TY - JOUR A1 - Kuhn, Joachim A1 - Gripp, Tatjana A1 - Flieder, Tobias A1 - Dittrich, Marcus A1 - Hendig, Doris A1 - Busse, Jessica A1 - Knabbe, Cornelius A1 - Birschmann, Ingvild T1 - UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays JF - PLOS ONE N2 - Introduction The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients' plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients' blood before major surgery. Methods Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. Results The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 mu g/L (r > 0.99). Limits of detection (LOD) in the plasma matrix were 0.21 mu g/L for dabigatran and 0.34 mu g/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 mu g/L for dabigatran and 0.54 mu g/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8-113.0%) for dabigatran and 87.0%(range 73.6-105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20 degrees C, 4 degrees C and even at RT for at least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs. Conclusions Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma. KW - LC-MS/MS KW - validation KW - serum KW - quantification KW - apixaban KW - diagnostic accuracy KW - performance liquid chromatography KW - factor XA inhibitor KW - direct oral anticoagulants KW - direct thrombin inhibitor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136023 VL - 10 IS - 12 ER - TY - JOUR A1 - Zeeshan, Ahmed T1 - Towards Performance Measurement and Metrics Based Analysis of PLA Applications N2 - This article is about a measurement analysis based approach to help software practitioners in managing the additional level complexities and variabilities in software product line applications. The architecture of the proposed approach i.e. ZAC is designed and implemented to perform preprocessesed source code analysis, calculate traditional and product line metrics and visualize results in two and three dimensional diagrams. Experiments using real time data sets are performed which concluded with the results that the ZAC can be very helpful for the software practitioners in understanding the overall structure and complexity of product line applications. Moreover the obtained results prove strong positive correlation between calculated traditional and product line measures. KW - Programmierbare logische Anordnung KW - Analysis KW - Measurement KW - Software product lines KW - Variability Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68188 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Dandekar, Thomas T1 - The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions JF - PLOS Pathogens N2 - No abstract available. KW - disease KW - pseudomas-syringae KW - arabidpsis thaliana KW - immunity KW - organogenesis KW - transcription KW - resistance KW - crosstalk Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131901 VL - 8 IS - 11 ER - TY - JOUR A1 - Merget, Benjamin A1 - Koetschan, Christian A1 - Hackl, Thomas A1 - Förster, Frank A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Schultz, Jörg A1 - Wolf, Matthias T1 - The ITS2 Database JF - Journal of Visual Expression N2 - The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses. KW - homology modeling KW - molecular systematics KW - internal transcribed spacer 2 KW - alignment KW - genetics KW - secondary structure KW - ribosomal RNA KW - phylogenetic tree KW - phylogeny Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124600 VL - 61 IS - e3806 ER - TY - JOUR A1 - Vainshtein, Yevhen A1 - Sanchez, Mayka A1 - Brazma, Alvis A1 - Hentze, Matthias W. A1 - Dandekar, Thomas A1 - Muckenthaler, Martina U. T1 - The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays N2 - Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see “Additional Files” section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/ KW - Microarray KW - ICEP KW - IronChip Evaluation Package Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67869 ER - TY - JOUR A1 - Kunz, Meik A1 - Liang, Chunguang A1 - Nilla, Santosh A1 - Cecil, Alexander A1 - Dandekar, Thomas T1 - The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development JF - Database N2 - The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. KW - drug-minded protein KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147369 VL - 2016 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Weber, Lorenz A1 - Becker, Dirk A1 - Förster, Frank A1 - Bemm, Felix T1 - TBro: visualization and management of de novo transcriptomes JF - Database N2 - RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro’s modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers. KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147954 VL - 2016 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Minocha, Rashmi A1 - Thapa, Prithivi Jung A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective JF - International Journal of Molecular Sciences N2 - After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron. KW - COVID-19 KW - SARS-CoV-2 KW - origin KW - evolution KW - intermediate host KW - pangolin KW - mutation KW - recombination KW - adaptation KW - transmission KW - comparative sequence analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285995 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Reinhard, Sebastian A1 - Helmerich, Dominic A. A1 - Boras, Dominik A1 - Sauer, Markus A1 - Kollmannsberger, Philip T1 - ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy JF - BMC Bioinformatics N2 - Background Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. Results Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. Conclusions Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility. KW - compressed sensing KW - AI KW - SMLM KW - FLIMbee KW - dSTORM Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299768 VL - 23 IS - 1 ER -