TY - THES A1 - Travers, Stephen T1 - Structural Properties of NP-Hard Sets and Uniform Characterisations of Complexity Classes T1 - Strukturelle Eigenschaften NP-harter Mengen und uniforme Charakterisierungen von Komplexitätsklassen N2 - This thesis is devoted to the study of computational complexity theory, a branch of theoretical computer science. Computational complexity theory investigates the inherent difficulty in designing efficient algorithms for computational problems. By doing so, it analyses the scalability of computational problems and algorithms and places practical limits on what computers can actually accomplish. Computational problems are categorised into complexity classes. Among the most important complexity classes are the class NP and the subclass of NP-complete problems, which comprises many important optimisation problems in the field of operations research. Moreover, with the P-NP-problem, the class NP represents the most important unsolved question in computer science. The first part of this thesis is devoted to the study of NP-complete-, and more generally, NP-hard problems. It aims at improving our understanding of this important complexity class by systematically studying how altering NP-hard sets affects their NP-hardness. This research is related to longstanding open questions concerning the complexity of unions of disjoint NP-complete sets, and the existence of sparse NP-hard sets. The second part of the thesis is also dedicated to complexity classes but takes a different perspective: In a sense, after investigating the interior of complexity classes in the first part, the focus shifts to the description of complexity classes and thereby to the exterior in the second part. It deals with the description of complexity classes through leaf languages, a uniform framework which allows us to characterise a great variety of important complexity classes. The known concepts are complemented by a new leaf-language model. To a certain extent, this new approach combines the advantages of the known models. The presented results give evidence that the connection between the theory of formal languages and computational complexity theory might be closer than formerly known. N2 - Diese Dissertation behandelt die Komplexitätstheorie, ein zentrales Teilgebiet der Theoretischen Informatik. Die Komplexitätstheorie untersucht die inhärente Schwierigkeit, effiziente Algorithmen für Berechnungsprobleme zu entwerfen. Sie analysiert die Skalierbarkeit von Berechnungsproblemen und Algorithmen und stellt grundsätzliche Grenzen für die Leistungsfähigkeit von Computern auf. Berechnungsprobleme werden in Komplexitätsklassen kategorisiert. Dabei spielen die Klasse NP und die in ihr enthaltene Klasse der NP-vollständigen Probleme eine wichtige Rolle. Letztere umfasst zahlreiche in der Praxis bedeutsame Probleme aus dem Bereich Operations Research. Darüber hinaus repräsentiert die Klasse NP mit dem P-NP Problem gleichfalls das wichtigste ungelöste Problem in der Informatik. Der erste Teil dieser Dissertation ist der Untersuchung NP-vollständiger und noch allgemeiner, NP-harter Mengen gewidmet. Durch eine systematische Untersuchung der Frage, wie sich partielle Modifikationen von Mengen auf deren NP-Härte auswirken, soll das Verständnis dieser wichtigen Komplexitätsklasse verbessert werden. Die Untersuchungen in diesem Bereich stehen in enger Verbindung zu wichtigen ungelösten Fragen, wie beispielsweise der Frage nach der Komplexität von Vereinigungen disjunkter NP-vollständiger Mengen und darüber hinaus der Frage nach der Existenz dünner, NP-harter Mengen. Der zweite Teil der Dissertation beschäftigt sich ebenfalls mit der Komplexitätstheorie, nimmt dabei aber eine andere Perspektive ein: Während im ersten Teil mit der Untersuchung struktureller Eigenschaften innere Aspekte von Komplexitätsklassen im Vordergrund stehen dreht es sich im zweiten Teil um die Beschreibung von Komplexitätsklassen. Dabei werden so genannte Blattsprachen verwendet, welche einen uniformen Beschreibungsmechanismus für Komplexitätsklassen darstellen. Die bestehenden Blattsprachen-Konzepte werden durch einen neuen Ansatz ergänzt, der in einem gewissen Sinne die Vorteile der bekannten Ansätze vereint. Die erzielten Ergebnisse sind Evidenz dafür, dass die Verbindung zwischen der Theorie der formalen Sprachen und der Komplexitätstheorie noch enger ist als bislang vermutet. KW - Berechnungskomplexität KW - Komplexität KW - Theoretische Informatik KW - NP-Vollständigkeit KW - Strukturelle Komplexität KW - NP-complete sets KW - structural complexity Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27124 ER - TY - THES A1 - Fleszar, Krzysztof T1 - Network-Design Problems in Graphs and on the Plane T1 - Netzwerk-Design-Probleme in Graphen und auf der Ebene N2 - A network design problem defines an infinite set whose elements, called instances, describe relationships and network constraints. It asks for an algorithm that, given an instance of this set, designs a network that respects the given constraints and at the same time optimizes some given criterion. In my thesis, I develop algorithms whose solutions are optimum or close to an optimum value within some guaranteed bound. I also examine the computational complexity of these problems. Problems from two vast areas are considered: graphs and the Euclidean plane. In the Maximum Edge Disjoint Paths problem, we are given a graph and a subset of vertex pairs that are called terminal pairs. We are asked for a set of paths where the endpoints of each path form a terminal pair. The constraint is that any two paths share at most one inner vertex. The optimization criterion is to maximize the cardinality of the set. In the hard-capacitated k-Facility Location problem, we are given an integer k and a complete graph where the distances obey a given metric and where each node has two numerical values: a capacity and an opening cost. We are asked for a subset of k nodes, called facilities, and an assignment of all the nodes, called clients, to the facilities. The constraint is that the number of clients assigned to a facility cannot exceed the facility's capacity value. The optimization criterion is to minimize the total cost which consists of the total opening cost of the facilities and the total distance between the clients and the facilities they are assigned to. In the Stabbing problem, we are given a set of axis-aligned rectangles in the plane. We are asked for a set of horizontal line segments such that, for every rectangle, there is a line segment crossing its left and right edge. The optimization criterion is to minimize the total length of the line segments. In the k-Colored Non-Crossing Euclidean Steiner Forest problem, we are given an integer k and a finite set of points in the plane where each point has one of k colors. For every color, we are asked for a drawing that connects all the points of the same color. The constraint is that drawings of different colors are not allowed to cross each other. The optimization criterion is to minimize the total length of the drawings. In the Minimum Rectilinear Polygon for Given Angle Sequence problem, we are given an angle sequence of left (+90°) turns and right (-90°) turns. We are asked for an axis-parallel simple polygon where the angles of the vertices yield the given sequence when walking around the polygon in counter-clockwise manner. The optimization criteria considered are to minimize the perimeter, the area, and the size of the axis-parallel bounding box of the polygon. N2 - Ein Netzwerk-Design-Problem definiert eine unendliche Menge, deren Elemente, als Instanzen bezeichnet, Beziehungen und Beschränkungen in einem Netzwerk beschreiben. Die Lösung eines solchen Problems besteht aus einem Algorithmus, der auf die Eingabe einer beliebigen Instanz dieser Menge ein Netzwerk entwirft, welches die gegebenen Beschränkungen einhält und gleichzeitig ein gegebenes Kriterium optimiert. In meiner Dissertation habe ich Algorithmen entwickelt, deren Netzwerke stets optimal sind oder nachweisbar nahe am Optimum liegen. Zusätzlich habe ich die Berechnungskomplexität dieser Probleme untersucht. Dabei wurden Probleme aus zwei weiten Gebieten betrachtet: Graphen und der Euklidische Ebene. Im Maximum-Edge-Disjoint-Paths-Problem besteht die Eingabe aus einem Graphen und einer Teilmenge von Knotenpaaren, die wir mit Terminalpaare bezeichnen. Gesucht ist eine Menge von Pfaden, die Terminalpaare verbinden. Die Beschränkung ist, dass keine zwei Pfade einen gleichen inneren Knoten haben dürfen. Das Optimierungskriterium ist die Maximierung der Kardinalität dieser Menge. Im Hard-Capacitated-k-Facility-Location-Problem besteht die Eingabe aus einer Ganzzahl k und einem vollständigen Graphen, in welchem die Distanzen einer gegebenen Metrik unterliegen und in welchem jedem Knoten sowohl eine numerische Kapazität als auch ein Eröffnungskostenwert zugeschrieben ist. Gesucht ist eine Teilmenge von k Knoten, Facilities genannt, und eine Zuweisung aller Knoten, Clients genannt, zu den Facilities. Die Beschränkung ist, dass die Anzahl der Clients, die einer Facility zugewiesen sind, nicht deren Kapazität überschreiten darf. Das Optimierungskriterium ist die Minimierung der Gesamtkosten bestehend aus den Gesamteröffnungskosten der Facilities sowie der Gesamtdistanz zwischen den Clients und den ihnen zugewiesenen Facilities. Im Stabbing-Problem besteht die Eingabe aus einer Menge von achsenparallelen Rechtecken in der Ebene. Gesucht ist eine Menge von horizontalen Geradenstücken mit der Randbedingung, dass die linke und rechte Seite eines jeden Rechtecks von einem Geradenstück verbunden ist. Das Optimierungskriterium ist die Minimierung der Gesamtlänge aller Geradenstücke. Im k-Colored-Non-Crossing-Euclidean-Steiner-Forest-Problem besteht die Eingabe aus einer Ganzzahl k und einer endlichen Menge von Punkten in der Ebene, wobei jeder Punkt in einer von k Farben gefärbt ist. Gesucht ist für jede Farbe eine Zeichnung, in welcher alle Punkte der Farbe verbunden sind. Die Beschränkung ist, dass Zeichnungen verschiedener Farben sich nicht kreuzen dürfen. Das Optimierungskriterium ist die Minimierung des Gesamtintenverbrauchs, das heißt, der Gesamtlänge der Zeichnungen. Im Minimum-Rectilinear-Polygon-for-Given-Angle-Sequence-Problem besteht die Eingabe aus einer Folge von Links- (+90°) und Rechtsabbiegungen (-90°). Gesucht ist ein achsenparalleles Polygon dessen Eckpunkte die gegebene Folge ergeben, wenn man das Polygon gegen den Uhrzeigersinn entlangläuft. Die Optimierungskriterien sind die Minimierung des Umfangs und der inneren Fläche des Polygons sowie der Größe des notwendigen Zeichenblattes, d.h., des kleinsten Rechteckes, das das Polygon einschließt. N2 - Given points in the plane, connect them using minimum ink. Though the task seems simple, it turns out to be very time consuming. In fact, scientists believe that computers cannot efficiently solve it. So, do we have to resign? This book examines such NP-hard network-design problems, from connectivity problems in graphs to polygonal drawing problems on the plane. First, we observe why it is so hard to optimally solve these problems. Then, we go over to attack them anyway. We develop fast algorithms that find approximate solutions that are very close to the optimal ones. Hence, connecting points with slightly more ink is not hard. KW - Euklidische Ebene KW - Algorithmus KW - Komplexität KW - NP-schweres Problem KW - Graph KW - approximation algorithm KW - hardness KW - optimization KW - graphs KW - network KW - Optimierungsproblem KW - Approximationsalgorithmus KW - complexity KW - Euclidean plane Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154904 SN - 978-3-95826-076-4 (Print) SN - 978-3-95826-077-1 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-076-4, 28,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Löffler, Andre T1 - Constrained Graph Layouts: Vertices on the Outer Face and on the Integer Grid T1 - Graphzeichnen unter Nebenbedingungen: Knoten auf der Außenfacette und mit ganzzahligen Koordinaten N2 - Constraining graph layouts - that is, restricting the placement of vertices and the routing of edges to obey certain constraints - is common practice in graph drawing. In this book, we discuss algorithmic results on two different restriction types: placing vertices on the outer face and on the integer grid. For the first type, we look into the outer k-planar and outer k-quasi-planar graphs, as well as giving a linear-time algorithm to recognize full and closed outer k-planar graphs Monadic Second-order Logic. For the second type, we consider the problem of transferring a given planar drawing onto the integer grid while perserving the original drawings topology; we also generalize a variant of Cauchy's rigidity theorem for orthogonal polyhedra of genus 0 to those of arbitrary genus. N2 - Das Einschränken von Zeichnungen von Graphen, sodass diese bestimmte Nebenbedingungen erfüllen - etwa solche, die das Platzieren von Knoten oder den Verlauf von Kanten beeinflussen - sind im Graphzeichnen allgegenwärtig. In dieser Arbeit befassen wir uns mit algorithmischen Resultaten zu zwei speziellen Einschränkungen, nämlich dem Platzieren von Knoten entweder auf der Außenfacette oder auf ganzzahligen Koordinaten. Für die erste Einschränkung untersuchen wir die außen k-planaren und außen k-quasi-planaren Graphen und geben einen auf monadische Prädikatenlogik zweiter Stufe basierenden Algorithmus an, der überprüft, ob ein Graph voll außen k-planar ist. Für die zweite Einschränkung untersuchen wir das Problem, eine gegebene planare Zeichnung eines Graphen auf das ganzzahlige Koordinatengitter zu transportieren, ohne dabei die Topologie der Zeichnung zu verändern; außerdem generalisieren wir eine Variante von Cauchys Starrheitssatz für orthogonale Polyeder von Geschlecht 0 auf solche von beliebigem Geschlecht. KW - Graphenzeichnen KW - Komplexität KW - Algorithmus KW - Algorithmische Geometrie KW - Kombinatorik KW - Planare Graphen KW - Polyeder KW - Konvexe Zeichnungen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215746 SN - 978-3-95826-146-4 SN - 978-3-95826-147-1 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-146-4, 32,90 EUR PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER -