TY - THES A1 - Pries, Jan Rastin T1 - Performance Optimization of Wireless Infrastructure and Mesh Networks T1 - Leistungsoptimierung von drahtlosen Infrastruktur und Mesh Netzen N2 - Future broadband wireless networks should be able to support not only best effort traffic but also real-time traffic with strict Quality of Service (QoS) constraints. In addition, their available resources are scare and limit the number of users. To facilitate QoS guarantees and increase the maximum number of concurrent users, wireless networks require careful planning and optimization. In this monograph, we studied three aspects of performance optimization in wireless networks: resource optimization in WLAN infrastructure networks, quality of experience control in wireless mesh networks, and planning and optimization of wireless mesh networks. An adaptive resource management system is required to effectively utilize the limited resources on the air interface and to guarantee QoS for real-time applications. Thereby, both WLAN infrastructure and WLAN mesh networks have to be considered. An a-priori setting of the access parameters is not meaningful due to the contention-based medium access and the high dynamics of the system. Thus, a management system is required which dynamically adjusts the channel access parameters based on the network load. While this is sufficient for wireless infrastructure networks, interferences on neighboring paths and self-interferences have to be considered for wireless mesh networks. In addition, a careful channel allocation and route assignment is needed. Due to the large parameter space, standard optimization techniques fail for optimizing large wireless mesh networks. In this monograph, we reveal that biology-inspired optimization techniques, namely genetic algorithms, are well-suitable for the planning and optimization of wireless mesh networks. Although genetic algorithms generally do not always find the optimal solution, we show that with a good parameter set for the genetic algorithm, the overall throughput of the wireless mesh network can be significantly improved while still sharing the resources fairly among the users. N2 - Die Anbindung an das Internet erfolgt zunehmend über drahtlose Netze. Deren Ressourcen sind allerdings limitiert, was die Anzahl der unterstützten Nutzer stark einschränkt. Zudem ist ein Trend dieser Nutzer weg von der Verwendung reiner Datendienste zu Diensten mit Echtzeitanforderungen wie Voice over IP (VoIP) zu erkennen, deren Dienstgüteanforderungen eingehalten werden müssen. Heutige drahtlose Zugangsnetze sind jedoch nur für den herkömmlichen Datenverkehr ausgelegt. Der IEEE 802.11 WLAN Standard unterscheidet zwar zwischen verschiedenen Dienstklassen, gibt aber keine Dienstgütegarantien. Um die Dienstgüte (Quality of Service, QoS), bzw. die vom Nutzer erfahrene Dienstgüte (Quality of Experience, QoE) zu garantieren, müssen die zukünftigen drahtlosen Netze daher sorgfältig geplant und optimiert werden. Um die limitierten Ressourcen auf der Luftschnittstelle effektiv zu nutzen und um Dienstgüteanforderungen für Echtzeitanwendungen einzuhalten, bedarf es eines adaptiven Ressourcenmanagements. Dabei sind sowohl drahtlose Infrastruktur, als auch drahtlose Mesh-Netze zu betrachten. Durch den randomisierten Medienzugriff und die hohe Dynamik im System ist eine a-priori Wahl der Zugangsparameter nicht sinnvoll. Vielmehr wird ein Managementsystem benötigt, das die Zugangsparameter dynamisch in Abhängigkeit der Last in einem Netz wählt. Während dies für drahtlose Infrastrukturnetze ausreicht, müssen in drahtlosen Mesh-Netzen zusätzlich noch Interferenzen von Nachbarpfaden und Eigeninterferenzen berücksichtigt werden. Desweiteren ist eine sorgfältige Planung der Kanalzuweisung und des Routings notwendig, um einerseits den Durchsatz in drahtlosen Mesh-Netzen zu maximieren und andererseits die Ressourcen fair zwischen den Stationen aufzuteilen. Da es dabei eine Vielzahl von Parametern zu berücksichtigen gilt, sind neue Optimierungsmethoden notwendig, die es ermöglichen, auch große Mesh-Netze in annehmbarer Zeit zu planen und zu optimieren. Diese Doktorarbeit arbeitet die folgenden drei Optimierungsmöglichkeiten für drahtlose Zugangsnetze aus: Optimierung der Zugangsparameter in drahtlosen Infrastrukturnetzen, Optimierung von drahtlosen Mesh-Netzen unter Berücksichtigung der QoE und Planung und Optimierung von drahtlosen Mesh-Netzen mit Berücksichtigung einer fairen Ressourcenallokation. Die Ergebnisse und Untersuchungen dieser Arbeit gliedern sich entsprechend dieser Optimierungsmöglichkeiten. T3 - Würzburger Beiträge zur Leistungsbewertung Verteilter Systeme - 01/10 KW - IEEE 802.11 KW - Leistungsbewertung KW - Optimierung KW - Dienstgüte KW - Netzplanung KW - Drahtloses lokales Netz KW - WLAN KW - Mesh Netze KW - Genetische Optimierung KW - WLAN KW - Optimization KW - Mesh Networks KW - Genetic Optimization Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46097 ER - TY - THES A1 - Heck, Klaus T1 - Wireless LAN performance studies in the context of 4G networks N2 - Wireless communication is nothing new. The first data transmissions based on electromagnetic waves have been successfully performed at the end of the 19th century. However, it took almost another century until the technology was ripe for mass market. The first mobile communication systems based on the transmission of digital data were introduced in the late 1980s. Within just a couple of years they have caused a revolution in the way people communicate. The number of cellular phones started to outnumber the fixed telephone lines in many countries and is still rising. New technologies in 3G systems, such as UMTS, allow higher data rates and support various kinds of multimedia services. Nevertheless, the end of the road in wireless communication is far from being reached. In the near future, the Internet and cellular phone systems are expected to be integrated to a new form of wireless system. Bandwidth requirements for a rich set of wireless services, e.g.\ video telephony, video streaming, online gaming, will be easily met. The transmission of voice data will just be another IP based service. On the other hand, building such a system is by far not an easy task. The problems in the development of the UMTS system showed the high complexity of wireless systems with support for bandwidth-hungry, IP-based services. But the technological challenges are just one difficulty. Telecommunication systems are planned on a world-wide basis, such that standard bodies, governments, institutions, hardware vendors, and service providers have to find agreements and compromises on a number of different topics. In this work, we provide the reader with a discussion of many of the topics involved in the planning of a Wireless LAN system that is capable of being integrated into the 4th generation mobile networks (4G) that is being discussed nowadays. Therefore, it has to be able to cope with interactive voice and video traffic while still offering high data rates for best effort traffic. Let us assume a scenario where a huge office complex is completely covered with Wireless LAN access points. Different antenna systems are applied in order to reduce the number of access points that are needed on the one hand, while optimizing the coverage on the other. No additional infrastructure is implemented. Our goal is to evaluate whether the Wireless LAN technology is capable of dealing with the various demands of such a scenario. First, each single access point has to be capable of supporting best-effort and Quality of Service (QoS) demanding applications simultaneously. The IT infrastructure in our scenario consists solely of Wireless LAN, such that it has to allow users surfing the Web, while others are involved in voice calls or video conferences. Then, there is the problem of overlapping cells. Users attached to one access point produce interference for others. However, the QoS support has to be maintained, which is not an easy task. Finally, there are nomadic users, which roam from one Wireless LAN cell to another even during a voice call. There are mechanisms in the standard that allow for mobility, but their capabilities for QoS support are yet to be studied. This shows the large number of unresolved issues when it comes to Wireless LAN in the context of 4G networks. In this work we want to tackle some of the problems. KW - Drahtloses lokales Netz KW - Wireless LAN KW - Voice-over-IP (VoIP) KW - Quality-of-Service (QoS) KW - IEEE 802.11e KW - 4G Networks KW - Wireless LAN KW - Voice-over-IP (VoIP) KW - Quality-of-Service (QoS) KW - IEEE 802.11e KW - 4G Networks Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14896 ER -