfindung Menschen übertreffen wird; ein alter Traum der Expertensysteme, der durch Lernverfahren, Big Data und Zugang zu dem gesammelten Wissen im Web in greifbare Nähe rückt. Gegenstand dieses Beitrags sind aber weniger die technischen Entwicklungen, sondern mögliche gesellschaftliche Auswirkungen einer spezialisierten, kompetenten KI für verschiedene Bereiche der autonomen, d. h. nicht nur unterstützenden Entscheidungsfindung: als Fußballschiedsrichter, in der Medizin, für richterliche Entscheidungen und sehr spekulativ auch im politischen Bereich. Dabei werden Vor- und Nachteile dieser Szenarien aus gesellschaftlicher Sicht diskutiert. KW - Künstliche Intelligenz KW - Ethik KW - Entscheidungsfindung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324197 SN - 0170-6012 VL - 45 IS - 2 ER - TY - JOUR A1 - Riedmann, Anna A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - Integration of a social robot and gamification in adult learning and effects on motivation, engagement and performance JF - AI & Society N2 - Learning is a central component of human life and essential for personal development. Therefore, utilizing new technologies in the learning context and exploring their combined potential are considered essential to support self-directed learning in a digital age. A learning environment can be expanded by various technical and content-related aspects. Gamification in the form of elements from video games offers a potential concept to support the learning process. This can be supplemented by technology-supported learning. While the use of tablets is already widespread in the learning context, the integration of a social robot can provide new perspectives on the learning process. However, simply adding new technologies such as social robots or gamification to existing systems may not automatically result in a better learning environment. In the present study, game elements as well as a social robot were integrated separately and conjointly into a learning environment for basic Spanish skills, with a follow-up on retained knowledge. This allowed us to investigate the respective and combined effects of both expansions on motivation, engagement and learning effect. This approach should provide insights into the integration of both additions in an adult learning context. We found that the additions of game elements and the robot did not significantly improve learning, engagement or motivation. Based on these results and a literature review, we outline relevant factors for meaningful integration of gamification and social robots in learning environments in adult learning. KW - social robot KW - gamification KW - technology-supported learning KW - adult learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324208 SN - 0951-5666 ER - TY - JOUR A1 - Loh, Frank A1 - Poignée, Fabian A1 - Wamser, Florian A1 - Leidinger, Ferdinand A1 - Hoßfeld, Tobias T1 - Uplink vs. Downlink: Machine Learning-Based Quality Prediction for HTTP Adaptive Video Streaming JF - Sensors N2 - Streaming video is responsible for the bulk of Internet traffic these days. For this reason, Internet providers and network operators try to make predictions and assessments about the streaming quality for an end user. Current monitoring solutions are based on a variety of different machine learning approaches. The challenge for providers and operators nowadays is that existing approaches require large amounts of data. In this work, the most relevant quality of experience metrics, i.e., the initial playback delay, the video streaming quality, video quality changes, and video rebuffering events, are examined using a voluminous data set of more than 13,000 YouTube video streaming runs that were collected with the native YouTube mobile app. Three Machine Learning models are developed and compared to estimate playback behavior based on uplink request information. The main focus has been on developing a lightweight approach using as few features and as little data as possible, while maintaining state-of-the-art performance. KW - HTTP adaptive video streaming KW - quality of experience prediction KW - machine learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241121 SN - 1424-8220 VL - 21 IS - 12 ER - TY - JOUR A1 - Halbig, Andreas A1 - Latoschik, Marc Erich T1 - A systematic review of physiological measurements, factors, methods, and applications in virtual reality JF - Frontiers in Virtual Reality N2 - Measurements of physiological parameters provide an objective, often non-intrusive, and (at least semi-)automatic evaluation and utilization of user behavior. In addition, specific hardware devices of Virtual Reality (VR) often ship with built-in sensors, i.e. eye-tracking and movements sensors. Hence, the combination of physiological measurements and VR applications seems promising. Several approaches have investigated the applicability and benefits of this combination for various fields of applications. However, the range of possible application fields, coupled with potentially useful and beneficial physiological parameters, types of sensor, target variables and factors, and analysis approaches and techniques is manifold. This article provides a systematic overview and an extensive state-of-the-art review of the usage of physiological measurements in VR. We identified 1,119 works that make use of physiological measurements in VR. Within these, we identified 32 approaches that focus on the classification of characteristics of experience, common in VR applications. The first part of this review categorizes the 1,119 works by field of application, i.e. therapy, training, entertainment, and communication and interaction, as well as by the specific target factors and variables measured by the physiological parameters. An additional category summarizes general VR approaches applicable to all specific fields of application since they target typical VR qualities. In the second part of this review, we analyze the target factors and variables regarding the respective methods used for an automatic analysis and, potentially, classification. For example, we highlight which measurement setups have been proven to be sensitive enough to distinguish different levels of arousal, valence, anxiety, stress, or cognitive workload in the virtual realm. This work may prove useful for all researchers wanting to use physiological data in VR and who want to have a good overview of prior approaches taken, their benefits and potential drawbacks. KW - virtual reality KW - use cases KW - sesnsors KW - tools KW - biosignals KW - psychophyisology KW - HMD (Head-Mounted Display) KW - systematic review Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260503 VL - 2 ER - TY - JOUR A1 - Carolus, Astrid A1 - Wienrich, Carolin A1 - Törke, Anna A1 - Friedel, Tobias A1 - Schwietering, Christian A1 - Sperzel, Mareike T1 - ‘Alexa, I feel for you!’ Observers’ empathetic reactions towards a conversational agent JF - Frontiers in Computer Science N2 - Conversational agents and smart speakers have grown in popularity offering a variety of options for use, which are available through intuitive speech operation. In contrast to the standard dyad of a single user and a device, voice-controlled operations can be observed by further attendees resulting in new, more social usage scenarios. Referring to the concept of ‘media equation’ and to research on the idea of ‘computers as social actors,’ which describes the potential of technology to trigger emotional reactions in users, this paper asks for the capacity of smart speakers to elicit empathy in observers of interactions. In a 2 × 2 online experiment, 140 participants watched a video of a man talking to an Amazon Echo either rudely or neutrally (factor 1), addressing it as ‘Alexa’ or ‘Computer’ (factor 2). Controlling for participants’ trait empathy, the rude treatment results in participants’ significantly higher ratings of empathy with the device, compared to the neutral treatment. The form of address had no significant effect. Results were independent of the participants’ gender and usage experience indicating a rather universal effect, which confirms the basic idea of the media equation. Implications for users, developers and researchers were discussed in the light of (future) omnipresent voice-based technology interaction scenarios. KW - conversational agent KW - empathy KW - smart speaker KW - media equation KW - computers as social actors KW - human-computer interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258807 VL - 3 ER - TY - JOUR A1 - Obremski, David A1 - Lugrin, Jean-Luc A1 - Schaper, Philipp A1 - Lugrin, Birgit T1 - Non-native speaker perception of Intelligent Virtual Agents in two languages: the impact of amount and type of grammatical mistakes JF - Journal on Multimodal User Interfaces N2 - Having a mixed-cultural membership becomes increasingly common in our modern society. It is thus beneficial in several ways to create Intelligent Virtual Agents (IVAs) that reflect a mixed-cultural background as well, e.g., for educational settings. For research with such IVAs, it is essential that they are classified as non-native by members of a target culture. In this paper, we focus on variations of IVAs’ speech to create the impression of non-native speakers that are identified as such by speakers of two different mother tongues. In particular, we investigate grammatical mistakes and identify thresholds beyond which the agents is clearly categorised as a non-native speaker. Therefore, we conducted two experiments: one for native speakers of German, and one for native speakers of English. Results of the German study indicate that beyond 10% of word order mistakes and 25% of infinitive mistakes German-speaking IVAs are perceived as non-native speakers. Results of the English study indicate that beyond 50% of omission mistakes and 50% of infinitive mistakes English-speaking IVAs are perceived as non-native speakers. We believe these thresholds constitute helpful guidelines for computational approaches of non-native speaker generation, simplifying research with IVAs in mixed-cultural settings. KW - mixed-cultural settings KW - Intelligent Virtual Agents KW - verbal behaviour Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269984 SN - 1783-8738 VL - 15 IS - 2 ER - TY - JOUR A1 - Wamser, Florian A1 - Seufert, Anika A1 - Hall, Andrew A1 - Wunderer, Stefan A1 - Hoßfeld, Tobias T1 - Valid statements by the crowd: statistical measures for precision in crowdsourced mobile measurements JF - Network N2 - Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider. KW - mobile networks KW - crowdsourced measurements KW - statistical validity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284154 SN - 2673-8732 VL - 1 IS - 2 SP - 215 EP - 232 ER - TY - JOUR A1 - Döllinger, Nina A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - Challenges and opportunities of immersive technologies for mindfulness meditation: a systematic review JF - Frontiers in Virtual Reality N2 - Mindfulness is considered an important factor of an individual's subjective well-being. Consequently, Human-Computer Interaction (HCI) has investigated approaches that strengthen mindfulness, i.e., by inventing multimedia technologies to support mindfulness meditation. These approaches often use smartphones, tablets, or consumer-grade desktop systems to allow everyday usage in users' private lives or in the scope of organized therapies. Virtual, Augmented, and Mixed Reality (VR, AR, MR; in short: XR) significantly extend the design space for such approaches. XR covers a wide range of potential sensory stimulation, perceptive and cognitive manipulations, content presentation, interaction, and agency. These facilities are linked to typical XR-specific perceptions that are conceptually closely related to mindfulness research, such as (virtual) presence and (virtual) embodiment. However, a successful exploitation of XR that strengthens mindfulness requires a systematic analysis of the potential interrelation and influencing mechanisms between XR technology, its properties, factors, and phenomena and existing models and theories of the construct of mindfulness. This article reports such a systematic analysis of XR-related research from HCI and life sciences to determine the extent to which existing research frameworks on HCI and mindfulness can be applied to XR technologies, the potential of XR technologies to support mindfulness, and open research gaps. Fifty papers of ACM Digital Library and National Institutes of Health's National Library of Medicine (PubMed) with and without empirical efficacy evaluation were included in our analysis. The results reveal that at the current time, empirical research on XR-based mindfulness support mainly focuses on therapy and therapeutic outcomes. Furthermore, most of the currently investigated XR-supported mindfulness interactions are limited to vocally guided meditations within nature-inspired virtual environments. While an analysis of empirical research on those systems did not reveal differences in mindfulness compared to non-mediated mindfulness practices, various design proposals illustrate that XR has the potential to provide interactive and body-based innovations for mindfulness practice. We propose a structured approach for future work to specify and further explore the potential of XR as mindfulness-support. The resulting framework provides design guidelines for XR-based mindfulness support based on the elements and psychological mechanisms of XR interactions. KW - virtual reality KW - augmented reality KW - mindfulness KW - XR KW - meditation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259047 VL - 2 ER - TY - JOUR A1 - Prakash, Subash A1 - Unnikrishnan, Vishnu A1 - Pryss, Rüdiger A1 - Kraft, Robin A1 - Schobel, Johannes A1 - Hannemann, Ronny A1 - Langguth, Berthold A1 - Schlee, Winfried A1 - Spiliopoulou, Myra T1 - Interactive system for similarity-based inspection and assessment of the well-being of mHealth users JF - Entropy N2 - Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported. KW - medical analytics KW - condition prediction KW - ecological momentary assessment KW - visual analytics KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252333 SN - 1099-4300 VL - 23 IS - 12 ER - TY - JOUR A1 - Pawellek, Ruben A1 - Krmar, Jovana A1 - Leistner, Adrian A1 - Djajić, Nevena A1 - Otašević, Biljana A1 - Protić, Ana A1 - Holzgrabe, Ulrike T1 - Charged aerosol detector response modeling for fatty acids based on experimental settings and molecular features: a machine learning approach JF - Journal of Cheminformatics N2 - The charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour. Considering both experimental conditions and molecular descriptors, a mixed quantitative structure-property relationship (QSPR) modeling was performed using Gradient Boosted Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth set at 5, and the sample rate set at 1.0) was able to explain approximately 99% (Q\(^2\): 0.987, RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test compound confirmed the high predictive ability of the model established (R-2: 0.990, RMSEP: 0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all independent variables during model building. Finally, it attributed the highest importance to the power function value, the flow rate of the mobile phase, evaporation temperature, the content of the organic solvent in the mobile phase and the molecular descriptors such as molecular weight (MW), Radial Distribution Function-080/weighted by mass (RDF080m) and average coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt). The identification of the factors most relevant to the CAD responsiveness has contributed to a better understanding of the underlying mechanisms of signal generation. An increased CAD response that was obtained for acetone as organic modifier demonstrated its potential to replace the more expensive and environmentally harmful acetonitrile. KW - High-performance liquid chromatography (HPLC) KW - Charged aerosol detector (CAD) KW - Gradient boosted trees (GBT) KW - Quantitative structure-property relationship modeling (QSPR) KW - Fatty acids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261618 VL - 13 IS - 1 ER - TY - JOUR A1 - Unruh, Fabian A1 - Landeck, Maximilian A1 - Oberdörfer, Sebastian A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - The Influence of Avatar Embodiment on Time Perception - Towards VR for Time-Based Therapy JF - Frontiers in Virtual Reality N2 - Psycho-pathological conditions, such as depression or schizophrenia, are often accompanied by a distorted perception of time. People suffering from this conditions often report that the passage of time slows down considerably and that they are “stuck in time.” Virtual Reality (VR) could potentially help to diagnose and maybe treat such mental conditions. However, the conditions in which a VR simulation could correctly diagnose a time perception deviation are still unknown. In this paper, we present an experiment investigating the difference in time experience with and without a virtual body in VR, also known as avatar. The process of substituting a person’s body with a virtual body is called avatar embodiment. Numerous studies demonstrated interesting perceptual, emotional, behavioral, and psychological effects caused by avatar embodiment. However, the relations between time perception and avatar embodiment are still unclear. Whether or not the presence or absence of an avatar is already influencing time perception is still open to question. Therefore, we conducted a between-subjects design with and without avatar embodiment as well as a real condition (avatar vs. no-avatar vs. real). A group of 105 healthy subjects had to wait for seven and a half minutes in a room without any distractors (e.g., no window, magazine, people, decoration) or time indicators (e.g., clocks, sunlight). The virtual environment replicates the real physical environment. Participants were unaware that they will be asked to estimate their waiting time duration as well as describing their experience of the passage of time at a later stage. Our main finding shows that the presence of an avatar is leading to a significantly faster perceived passage of time. It seems to be promising to integrate avatar embodiment in future VR time-based therapy applications as they potentially could modulate a user’s perception of the passage of time. We also found no significant difference in time perception between the real and the VR conditions (avatar, no-avatar), but further research is needed to better understand this outcome. KW - virtual reality KW - time perception KW - avatar embodiment KW - immersion KW - human computer interaction (HCI) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259076 VL - 2 ER - TY - JOUR A1 - Seufert, Anika A1 - Schröder, Svenja A1 - Seufert, Michael T1 - Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications JF - SN Computer Science N2 - To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial, as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Experience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will result in an application design, which reaches a high UX and avoids QoE degradation. KW - user experience KW - human-centered design KW - design cycle KW - application design KW - quality of experience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271762 SN - 2661-8907 VL - 2 IS - 6 ER - TY - JOUR A1 - Linsenmann, Thomas A1 - März, Alexander A1 - Dufner, Vera A1 - Stetter, Christian A1 - Weiland, Judith A1 - Westermaier, Thomas T1 - Optimization of radiation settings for angiography using 3D fluoroscopy for imaging of intracranial aneurysms JF - Computer Assisted Surgery N2 - Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. We recently reported its use for imaging cerebral vascular malformations and aneurysms. This study was conducted to evaluate various radiation settings for the imaging of cerebral aneurysms before and after surgical occlusion. Eighteen patients with cerebral aneurysms with the indication for surgical clipping were included in this prospective analysis. Before surgery the patients were randomized into one of three different scan protocols according (default settings of the 3D fluoroscope): Group 1: 110 kV, 80 mA (enhanced cranial mode), group 2: 120 kV, 64 mA (lumbar spine mode), group 3: 120 kV, 25 mA (head/neck settings). Prior to surgery, a rotational fluoroscopy scan (duration 24 s) was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac(R) workstation, subtracted and reconstructed using OsiriX(R) MD 10.0 software. The procedure was repeated after clip placement. The image quality regarding preoperative aneurysm configuration and postoperative assessment of aneurysm occlusion and vessel patency was analyzed by 2 independent reviewers using a 6-grade scale. This technique quickly supplies images of adequate quality to depict intracranial aneurysms and distal vessel patency after aneurysm clipping. Regarding these features, a further optimization to our previous protocol seems possible lowering the voltage and increasing tube current. For quick intraoperative assessment, image subtraction seems not necessary. Thus, a native scan without a contrast agent is not necessary. Further optimization may be possible using a different contrast injection protocol. KW - 3D fluoroscopy KW - aneurysm KW - fluoroscopy KW - intraoperative imaging Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259251 VL - 26 IS - 1 ER - TY - JOUR A1 - Rodrigues, Johannes A1 - Weiß, Martin A1 - Hewig, Johannes A1 - Allen, John J. B. T1 - EPOS: EEG Processing Open-Source Scripts JF - Frontiers in Neuroscience N2 - Background: Since the replication crisis, standardization has become even more important in psychological science and neuroscience. As a result, many methods are being reconsidered, and researchers’ degrees of freedom in these methods are being discussed as a potential source of inconsistencies across studies. New Method: With the aim of addressing these subjectivity issues, we have been working on a tutorial-like EEG (pre-)processing pipeline to achieve an automated method based on the semi-automated analysis proposed by Delorme and Makeig. Results: Two scripts are presented and explained step-by-step to perform basic, informed ERP and frequency-domain analyses, including data export to statistical programs and visual representations of the data. The open-source software EEGlab in MATLAB is used as the data handling platform, but scripts based on code provided by Mike Cohen (2014) are also included. Comparison with existing methods: This accompanying tutorial-like article explains and shows how the processing of our automated pipeline affects the data and addresses, especially beginners in EEG-analysis, as other (pre)-processing chains are mostly targeting rather informed users in specialized areas or only parts of a complete procedure. In this context, we compared our pipeline with a selection of existing approaches. Conclusion: The need for standardization and replication is evident, yet it is equally important to control the plausibility of the suggested solution by data exploration. Here, we provide the community with a tool to enhance the understanding and capability of EEG-analysis. We aim to contribute to comprehensive and reliable analyses for neuro-scientific research. KW - EEG KW - electroencephalography KW - event-related potentials-ERP KW - EEG processing KW - EEG preprocessing KW - EEG frequency band analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240221 SN - 1662-453X VL - 15 ER - TY - JOUR A1 - Hirth, Matthias A1 - Seufert, Michael A1 - Lange, Stanislav A1 - Meixner, Markus A1 - Tran-Gia, Phuoc T1 - Performance evaluation of hybrid crowdsensing and fixed sensor systems for event detection in urban environments JF - Sensors N2 - Crowdsensing offers a cost-effective way to collect large amounts of environmental sensor data; however, the spatial distribution of crowdsensing sensors can hardly be influenced, as the participants carry the sensors, and, additionally, the quality of the crowdsensed data can vary significantly. Hybrid systems that use mobile users in conjunction with fixed sensors might help to overcome these limitations, as such systems allow assessing the quality of the submitted crowdsensed data and provide sensor values where no crowdsensing data are typically available. In this work, we first used a simulation study to analyze a simple crowdsensing system concerning the detection performance of spatial events to highlight the potential and limitations of a pure crowdsourcing system. The results indicate that even if only a small share of inhabitants participate in crowdsensing, events that have locations correlated with the population density can be easily and quickly detected using such a system. On the contrary, events with uniformly randomly distributed locations are much harder to detect using a simple crowdsensing-based approach. A second evaluation shows that hybrid systems improve the detection probability and time. Finally, we illustrate how to compute the minimum number of fixed sensors for the given detection time thresholds in our exemplary scenario. KW - crowdsensing KW - event detection KW - detection time simulation KW - performance analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245245 SN - 1424-8220 VL - 21 IS - 17 ER - TY - JOUR A1 - Scherer, Marc A1 - Fleishman, Sarel J. A1 - Jones, Patrik R. A1 - Dandekar, Thomas A1 - Bencurova, Elena T1 - Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals JF - Frontiers in Bioengineering and Biotechnology N2 - To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways. KW - computational KW - enzyme KW - engineering KW - design KW - biomanufacturing KW - biofuel KW - microbes KW - metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240598 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Kammerer, Klaus A1 - Göster, Manuel A1 - Reichert, Manfred A1 - Pryss, Rüdiger T1 - Ambalytics: a scalable and distributed system architecture concept for bibliometric network analyses JF - Future Internet N2 - A deep understanding about a field of research is valuable for academic researchers. In addition to technical knowledge, this includes knowledge about subareas, open research questions, and social communities (networks) of individuals and organizations within a given field. With bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research area by using bibliographic information on academic publications provided by bibliographic data providers. Bibliometric analyses include the calculation of bibliometric networks to describe affiliations or similarities of bibliometric entities (e.g., authors) and group them into clusters representing subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and time-consuming data science task that requires highly skilled individuals. In addition to domain knowledge, researchers must often provide statistical knowledge and programming skills or use software tools having limited functionality and usability. In this paper, we present the ambalytics bibliometric platform, which reduces the complexity of bibliometric network analysis and the visualization of results. It accompanies users through the process of bibliometric analysis and eliminates the need for individuals to have programming skills and statistical knowledge, while preserving advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed systems concepts and technologies. It is based on the microservice architecture concept and uses the Kubernetes framework for orchestration. This paper presents the initial building block of a comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for users as well as scalability. KW - system architecture design KW - bibliometric analysis KW - community detection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244916 SN - 1999-5903 VL - 13 IS - 8 ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Birnstiel, Sandra A1 - Latoschik, Marc Erich A1 - Grafe, Silke T1 - Mutual Benefits: Interdisciplinary Education of Pre-Service Teachers and HCI Students in VR/AR Learning Environment Design JF - Frontiers in Education N2 - The successful development and classroom integration of Virtual (VR) and Augmented Reality (AR) learning environments requires competencies and content knowledge with respect to media didactics and the respective technologies. The paper discusses a pedagogical concept specifically aiming at the interdisciplinary education of pre-service teachers in collaboration with human-computer interaction students. The students’ overarching goal is the interdisciplinary realization and integration of VR/AR learning environments in teaching and learning concepts. To assist this approach, we developed a specific tutorial guiding the developmental process. We evaluate and validate the effectiveness of the overall pedagogical concept by analyzing the change in attitudes regarding 1) the use of VR/AR for educational purposes and in competencies and content knowledge regarding 2) media didactics and 3) technology. Our results indicate a significant improvement in the knowledge of media didactics and technology. We further report on four STEM learning environments that have been developed during the seminar. KW - interdisciplinary education KW - virtual reality KW - augmented reality KW - serious games KW - learning environments KW - teacher education Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241612 SN - 2504-284X VL - 6 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Kern, Florian A1 - Kullmann, Peter A1 - Ganal, Elisabeth A1 - Korwisi, Kristof A1 - Stingl, René A1 - Niebling, Florian A1 - Latoschik, Marc Erich T1 - Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces JF - Frontiers in Virtual Reality N2 - This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and surface interaction features. 3) The evaluation suite provides a comprehensive test bed combining technical measurements for precision, accuracy, and latency with extensive usability evaluations including handwriting and sketching tasks based on established visuomotor, graphomotor, and handwriting research. The framework’s development is accompanied by an extensive open source reference implementation targeting the Unity game engine using an Oculus Rift S headset and Oculus Touch controllers. The development compares three low-cost and low-tech options to equip controllers with a tip and includes a web browser-based surface providing support for interacting, handwriting, and sketching. The evaluation of the reference implementation based on the OTSS framework identified an average stylus precision of 0.98 mm (SD = 0.54 mm) and an average surface accuracy of 0.60 mm (SD = 0.32 mm) in a seated VR environment. The time for displaying the stylus movement as digital ink on the web browser surface in VR was 79.40 ms on average (SD = 23.26 ms), including the physical controller’s motion-to-photon latency visualized by its virtual representation (M = 42.57 ms, SD = 15.70 ms). The usability evaluation (N = 10) revealed a low task load, high usability, and high user experience. Participants successfully reproduced given shapes and created legible handwriting, indicating that the OTSS and it’s reference implementation is ready for everyday use. We provide source code access to our implementation, including stylus and surface calibration and surface interaction features, making it easy to reuse, extend, adapt and/or replicate previous results (https://go.uniwue.de/hci-otss). KW - virtual reality KW - augmented reality KW - handwriting KW - sketching KW - stylus KW - user interaction KW - usability evaluation KW - passive haptic feedback Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260219 VL - 2 ER - TY - JOUR A1 - Bartl, Andrea A1 - Wenninger, Stephan A1 - Wolf, Erik A1 - Botsch, Mario A1 - Latoschik, Marc Erich T1 - Affordable but not cheap: a case study of the effects of two 3D-reconstruction methods of virtual humans JF - Frontiers in Virtual Reality N2 - Realistic and lifelike 3D-reconstruction of virtual humans has various exciting and important use cases. Our and others’ appearances have notable effects on ourselves and our interaction partners in virtual environments, e.g., on acceptance, preference, trust, believability, behavior (the Proteus effect), and more. Today, multiple approaches for the 3D-reconstruction of virtual humans exist. They significantly vary in terms of the degree of achievable realism, the technical complexities, and finally, the overall reconstruction costs involved. This article compares two 3D-reconstruction approaches with very different hardware requirements. The high-cost solution uses a typical complex and elaborated camera rig consisting of 94 digital single-lens reflex (DSLR) cameras. The recently developed low-cost solution uses a smartphone camera to create videos that capture multiple views of a person. Both methods use photogrammetric reconstruction and template fitting with the same template model and differ in their adaptation to the method-specific input material. Each method generates high-quality virtual humans ready to be processed, animated, and rendered by standard XR simulation and game engines such as Unreal or Unity. We compare the results of the two 3D-reconstruction methods in an immersive virtual environment against each other in a user study. Our results indicate that the virtual humans from the low-cost approach are perceived similarly to those from the high-cost approach regarding the perceived similarity to the original, human-likeness, beauty, and uncanniness, despite significant differences in the objectively measured quality. The perceived feeling of change of the own body was higher for the low-cost virtual humans. Quality differences were perceived more strongly for one’s own body than for other virtual humans. KW - virtual humans KW - 3D-reconstruction methods KW - avatars KW - agents KW - user study Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260492 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Latoschik, Marc Erich T1 - eXtended Artificial Intelligence: New Prospects of Human-AI Interaction Research JF - Frontiers in Virtual Reality N2 - Artificial Intelligence (AI) covers a broad spectrum of computational problems and use cases. Many of those implicate profound and sometimes intricate questions of how humans interact or should interact with AIs. Moreover, many users or future users do have abstract ideas of what AI is, significantly depending on the specific embodiment of AI applications. Human-centered-design approaches would suggest evaluating the impact of different embodiments on human perception of and interaction with AI. An approach that is difficult to realize due to the sheer complexity of application fields and embodiments in reality. However, here XR opens new possibilities to research human-AI interactions. The article’s contribution is twofold: First, it provides a theoretical treatment and model of human-AI interaction based on an XR-AI continuum as a framework for and a perspective of different approaches of XR-AI combinations. It motivates XR-AI combinations as a method to learn about the effects of prospective human-AI interfaces and shows why the combination of XR and AI fruitfully contributes to a valid and systematic investigation of human-AI interactions and interfaces. Second, the article provides two exemplary experiments investigating the aforementioned approach for two distinct AI-systems. The first experiment reveals an interesting gender effect in human-robot interaction, while the second experiment reveals an Eliza effect of a recommender system. Here the article introduces two paradigmatic implementations of the proposed XR testbed for human-AI interactions and interfaces and shows how a valid and systematic investigation can be conducted. In sum, the article opens new perspectives on how XR benefits human-centered AI design and development. KW - human-artificial intelligence interface KW - human-artificial intelligence interaction KW - XR-artificial intelligence continuum KW - XR-artificial intelligence combination KW - research methods KW - human-centered, human-robot KW - recommender system Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260296 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Carolus, Astrid T1 - Development of an Instrument to Measure Conceptualizations and Competencies About Conversational Agents on the Example of Smart Speakers JF - Frontiers in Computer Science N2 - The concept of digital literacy has been introduced as a new cultural technique, which is regarded as essential for successful participation in a (future) digitized world. Regarding the increasing importance of AI, literacy concepts need to be extended to account for AI-related specifics. The easy handling of the systems results in increased usage, contrasting limited conceptualizations (e.g., imagination of future importance) and competencies (e.g., knowledge about functional principles). In reference to voice-based conversational agents as a concrete application of AI, the present paper aims for the development of a measurement to assess the conceptualizations and competencies about conversational agents. In a first step, a theoretical framework of “AI literacy” is transferred to the context of conversational agent literacy. Second, the “conversational agent literacy scale” (short CALS) is developed, constituting the first attempt to measure interindividual differences in the “(il) literate” usage of conversational agents. 29 items were derived, of which 170 participants answered. An explanatory factor analysis identified five factors leading to five subscales to assess CAL: storage and transfer of the smart speaker’s data input; smart speaker’s functional principles; smart speaker’s intelligent functions, learning abilities; smart speaker’s reach and potential; smart speaker’s technological (surrounding) infrastructure. Preliminary insights into construct validity and reliability of CALS showed satisfying results. Third, using the newly developed instrument, a student sample’s CAL was assessed, revealing intermediated values. Remarkably, owning a smart speaker did not lead to higher CAL scores, confirming our basic assumption that usage of systems does not guarantee enlightened conceptualizations and competencies. In sum, the paper contributes to the first insights into the operationalization and understanding of CAL as a specific subdomain of AI-related competencies. KW - artificial intelligence literacy KW - artificial intelligence education KW - voice-based artificial intelligence KW - conversational agents KW - measurement Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260198 VL - 3 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Reitelbach, Clemens A1 - Carolus, Astrid T1 - The Trustworthiness of Voice Assistants in the Context of Healthcare Investigating the Effect of Perceived Expertise on the Trustworthiness of Voice Assistants, Providers, Data Receivers, and Automatic Speech Recognition JF - Frontiers in Computer Science N2 - As an emerging market for voice assistants (VA), the healthcare sector imposes increasing requirements on the users’ trust in the technological system. To encourage patients to reveal sensitive data requires patients to trust in the technological counterpart. In an experimental laboratory study, participants were presented a VA, which was introduced as either a “specialist” or a “generalist” tool for sexual health. In both conditions, the VA asked the exact same health-related questions. Afterwards, participants assessed the trustworthiness of the tool and further source layers (provider, platform provider, automatic speech recognition in general, data receiver) and reported individual characteristics (disposition to trust and disclose sexual information). Results revealed that perceiving the VA as a specialist resulted in higher trustworthiness of the VA and of the provider, the platform provider and automatic speech recognition in general. Furthermore, the provider’s trustworthiness affected the perceived trustworthiness of the VA. Presenting both a theoretical line of reasoning and empirical data, the study points out the importance of the users’ perspective on the assistant. In sum, this paper argues for further analyses of trustworthiness in voice-based systems and its effects on the usage behavior as well as the impact on responsible design of future technology. KW - voice assistant KW - trustworthiness KW - trust KW - anamnesis tool KW - expertise framing (Min5-Max 8) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260209 VL - 3 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Komma, Philipp A1 - Vogt, Stephanie A1 - Latoschik, Marc E. T1 - Spatial Presence in Mixed Realities – Considerations About the Concept, Measures, Design, and Experiments JF - Frontiers in Virtual Reality N2 - Plenty of theories, models, measures, and investigations target the understanding of virtual presence, i.e., the sense of presence in immersive Virtual Reality (VR). Other varieties of the so-called eXtended Realities (XR), e.g., Augmented and Mixed Reality (AR and MR) incorporate immersive features to a lesser degree and continuously combine spatial cues from the real physical space and the simulated virtual space. This blurred separation questions the applicability of the accumulated knowledge about the similarities of virtual presence and presence occurring in other varieties of XR, and corresponding outcomes. The present work bridges this gap by analyzing the construct of presence in mixed realities (MR). To achieve this, the following presents (1) a short review of definitions, dimensions, and measurements of presence in VR, and (2) the state of the art views on MR. Additionally, we (3) derived a working definition of MR, extending the Milgram continuum. This definition is based on entities reaching from real to virtual manifestations at one time point. Entities possess different degrees of referential power, determining the selection of the frame of reference. Furthermore, we (4) identified three research desiderata, including research questions about the frame of reference, the corresponding dimension of transportation, and the dimension of realism in MR. Mainly the relationship between the main aspects of virtual presence of immersive VR, i.e., the place-illusion, and the plausibility-illusion, and of the referential power of MR entities are discussed regarding the concept, measures, and design of presence in MR. Finally, (5) we suggested an experimental setup to reveal the research heuristic behind experiments investigating presence in MR. The present work contributes to the theories and the meaning of and approaches to simulate and measure presence in MR. We hypothesize that research about essential underlying factors determining user experience (UX) in MR simulations and experiences is still in its infancy and hopes this article provides an encouraging starting point to tackle related questions. KW - mixed reality KW - virtual-reality-continuum KW - spatial presence KW - place-illusion KW - plausibility-illusion KW - transportation KW - realism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260328 VL - 2 ER - TY - JOUR A1 - Glémarec, Yann A1 - Lugrin, Jean-Luc A1 - Bosser, Anne-Gwenn A1 - Collins Jackson, Aryana A1 - Buche, Cédric A1 - Latoschik, Marc Erich T1 - Indifferent or Enthusiastic? Virtual Audiences Animation and Perception in Virtual Reality JF - Frontiers in Virtual Reality N2 - In this paper, we present a virtual audience simulation system for Virtual Reality (VR). The system implements an audience perception model controlling the nonverbal behaviors of virtual spectators, such as facial expressions or postures. Groups of virtual spectators are animated by a set of nonverbal behavior rules representing a particular audience attitude (e.g., indifferent or enthusiastic). Each rule specifies a nonverbal behavior category: posture, head movement, facial expression and gaze direction as well as three parameters: type, frequency and proportion. In a first user-study, we asked participants to pretend to be a speaker in VR and then create sets of nonverbal behaviour parameters to simulate different attitudes. Participants manipulated the nonverbal behaviours of single virtual spectator to match a specific levels of engagement and opinion toward them. In a second user-study, we used these parameters to design different types of virtual audiences with our nonverbal behavior rules and evaluated their perceptions. Our results demonstrate our system’s ability to create virtual audiences with three types of different perceived attitudes: indifferent, critical, enthusiastic. The analysis of the results also lead to a set of recommendations and guidelines regarding attitudes and expressions for future design of audiences for VR therapy and training applications. KW - virtual reality KW - perception KW - nonverbal behavior KW - interaction KW - virtual agent KW - virtual audience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259328 VL - 2 ER - TY - JOUR A1 - Hein, Rebecca M. A1 - Wienrich, Carolin A1 - Latoschik, Marc E. T1 - A systematic review of foreign language learning with immersive technologies (2001-2020) JF - AIMS Electronics and Electrical Engineering N2 - This study provides a systematic literature review of research (2001–2020) in the field of teaching and learning a foreign language and intercultural learning using immersive technologies. Based on 2507 sources, 54 articles were selected according to a predefined selection criteria. The review is aimed at providing information about which immersive interventions are being used for foreign language learning and teaching and where potential research gaps exist. The papers were analyzed and coded according to the following categories: (1) investigation form and education level, (2) degree of immersion, and technology used, (3) predictors, and (4) criterions. The review identified key research findings relating the use of immersive technologies for learning and teaching a foreign language and intercultural learning at cognitive, affective, and conative levels. The findings revealed research gaps in the area of teachers as a target group, and virtual reality (VR) as a fully immersive intervention form. Furthermore, the studies reviewed rarely examined behavior, and implicit measurements related to inter- and trans-cultural learning and teaching. Inter- and transcultural learning and teaching especially is an underrepresented investigation subject. Finally, concrete suggestions for future research are given. The systematic review contributes to the challenge of interdisciplinary cooperation between pedagogy, foreign language didactics, and Human-Computer Interaction to achieve innovative teaching-learning formats and a successful digital transformation. KW - foreign language learning and teaching KW - intercultural learning and teaching KW - immersive technologies KW - education KW - human-computer interaction KW - systematic literature review Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268811 VL - 5 IS - 2 ER - TY - JOUR A1 - Dumic, Emil A1 - Bjelopera, Anamaria A1 - Nüchter, Andreas T1 - Dynamic point cloud compression based on projections, surface reconstruction and video compression JF - Sensors N2 - In this paper we will present a new dynamic point cloud compression based on different projection types and bit depth, combined with the surface reconstruction algorithm and video compression for obtained geometry and texture maps. Texture maps have been compressed after creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture (H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction algorithm. Comparison with the original point clouds was performed using point-to-point and point-to-plane measures. Comprehensive experiments show better performance for some projection maps: cylindrical, Miller and Mercator projections. KW - 3DTK toolkit KW - map projections KW - point cloud compression KW - point-to-point measure KW - point-to-plane measure KW - Poisson surface reconstruction KW - octree Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252231 SN - 1424-8220 VL - 22 IS - 1 ER - TY - JOUR A1 - Madeira, Octavia A1 - Gromer, Daniel A1 - Latoschik, Marc Erich A1 - Pauli, Paul T1 - Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze JF - Frontiers in Virtual Reality N2 - The Elevated Plus-Maze (EPM) is a well-established apparatus to measure anxiety in rodents, i.e., animals exhibiting an increased relative time spent in the closed vs. the open arms are considered anxious. To examine whether such anxiety-modulated behaviors are conserved in humans, we re-translated this paradigm to a human setting using virtual reality in a Cave Automatic Virtual Environment (CAVE) system. In two studies, we examined whether the EPM exploration behavior of humans is modulated by their trait anxiety and also assessed the individuals’ levels of acrophobia (fear of height), claustrophobia (fear of confined spaces), sensation seeking, and the reported anxiety when on the maze. First, we constructed an exact virtual copy of the animal EPM adjusted to human proportions. In analogy to animal EPM studies, participants (N = 30) freely explored the EPM for 5 min. In the second study (N = 61), we redesigned the EPM to make it more human-adapted and to differentiate influences of trait anxiety and acrophobia by introducing various floor textures and lower walls of closed arms to the height of standard handrails. In the first experiment, hierarchical regression analyses of exploration behavior revealed the expected association between open arm avoidance and Trait Anxiety, an even stronger association with acrophobic fear. In the second study, results revealed that acrophobia was associated with avoidance of open arms with mesh-floor texture, whereas for trait anxiety, claustrophobia, and sensation seeking, no effect was detected. Also, subjects’ fear rating was moderated by all psychometrics but trait anxiety. In sum, both studies consistently indicate that humans show no general open arm avoidance analogous to rodents and that human EPM behavior is modulated strongest by acrophobic fear, whereas trait anxiety plays a subordinate role. Thus, we conclude that the criteria for cross-species validity are met insufficiently in this case. Despite the exploratory nature, our studies provide in-depth insights into human exploration behavior on the virtual EPM. KW - elevated plus-maze KW - EPM KW - anxiety KW - virtual reality KW - translational neuroscience KW - acrophobia KW - trait anxiety Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258709 VL - 2 ER - TY - JOUR A1 - Wienrich, Carolin A1 - Döllinger, Nina A1 - Hein, Rebecca T1 - Behavioral Framework of Immersive Technologies (BehaveFIT): How and why virtual reality can support behavioral change processes JF - Frontiers in Virtual Reality N2 - The design and evaluation of assisting technologies to support behavior change processes have become an essential topic within the field of human-computer interaction research in general and the field of immersive intervention technologies in particular. The mechanisms and success of behavior change techniques and interventions are broadly investigated in the field of psychology. However, it is not always easy to adapt these psychological findings to the context of immersive technologies. The lack of theoretical foundation also leads to a lack of explanation as to why and how immersive interventions support behavior change processes. The Behavioral Framework for immersive Technologies (BehaveFIT) addresses this lack by 1) presenting an intelligible categorization and condensation of psychological barriers and immersive features, by 2) suggesting a mapping that shows why and how immersive technologies can help to overcome barriers and finally by 3) proposing a generic prediction path that enables a structured, theory-based approach to the development and evaluation of immersive interventions. These three steps explain how BehaveFIT can be used, and include guiding questions for each step. Further, two use cases illustrate the usage of BehaveFIT. Thus, the present paper contributes to guidance for immersive intervention design and evaluation, showing that immersive interventions support behavior change processes and explain and predict 'why' and 'how' immersive interventions can bridge the intention-behavior-gap. KW - immersive technologies KW - behavior change KW - intervention design KW - intervention evaluation KW - framework KW - virtual reality KW - intention-behavior-gap KW - human-computer interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258796 VL - 2 ER - TY - JOUR A1 - Kraft, Robin A1 - Reichert, Manfred A1 - Pryss, Rüdiger T1 - Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: an experiment with Android devices JF - Sensors N2 - The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users' individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable. KW - mHealth KW - crowdsensing KW - tinnitus KW - noise measurement KW - environmental sound Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252246 SN - 1424-8220 VL - 22 IS - 1 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Shainberg, Liliia A1 - Hock, Michael A1 - Lohr, David A1 - Schreiber, Laura M. T1 - Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI JF - BMC Medical Imaging N2 - Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable. KW - deep learning KW - neural networks KW - cardiac magnetic resonance KW - sensitivity analysis KW - transformations KW - augmentation KW - segmentation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259169 VL - 21 IS - 1 ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Heidrich, David A1 - Birnstiel, Sandra A1 - Latoschik, Marc Erich T1 - Enchanted by Your Surrounding? Measuring the Effects of Immersion and Design of Virtual Environments on Decision-Making JF - Frontiers in Virtual Reality N2 - Impaired decision-making leads to the inability to distinguish between advantageous and disadvantageous choices. The impairment of a person’s decision-making is a common goal of gambling games. Given the recent trend of gambling using immersive Virtual Reality it is crucial to investigate the effects of both immersion and the virtual environment (VE) on decision-making. In a novel user study, we measured decision-making using three virtual versions of the Iowa Gambling Task (IGT). The versions differed with regard to the degree of immersion and design of the virtual environment. While emotions affect decision-making, we further measured the positive and negative affect of participants. A higher visual angle on a stimulus leads to an increased emotional response. Thus, we kept the visual angle on the Iowa Gambling Task the same between our conditions. Our results revealed no significant impact of immersion or the VE on the IGT. We further found no significant difference between the conditions with regard to positive and negative affect. This suggests that neither the medium used nor the design of the VE causes an impairment of decision-making. However, in combination with a recent study, we provide first evidence that a higher visual angle on the IGT leads to an effect of impairment. KW - virtual reality KW - virtual environments KW - immersion KW - decision-making KW - iowa gambling task Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260101 VL - 2 ER - TY - JOUR A1 - Breves, Priska A1 - Dodel, Nicola T1 - The influence of cybersickness and the media devices’ mobility on the persuasive effects of 360° commercials JF - Multimedia Tools and Applications N2 - With the rise of immersive media, advertisers have started to use 360° commercials to engage and persuade consumers. Two experiments were conducted to address research gaps and to validate the positive impact of 360° commercials in realistic settings. The first study (N = 62) compared the effects of 360° commercials using either a mobile cardboard head-mounted display (HMD) or a laptop. This experiment was conducted in the participants’ living rooms and incorporated individual feelings of cybersickness as a moderator. The participants who experienced the 360° commercial with the HMD reported higher spatial presence and product evaluation, but their purchase intentions were only increased when their reported cybersickness was low. The second experiment (N = 197) was conducted online and analyzed the impact of 360° commercials that were experienced with mobile (smartphone/tablet) or static (laptop/desktop) devices instead of HMDs. The positive effects of omnidirectional videos were stronger when participants used mobile devices. KW - virtual reality KW - immersive advertising KW - spatial presence KW - cybersickness KW - advertising effectiveness Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269194 SN - 1573-7721 VL - 80 IS - 18 ER - TY - JOUR A1 - Steininger, Michael A1 - Kobs, Konstantin A1 - Davidson, Padraig A1 - Krause, Anna A1 - Hotho, Andreas T1 - Density-based weighting for imbalanced regression JF - Machine Learning N2 - In many real world settings, imbalanced data impedes model performance of learning algorithms, like neural networks, mostly for rare cases. This is especially problematic for tasks focusing on these rare occurrences. For example, when estimating precipitation, extreme rainfall events are scarce but important considering their potential consequences. While there are numerous well studied solutions for classification settings, most of them cannot be applied to regression easily. Of the few solutions for regression tasks, barely any have explored cost-sensitive learning which is known to have advantages compared to sampling-based methods in classification tasks. In this work, we propose a sample weighting approach for imbalanced regression datasets called DenseWeight and a cost-sensitive learning approach for neural network regression with imbalanced data called DenseLoss based on our weighting scheme. DenseWeight weights data points according to their target value rarities through kernel density estimation (KDE). DenseLoss adjusts each data point’s influence on the loss according to DenseWeight, giving rare data points more influence on model training compared to common data points. We show on multiple differently distributed datasets that DenseLoss significantly improves model performance for rare data points through its density-based weighting scheme. Additionally, we compare DenseLoss to the state-of-the-art method SMOGN, finding that our method mostly yields better performance. Our approach provides more control over model training as it enables us to actively decide on the trade-off between focusing on common or rare cases through a single hyperparameter, allowing the training of better models for rare data points. KW - supervised learning KW - imbalanced regression KW - cost-sensitive learning KW - sample weighting KW - Kerneldensity estimation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269177 SN - 1573-0565 VL - 110 IS - 8 ER - TY - JOUR A1 - Holfelder, Marc A1 - Mulansky, Lena A1 - Schlee, Winfried A1 - Baumeister, Harald A1 - Schobel, Johannes A1 - Greger, Helmut A1 - Hoff, Andreas A1 - Pryss, Rüdiger T1 - Medical device regulation efforts for mHealth apps during the COVID-19 pandemic — an experience report of Corona Check and Corona Health JF - J — Multidisciplinary Scientific Journal N2 - Within the healthcare environment, mobile health (mHealth) applications (apps) are becoming more and more important. The number of new mHealth apps has risen steadily in the last years. Especially the COVID-19 pandemic has led to an enormous amount of app releases. In most countries, mHealth applications have to be compliant with several regulatory aspects to be declared a “medical app”. However, the latest applicable medical device regulation (MDR) does not provide more details on the requirements for mHealth applications. When developing a medical app, it is essential that all contributors in an interdisciplinary team — especially software engineers — are aware of the specific regulatory requirements beforehand. The development process, however, should not be stalled due to integration of the MDR. Therefore, a developing framework that includes these aspects is required to facilitate a reliable and quick development process. The paper at hand introduces the creation of such a framework on the basis of the Corona Health and Corona Check apps. The relevant regulatory guidelines are listed and summarized as a guidance for medical app developments during the pandemic and beyond. In particular, the important stages and challenges faced that emerged during the entire development process are highlighted. KW - mHealth KW - mobile application KW - MDR KW - medical device regulation KW - medical device software Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285434 SN - 2571-8800 VL - 4 IS - 2 SP - 206 EP - 222 ER - TY - JOUR A1 - Koopmann, Tobias A1 - Stubbemann, Maximilian A1 - Kapa, Matthias A1 - Paris, Michael A1 - Buenstorf, Guido A1 - Hanika, Tom A1 - Hotho, Andreas A1 - Jäschke, Robert A1 - Stumme, Gerd T1 - Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research JF - Scientometrics N2 - Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity. KW - collaboration KW - dimensions of proximity KW - co-authorships KW - co-inventorships KW - embedding techniques Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269831 SN - 1588-2861 VL - 126 IS - 12 ER - TY - JOUR A1 - Schlör, Daniel A1 - Ring, Markus A1 - Hotho, Andreas T1 - iNALU: Improved Neural Arithmetic Logic Unit JF - Frontiers in Artificial Intelligence N2 - Neural networks have to capture mathematical relationships in order to learn various tasks. They approximate these relations implicitly and therefore often do not generalize well. The recently proposed Neural Arithmetic Logic Unit (NALU) is a novel neural architecture which is able to explicitly represent the mathematical relationships by the units of the network to learn operations such as summation, subtraction or multiplication. Although NALUs have been shown to perform well on various downstream tasks, an in-depth analysis reveals practical shortcomings by design, such as the inability to multiply or divide negative input values or training stability issues for deeper networks. We address these issues and propose an improved model architecture. We evaluate our model empirically in various settings from learning basic arithmetic operations to more complex functions. Our experiments indicate that our model solves stability issues and outperforms the original NALU model in means of arithmetic precision and convergence. KW - neural networks KW - machine learning KW - arithmetic calculations KW - neural architecture KW - experimental evaluation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212301 SN - 2624-8212 VL - 3 ER - TY - JOUR A1 - Li, Ningbo A1 - Guan, Lianwu A1 - Gao, Yanbin A1 - Du, Shitong A1 - Wu, Menghao A1 - Guang, Xingxing A1 - Cong, Xiaodan T1 - Indoor and outdoor low-cost seamless integrated navigation system based on the integration of INS/GNSS/LIDAR system JF - Remote Sensing N2 - Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80% success rate in navigation mode switching. KW - vehicular navigation KW - GNSS/INS integrated navigation KW - INS/LIDAR integrated navigation KW - switching navigation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216229 SN - 2072-4292 VL - 12 IS - 19 ER - TY - JOUR A1 - Kraft, Robin A1 - Birk, Ferdinand A1 - Reichert, Manfred A1 - Deshpande, Aniruddha A1 - Schlee, Winfried A1 - Langguth, Berthold A1 - Baumeister, Harald A1 - Probst, Thomas A1 - Spiliopoulou, Myra A1 - Pryss, Rüdiger T1 - Efficient processing of geospatial mHealth data using a scalable crowdsensing platform JF - Sensors N2 - Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case. KW - mHealth KW - crowdsensing KW - tinnitus KW - geospatial data KW - cloud-native KW - stream processing KW - scalability KW - architectural design Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207826 SN - 1424-8220 VL - 20 IS - 12 ER - TY - JOUR A1 - Davidson, Padraig A1 - Düking, Peter A1 - Zinner, Christoph A1 - Sperlich, Billy A1 - Hotho, Andreas T1 - Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study JF - Sensors N2 - The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 “Somewhat hard to hard” on Borg’s 6–20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 % for the whole dataset, 81.8 % for the trained runners, and 86.1 % for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions. KW - artificial intelligence KW - endurance KW - exercise intensity KW - precision training KW - prediction KW - wearable Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205686 SN - 1424-8220 VL - 20 IS - 9 ER - TY - JOUR A1 - Kammerer, Klaus A1 - Pryss, Rüdiger A1 - Hoppenstedt, Burkhard A1 - Sommer, Kevin A1 - Reichert, Manfred T1 - Process-driven and flow-based processing of industrial sensor data JF - Sensors N2 - For machine manufacturing companies, besides the production of high quality and reliable machines, requirements have emerged to maintain machine-related aspects through digital services. The development of such services in the field of the Industrial Internet of Things (IIoT) is dealing with solutions such as effective condition monitoring and predictive maintenance. However, appropriate data sources are needed on which digital services can be technically based. As many powerful and cheap sensors have been introduced over the last years, their integration into complex machines is promising for developing digital services for various scenarios. It is apparent that for components handling recorded data of these sensors they must usually deal with large amounts of data. In particular, the labeling of raw sensor data must be furthered by a technical solution. To deal with these data handling challenges in a generic way, a sensor processing pipeline (SPP) was developed, which provides effective methods to capture, process, store, and visualize raw sensor data based on a processing chain. Based on the example of a machine manufacturing company, the SPP approach is presented in this work. For the company involved, the approach has revealed promising results. KW - data stream processing KW - cyber-physical systems KW - processing pipeline KW - sensor networks Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213089 SN - 1424-8220 VL - 20 IS - 18 ER - TY - JOUR A1 - Krupitzer, Christian A1 - Eberhardinger, Benedikt A1 - Gerostathopoulos, Ilias A1 - Raibulet, Claudia T1 - Introduction to the special issue “Applications in Self-Aware Computing Systems and their Evaluation” JF - Computers N2 - The joint 1st Workshop on Evaluations and Measurements in Self-Aware Computing Systems (EMSAC 2019) and Workshop on Self-Aware Computing (SeAC) was held as part of the FAS* conference alliance in conjunction with the 16th IEEE International Conference on Autonomic Computing (ICAC) and the 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) in Umeå, Sweden on 20 June 2019. The goal of this one-day workshop was to bring together researchers and practitioners from academic environments and from the industry to share their solutions, ideas, visions, and doubts in self-aware computing systems in general and in the evaluation and measurements of such systems in particular. The workshop aimed to enable discussions, partnerships, and collaborations among the participants. This special issue follows the theme of the workshop. It contains extended versions of workshop presentations as well as additional contributions. KW - self-aware computing systems KW - quality evaluation KW - measurements KW - quality assurance KW - autonomous KW - self-adaptive KW - self-managing systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203439 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Kaiser, Dennis A1 - Lesch, Veronika A1 - Rothe, Julian A1 - Strohmeier, Michael A1 - Spieß, Florian A1 - Krupitzer, Christian A1 - Montenegro, Sergio A1 - Kounev, Samuel T1 - Towards Self-Aware Multirotor Formations JF - Computers N2 - In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios. KW - self-aware computing KW - unmanned aerial vehicles KW - multirotors KW - quadcopters KW - intelligent transportation systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200572 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Grohmann, Johannes A1 - Herbst, Nikolas A1 - Chalbani, Avi A1 - Arian, Yair A1 - Peretz, Noam A1 - Kounev, Samuel T1 - A Taxonomy of Techniques for SLO Failure Prediction in Software Systems JF - Computers N2 - Failure prediction is an important aspect of self-aware computing systems. Therefore, a multitude of different approaches has been proposed in the literature over the past few years. In this work, we propose a taxonomy for organizing works focusing on the prediction of Service Level Objective (SLO) failures. Our taxonomy classifies related work along the dimensions of the prediction target (e.g., anomaly detection, performance prediction, or failure prediction), the time horizon (e.g., detection or prediction, online or offline application), and the applied modeling type (e.g., time series forecasting, machine learning, or queueing theory). The classification is derived based on a systematic mapping of relevant papers in the area. Additionally, we give an overview of different techniques in each sub-group and address remaining challenges in order to guide future research. KW - taxonomy KW - survey KW - failure prediction KW - anomaly prediction KW - anomaly detection KW - self-aware computing KW - self-adaptive systems KW - performance prediction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200594 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Du, Shitong A1 - Lauterbach, Helge A. A1 - Li, Xuyou A1 - Demisse, Girum G. A1 - Borrmann, Dorit A1 - Nüchter, Andreas T1 - Curvefusion — A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration JF - Sensors N2 - Mapping and localization of mobile robots in an unknown environment are essential for most high-level operations like autonomous navigation or exploration. This paper presents a novel approach for combining estimated trajectories, namely curvefusion. The robot used in the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D laser scanner and a GPS module. The proposed algorithm first combines trajectories from different sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods, our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories. Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor time calibration. Experiments show that the proposed fusion method can achieve relatively better accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method can still maintain a certain degree of accuracy in an environment where typical pose estimation methods have poor performance. In addition, the proposed time-calibration method also achieves high accuracy in estimating point correspondences. KW - mapping KW - continuous-time SLAM KW - deformation-based method KW - time calibration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219988 SN - 1424-8220 VL - 20 IS - 23 ER - TY - JOUR A1 - Gehrke, Alexander A1 - Balbach, Nico A1 - Rauch, Yong-Mi A1 - Degkwitz, Andreas A1 - Puppe, Frank T1 - Erkennung von handschriftlichen Unterstreichungen in Alten Drucken JF - Bibliothek Forschung und Praxis N2 - Die Erkennung handschriftlicher Artefakte wie Unterstreichungen in Buchdrucken ermöglicht Rückschlüsse auf das Rezeptionsverhalten und die Provenienzgeschichte und wird auch für eine OCR benötigt. Dabei soll zwischen handschriftlichen Unterstreichungen und waagerechten Linien im Druck (z. B. Trennlinien usw.) unterschieden werden, da letztere nicht ausgezeichnet werden sollen. Im Beitrag wird ein Ansatz basierend auf einem auf Unterstreichungen trainierten Neuronalen Netz gemäß der U-Net Architektur vorgestellt, dessen Ergebnisse in einem zweiten Schritt mit heuristischen Regeln nachbearbeitet werden. Die Evaluationen zeigen, dass Unterstreichungen sehr gut erkannt werden, wenn bei der Binarisierung der Scans nicht zu viele Pixel der Unterstreichung wegen geringem Kontrast verloren gehen. Zukünftig sollen die Worte oberhalb der Unterstreichung mit OCR transkribiert werden und auch andere Artefakte wie handschriftliche Notizen in alten Drucken erkannt werden. N2 - The recognition of handwritten artefacts like underlines in historical printings allows inference on the reception and provenance history and is necessary for OCR (optical character recognition). In this context it is important to differentiate between handwritten and printed lines, since the latter are common in printings, but should be ignored. We present an approach based on neural nets with the U-Net architecture, whose segmentation results are post processed with heuristic rules. The evaluations show that handwritten underlines are very well recognized if the binarisation of the scans is adequate. Future work includes transcription of the underlined words with OCR and recognition of other artefacts like handwritten notes in historical printings. T2 - Recognition of handwritten underlines in historical printings KW - Brüder Grimm Privatbibliothek KW - Erkennung handschriftlicher Artefakte KW - Convolutional Neural Network KW - regelbasierte Nachbearbeitung KW - Grimm brothers personal library KW - handwritten artefact recognition KW - convolutional neural network KW - rule based post processing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193377 SN - 1865-7648 SN - 0341-4183 N1 - Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. VL - 43 IS - 3 SP - 447 EP - 452 ER - TY - JOUR A1 - Wick, Christoph A1 - Hartelt, Alexander A1 - Puppe, Frank T1 - Staff, symbol and melody detection of Medieval manuscripts written in square notation using deep Fully Convolutional Networks JF - Applied Sciences N2 - Even today, the automatic digitisation of scanned documents in general, but especially the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous challenge, since both handwritten musical symbols and text have to be identified. This paper focuses on the Medieval so-called square notation developed in the 11th–12th century, which is already composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard OMR approach and comprises a novel staff line and symbol detection algorithm based on deep Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines or symbols and their respective types. Then, the staff line detection combines the extracted lines to staves and yields an F\(_1\) -score of over 99% for both detecting lines and complete staves. For the music symbol detection, we choose a novel approach that skips the step to identify neumes and instead directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a diplomatic symbol accuracy rate (dSAR) of about 87%, which includes symbol type and location. If only the NCs without their respective connection to a neume, all clefs and accidentals are of interest, the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90%. In general, the algorithm recognises a symbol in the manuscript with an F\(_1\) -score of over 96%. KW - optical music recognition KW - historical document analysis KW - medieval manuscripts KW - neume notation KW - fully convolutional neural networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197248 SN - 2076-3417 VL - 9 IS - 13 ER - TY - JOUR A1 - Oberdörfer, Sebastian A1 - Latoschik, Marc Erich T1 - Knowledge encoding in game mechanics: transfer-oriented knowledge learning in desktop-3D and VR JF - International Journal of Computer Games Technology N2 - Affine Transformations (ATs) are a complex and abstract learning content. Encoding the AT knowledge in Game Mechanics (GMs) achieves a repetitive knowledge application and audiovisual demonstration. Playing a serious game providing these GMs leads to motivating and effective knowledge learning. Using immersive Virtual Reality (VR) has the potential to even further increase the serious game’s learning outcome and learning quality. This paper compares the effectiveness and efficiency of desktop-3D and VR in respect to the achieved learning outcome. Also, the present study analyzes the effectiveness of an enhanced audiovisual knowledge encoding and the provision of a debriefing system. The results validate the effectiveness of the knowledge encoding in GMs to achieve knowledge learning. The study also indicates that VR is beneficial for the overall learning quality and that an enhanced audiovisual encoding has only a limited effect on the learning outcome. KW - games Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201159 VL - 2019 ER - TY - JOUR A1 - Djebko, Kirill A1 - Puppe, Frank A1 - Kayal, Hakan T1 - Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite JF - Aerospace N2 - The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft’s housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach. KW - fault detection KW - model-based diagnosis KW - nano-satellite Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198836 SN - 2226-4310 VL - 6 IS - 10 ER - TY - JOUR A1 - Loda, Sophia A1 - Krebs, Jonathan A1 - Danhof, Sophia A1 - Schreder, Martin A1 - Solimando, Antonio G. A1 - Strifler, Susanne A1 - Rasche, Leo A1 - Kortüm, Martin A1 - Kerscher, Alexander A1 - Knop, Stefan A1 - Puppe, Frank A1 - Einsele, Hermann A1 - Bittrich, Max T1 - Exploration of artificial intelligence use with ARIES in multiple myeloma research JF - Journal of Clinical Medicine N2 - Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. KW - natural language processing KW - ontology KW - artificial intelligence KW - multiple myeloma KW - real world evidence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197231 SN - 2077-0383 VL - 8 IS - 7 ER - TY - JOUR A1 - Lopez-Arreguin, A. J. R. A1 - Montenegro, S. T1 - Improving engineering models of terramechanics for planetary exploration JF - Results in Engineering N2 - This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the formulated equations established here can have further implications in autonomy and control of rovers or planetary soil characterization. KW - Wheel KW - Terramechanics KW - Forces KW - Torque KW - Robotics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202490 VL - 3 ER - TY - JOUR A1 - Petschke, Danny A1 - Staab, Torsten E.M. T1 - DDRS4PALS: a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board JF - SoftwareX N2 - Lifetime techniques are applied to diverse fields of study including materials sciences, semiconductor physics, biology, molecular biophysics and photochemistry. Here we present DDRS4PALS, a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board (Paul Scherrer Institute, Switzerland) for time resolved measurements and digitization of detector output pulses. Artifact afflicted pulses can be corrected or rejected prior to the lifetime calculation to provide the generation of high-quality lifetime spectra, which are crucial for a profound analysis, i.e. the decomposition of the true information. Moreover, the pulses can be streamed on an (external) hard drive during the measurement and subsequently downloaded in the offline mode without being connected to the hardware. This allows the generation of various lifetime spectra at different configurations from one single measurement and, hence, a meaningful comparison in terms of analyzability and quality. Parallel processing and an integrated JavaScript based language provide convenient options to accelerate and automate time consuming processes such as lifetime spectra simulations. KW - Lifetime spectroscopy KW - Positron annihilation spectroscopy KW - Simulation KW - Time resolved measurements Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202276 VL - 10 ER - TY - JOUR A1 - Pfitzner, Christian A1 - May, Stefan A1 - Nüchter, Andreas T1 - Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data JF - Sensors N2 - This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. KW - RGB-D KW - human body weight KW - image processing KW - kinect KW - machine learning KW - perception KW - segmentation KW - sensor fusion KW - stroke KW - thermal camera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176642 VL - 18 IS - 5 ER - TY - JOUR A1 - Zimmerer, Chris A1 - Fischbach, Martin A1 - Latoschik, Marc Erich T1 - Semantic Fusion for Natural Multimodal Interfaces using Concurrent Augmented Transition Networks JF - Multimodal Technologies and Interaction N2 - Semantic fusion is a central requirement of many multimodal interfaces. Procedural methods like finite-state transducers and augmented transition networks have proven to be beneficial to implement semantic fusion. They are compliant with rapid development cycles that are common for the development of user interfaces, in contrast to machine-learning approaches that require time-costly training and optimization. We identify seven fundamental requirements for the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to the interaction context, as well as the support of chronologically unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no solution for fulfilling the latter two requirements. As the main contribution of this article, we thus present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase a reference implementation, the Concurrent Augmented Transition Network (cATN), that validates the concept’s feasibility in a series of proof of concept demonstrations as well as through a comparative benchmark. The cATN fulfills all identified requirements and fills the lack amongst previous solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature, the recursiveness of the underlying transition network, the network abstraction constructs of its description language, the utilized semantic queries, and an abstraction layer for lexical information. Our reference implementation was and is used in various student projects, theses, as well as master-level courses. It is openly available and showcases that non-experts can effectively implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality. KW - multimodal fusion KW - multimodal interface KW - semantic fusion KW - procedural fusion methods KW - natural interfaces KW - human-computer interaction Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197573 SN - 2414-4088 VL - 2 IS - 4 ER - TY - JOUR A1 - Nagler, Matthias A1 - Nägele, Thomas A1 - Gilli, Christian A1 - Fragner, Lena A1 - Korte, Arthur A1 - Platzer, Alexander A1 - Farlow, Ashley A1 - Nordborg, Magnus A1 - Weckwerth, Wolfram T1 - Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field JF - Frontiers in Plant Science N2 - Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites. KW - eco-metabolomics KW - in situ analysis KW - metabolomics KW - metabolic modeling KW - SNP KW - natural variation KW - Jacobian matrix KW - green systems biology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189560 SN - 1664-462X VL - 9 IS - 1556 ER - TY - JOUR A1 - Petschke, Danny A1 - Staab, Torsten E.M. T1 - DLTPulseGenerator: a library for the simulation of lifetime spectra based on detector-output pulses JF - SoftwareX N2 - The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin. KW - lifetime spectroscopy KW - signal processing KW - pulse simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176883 VL - 7 ER - TY - JOUR A1 - Kaltdorf, Kristin Verena A1 - Schulze, Katja A1 - Helmprobst, Frederik A1 - Kollmannsberger, Philip A1 - Dandekar, Thomas A1 - Stigloher, Christian T1 - Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms JF - PLoS Computational Biology N2 - Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial. KW - Biology KW - Vesicles KW - Caenorhabditis elegans KW - Zebrafish KW - Septins KW - Synaptic vesicles KW - Neuromuscular junctions KW - Computer software KW - Synapses Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172112 VL - 13 IS - 1 ER - TY - JOUR A1 - von Mammen, Sebastian Albrecht A1 - Wagner, Daniel A1 - Knote, Andreas A1 - Taskin, Umut T1 - Interactive simulations of biohybrid systems JF - Frontiers in Robotics and AI N2 - In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1) agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2) interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems. KW - biohybrid systems KW - augmented reality KW - virtual reality KW - user interfaces KW - biological development KW - generative systems Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195755 SN - 2296-9144 VL - 4 ER - TY - JOUR A1 - Fisseler, Denis A1 - Müller, Gerfrid G. W. A1 - Weichert, Frank T1 - Web-Based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research JF - Informatics N2 - The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability. KW - cuneiform KW - 3D viewer KW - WebGL KW - Hittitology KW - 3D collation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197958 SN - 2227-9709 VL - 4 IS - 4 ER - TY - JOUR A1 - Kunz, Meik A1 - Liang, Chunguang A1 - Nilla, Santosh A1 - Cecil, Alexander A1 - Dandekar, Thomas T1 - The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development JF - Database N2 - The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. KW - drug-minded protein KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147369 VL - 2016 ER - TY - JOUR A1 - Ali, Qasim A1 - Montenegro, Sergio T1 - Decentralized control for scalable quadcopter formations JF - International Journal of Aerospace Engineering N2 - An innovative framework has been developed for teamwork of two quadcopter formations, each having its specified formation geometry, assigned task, and matching control scheme. Position control for quadcopters in one of the formations has been implemented through a Linear Quadratic Regulator Proportional Integral (LQR PI) control scheme based on explicit model following scheme. Quadcopters in the other formation are controlled through LQR PI servomechanism control scheme. These two control schemes are compared in terms of their performance and control effort. Both formations are commanded by respective ground stations through virtual leaders. Quadcopters in formations are able to track desired trajectories as well as hovering at desired points for selected time duration. In case of communication loss between ground station and any of the quadcopters, the neighboring quadcopter provides the command data, received from the ground station, to the affected unit. Proposed control schemes have been validated through extensive simulations using MATLAB®/Simulink® that provided favorable results. KW - scalable quadcopter Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146704 VL - 2016 ER - TY - JOUR A1 - Ali, Qasim A1 - Montenegro, Sergio T1 - Explicit Model Following Distributed Control Scheme for Formation Flying of Mini UAVs JF - IEEE Access N2 - A centralized heterogeneous formation flight position control scheme has been formulated using an explicit model following design, based on a Linear Quadratic Regulator Proportional Integral (LQR PI) controller. The leader quadcopter is a stable reference model with desired dynamics whose output is perfectly tracked by the two wingmen quadcopters. The leader itself is controlled through the pole placement control method with desired stability characteristics, while the two followers are controlled through a robust and adaptive LQR PI control method. Selected 3-D formation geometry and static stability are maintained under a number of possible perturbations. With this control scheme, formation geometry may also be switched to any arbitrary shape during flight, provided a suitable collision avoidance mechanism is incorporated. In case of communication loss between the leader and any of the followers, the other follower provides the data, received from the leader, to the affected follower. The stability of the closed-loop system has been analyzed using singular values. The proposed approach for the tightly coupled formation flight of mini unmanned aerial vehicles has been validated with the help of extensive simulations using MATLAB/Simulink, which provided promising results. KW - quadcopter KW - robustness KW - intelligent vehicles KW - rotors KW - mathematical model KW - aerodynamics KW - adaptation models KW - vehicle dynamics KW - unmanned aerial vehicle KW - distributed control KW - formation flight KW - model following Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146061 N1 - (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works VL - 4 IS - 397-406 ER - TY - JOUR A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich A1 - Habel, Michael A1 - Roth, Daniel A1 - Seufert, Christian A1 - Grafe, Silke T1 - Breaking Bad Behaviors: A New Tool for Learning Classroom Management Using Virtual Reality JF - Frontiers in ICT N2 - This article presents an immersive virtual reality (VR) system for training classroom management skills, with a specific focus on learning to manage disruptive student behavior in face-to-face, one-to-many teaching scenarios. The core of the system is a real-time 3D virtual simulation of a classroom populated by twenty-four semi-autonomous virtual students. The system has been designed as a companion tool for classroom management seminars in a syllabus for primary and secondary school teachers. This will allow lecturers to link theory with practice using the medium of VR. The system is therefore designed for two users: a trainee teacher and an instructor supervising the training session. The teacher is immersed in a real-time 3D simulation of a classroom by means of a head-mounted display and headphone. The instructor operates a graphical desktop console, which renders a view of the class and the teacher whose avatar movements are captured by a marker less tracking system. This console includes a 2D graphics menu with convenient behavior and feedback control mechanisms to provide human-guided training sessions. The system is built using low-cost consumer hardware and software. Its architecture and technical design are described in detail. A first evaluation confirms its conformance to critical usability requirements (i.e., safety and comfort, believability, simplicity, acceptability, extensibility, affordability, and mobility). Our initial results are promising and constitute the necessary first step toward a possible investigation of the efficiency and effectiveness of such a system in terms of learning outcomes and experience. KW - virtual reality training KW - immersive classroom management KW - immersive classroom KW - virtual agent interaction KW - student simulation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147945 VL - 3 IS - 26 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Weber, Lorenz A1 - Becker, Dirk A1 - Förster, Frank A1 - Bemm, Felix T1 - TBro: visualization and management of de novo transcriptomes JF - Database N2 - RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro’s modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers. KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147954 VL - 2016 ER - TY - JOUR A1 - Baier, Pablo A. A1 - Baier-Saip, Jürgen A. A1 - Schilling, Klaus A1 - Oliveira, Jauvane C. T1 - Simulator for Minimally Invasive Vascular Interventions: Hardware and Software JF - Presence N2 - In the present work, a simulation system is proposed that can be used as an educational tool by physicians in training basic skills of minimally invasive vascular interventions. In order to accomplish this objective, initially the physical model of the wire proposed by Konings has been improved. As a result, a simpler and more stable method was obtained to calculate the equilibrium configuration of the wire. In addition, a geometrical method is developed to perform relaxations. It is particularly useful when the wire is hindered in the physical method because of the boundary conditions. Then a recipe is given to merge the physical and the geometrical methods, resulting in efficient relaxations. Moreover, tests have shown that the shape of the virtual wire agrees with the experiment. The proposed algorithm allows real-time executions, and furthermore, the hardware to assemble the simulator has a low cost. KW - simulation system KW - educational tool KW - invasive vascular interventions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140580 SN - 1531-3263 VL - 25 IS - 2 ER - TY - JOUR A1 - Andronic, Joseph A1 - Shirakashi, Ryo A1 - Pickel, Simone U. A1 - Westerling, Katherine M. A1 - Klein, Teresa A1 - Holm, Thorge A1 - Sauer, Markus A1 - Sukhorukov, Vladimir L. T1 - Hypotonic Activation of the Myo-Inositol Transporter SLC5A3 in HEK293 Cells Probed by Cell Volumetry, Confocal and Super-Resolution Microscopy JF - PLoS One N2 - Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells. KW - electrolytes KW - isotonic KW - membrane proteins KW - cell membranes KW - hypotonic KW - hypotonic solutions KW - tonicity KW - permeability Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126408 VL - 10 IS - 3 ER - TY - JOUR A1 - Weiß, Clemens Leonard A1 - Schultz, Jörg T1 - Identification of divergent WH2 motifs by HMM-HMM alignments JF - BMC Research Notes N2 - Background The actin cytoskeleton is a hallmark of eukaryotic cells. Its regulation as well as its interaction with other proteins is carefully orchestrated by actin interaction domains. One of the key players is the WH2 motif, which enables binding to actin monomers and filaments and is involved in the regulation of actin nucleation. Contrasting conserved domains, the identification of this motif in protein sequences is challenging, as it is short and poorly conserved. Findings To identify divergent members, we combined Hidden-Markov-Model (HMM) to HMM alignments with orthology predictions. Thereby, we identified nearly 500 proteins containing so far not annotated WH2 motifs. This included shootin-1, an actin binding protein involved in neuron polarization. Among others, WH2 motifs of ‘proximal to raf’ (ptr)-orthologs, which are described in the literature, but not annotated in genome databases, were identified. Conclusion In summary, we increased the number of WH2 motif containing proteins substantially. This identification of candidate regions for actin interaction could steer their experimental characterization. Furthermore, the approach outlined here can easily be adapted to the identification of divergent members of further domain families. KW - WH2 domain KW - spire KW - shootin-1 KW - actin nucleation KW - HHblits Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126413 VL - 8 IS - 18 ER - TY - JOUR A1 - Toepfer, Martin A1 - Corovic, Hamo A1 - Fette, Georg A1 - Klügl, Peter A1 - Störk, Stefan A1 - Puppe, Frank T1 - Fine-grained information extraction from German transthoracic echocardiography reports JF - BMC Medical Informatics and Decision Making N2 - Background Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of Würzburg. Methods A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. Results The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 % of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. Conclusions The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of Würzburg. Extracted results populate a clinical data warehouse which supports clinical research. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125509 VL - 15 IS - 91 ER - TY - JOUR A1 - Kuhn, Joachim A1 - Gripp, Tatjana A1 - Flieder, Tobias A1 - Dittrich, Marcus A1 - Hendig, Doris A1 - Busse, Jessica A1 - Knabbe, Cornelius A1 - Birschmann, Ingvild T1 - UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays JF - PLOS ONE N2 - Introduction The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients' plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients' blood before major surgery. Methods Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. Results The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 mu g/L (r > 0.99). Limits of detection (LOD) in the plasma matrix were 0.21 mu g/L for dabigatran and 0.34 mu g/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 mu g/L for dabigatran and 0.54 mu g/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8-113.0%) for dabigatran and 87.0%(range 73.6-105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20 degrees C, 4 degrees C and even at RT for at least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs. Conclusions Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma. KW - LC-MS/MS KW - validation KW - serum KW - quantification KW - apixaban KW - diagnostic accuracy KW - performance liquid chromatography KW - factor XA inhibitor KW - direct oral anticoagulants KW - direct thrombin inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136023 VL - 10 IS - 12 ER - TY - JOUR A1 - Singh, Amit K. A1 - Kingston, Joseph J. A1 - Gupta, Shishir K. A1 - Batra, Harsh V. T1 - Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection JF - Frontiers in Microbiology N2 - Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y enterocolitica 8081 rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up regulation of both Th1 (INF-\(\alpha\), IFN-\(\gamma\), IL 2, and IL 12) and Th2 (IL 4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens. KW - I-tasser KW - Yersinia enterocolitica KW - memory immune responses KW - cytokine profiling KW - CD8+T cells KW - CD4+T cells KW - recombinant protein rVE KW - resistance KW - pneumonic plague KW - pestis infection KW - nonhuman-primates KW - III secretion KW - V-antigen KW - mice KW - vaccine Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136114 VL - 6 IS - 1407 ER - TY - JOUR A1 - Sîrbu, Alina A1 - Becker, Martin A1 - Caminiti, Saverio A1 - De Baets, Bernard A1 - Elen, Bart A1 - Francis, Louise A1 - Gravino, Pietro A1 - Hotho, Andreas A1 - Ingarra, Stefano A1 - Loreto, Vittorio A1 - Molino, Andrea A1 - Mueller, Juergen A1 - Peters, Jan A1 - Ricchiuti, Ferdinando A1 - Saracino, Fabio A1 - Servedio, Vito D.P. A1 - Stumme, Gerd A1 - Theunis, Jan A1 - Tria, Francesca A1 - Van den Bossche, Joris T1 - Participatory Patterns in an International Air Quality Monitoring Initiative JF - PLoS ONE N2 - The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. KW - transport microenvironments KW - exposure KW - pollution KW - carbon Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151379 VL - 10 IS - 8 ER - TY - JOUR A1 - Appel, Mirjam A1 - Scholz, Claus-Jürgen A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - König, Christian A1 - Bockstaller, Marie A1 - Oguz, Tuba A1 - Khalili, Afshin A1 - Antwi-Adjei, Emmanuel A1 - Schauer, Tamas A1 - Margulies, Carla A1 - Tanimoto, Hiromu A1 - Yarali, Ayse T1 - Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster JF - PLoS ONE N2 - Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. KW - functional analysis KW - disruption project KW - natural variation KW - complex traits KW - networks KW - behavior KW - flies KW - temperature KW - genetics KW - painful Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152006 VL - 10 IS - 5 ER - TY - JOUR A1 - Hurtienne, Jörn T1 - Inter-coder reliability of categorising force-dynamic events in human-technology interaction N2 - Two studies are reported that investigate how readily accessible and applicable ten force-dynamic categories are to novices in describing short episodes of human-technology interaction (Study 1) and that establish a measure of inter-coder reliability when re-classifying these episodes into force-dynamic categories (Study 2). The results of the first study show that people can easily and confidently relate their experiences with technology to the definitions of force-dynamic events (e.g. “The driver released the handbrake” as an example of restraint removal). The results of the second study show moderate agreement between four expert coders across all ten force-dynamic categories (Cohen’s kappa = .59) when re-classifying these episodes. Agreement values for single force-dynamic categories ranged between ‘fair’ and ‘almost perfect’, i.e. between kappa = .30 and .95. Agreement with the originally intended classifications of study 1 was higher than the pure inter-coder reliabilities. Single coders achieved an average kappa of .71, indicating substantial agreement. Using more than one coder increased kappas to almost perfect: up to .87 for four coders. A qualitative analysis of the predicted versus the observed number of category confusions revealed that about half of the category disagreement could be predicted from strong overlaps in the definitions of force-dynamic categories. From the quantitative and qualitative results, guidelines are derived to aid the better training of coders in order to increase inter-coder reliability. KW - inter-coder reliability KW - force dynamics KW - image schemas KW - humantechnology interaction Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-194127 SN - 2197-2796 SN - 2197-2788 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 1 IS - 1 ER - TY - JOUR A1 - Becker, Martin A1 - Caminiti, Saverio A1 - Fiorella, Donato A1 - Francis, Louise A1 - Gravino, Pietro A1 - Haklay, Mordechai (Muki) A1 - Hotho, Andreas A1 - Loreto, Virrorio A1 - Mueller, Juergen A1 - Ricchiuti, Ferdinando A1 - Servedio, Vito D. P. A1 - Sirbu, Alina A1 - Tria, Franesca T1 - Awareness and Learning in Participatory Noise Sensing JF - PLOS ONE N2 - The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments. KW - exposure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127675 SN - 1932-6203 VL - 8 IS - 12 ER - TY - JOUR A1 - Karl, Stefan A1 - Dandekar, Thomas T1 - Jimena: Efficient computing and system state identification for genetic regulatory networks JF - BMC Bioinformatics N2 - Background: Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. Results: (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Conclusions: Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior. KW - Boolean function KW - genetic regulatory network KW - interpolation KW - stable state KW - binary decision diagram KW - Boolean tree Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128671 VL - 14 ER - TY - JOUR A1 - Gageik, Nils A1 - Strohmeier, Michael A1 - Montenegro, Sergio T1 - Waypoint flight parameter comparison of an autonomous UAV JF - International Journal of Artificial Intelligence & Applications (IJAIA) N2 - The present paper compares the effect of different waypoint parameters on the flight performance of a special autonomous indoor UAV (unmanned aerial vehicle) fusing ultrasonic, inertial, pressure and optical sensors for 3D positioning and controlling. The investigated parameters are the acceptance threshold for reaching a waypoint as well as the maximal waypoint step size or block size. The effect of these parameters on the flight time and accuracy of the flight path is investigated. Therefore the paper addresses how the acceptance threshold and step size influence the speed and accuracy of the autonomous flight and thus influence the performance of the presented autonomous quadrocopter under real indoor navigation circumstances. Furthermore the paper demonstrates a drawback of the standard potential field method for navigation of such autonomous quadrocopters and points to an improvement. KW - autonomous UAV KW - Quadrocopter KW - Quadrotor KW - waypoint parameter KW - navigation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96833 ER - TY - JOUR A1 - Gageik, Nils A1 - Strohmeier, Michael A1 - Montenegro, Sergio T1 - An Autonomous UAV with an Optical Flow Sensor for Positioning and Navigation JF - International Journal of Advanced Robotic Systems N2 - A procedure to control all six DOF (degrees of freedom) of a UAV (unmanned aerial vehicle) without an external reference system and to enable fully autonomous flight is presented here. For 2D positioning the principle of optical flow is used. Together with the output of height estimation, fusing ultrasonic, infrared and inertial and pressure sensor data, the 3D position of the UAV can be computed, controlled and steered. All data processing is done on the UAV. An external computer with a pathway planning interface is for commanding purposes only. The presented system is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application. The focus of this paper is 2D positioning using an optical flow sensor. As a result of the performed evaluation, it can be concluded that for position hold, the standard deviation of the position error is 10cm and after landing the position error is about 30cm. KW - Autonomous UAV KW - Quadrocopter KW - Quadrotor KW - Optical Flow KW - positioning KW - navigation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96368 ER -