TY - JOUR A1 - Kaiser, Dennis A1 - Lesch, Veronika A1 - Rothe, Julian A1 - Strohmeier, Michael A1 - Spieß, Florian A1 - Krupitzer, Christian A1 - Montenegro, Sergio A1 - Kounev, Samuel T1 - Towards Self-Aware Multirotor Formations JF - Computers N2 - In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios. KW - self-aware computing KW - unmanned aerial vehicles KW - multirotors KW - quadcopters KW - intelligent transportation systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200572 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Bencurova, Elena A1 - Shityakov, Sergey A1 - Schaack, Dominik A1 - Kaltdorf, Martin A1 - Sarukhanyan, Edita A1 - Hilgarth, Alexander A1 - Rath, Christin A1 - Montenegro, Sergio A1 - Roth, Günter A1 - Lopez, Daniel A1 - Dandekar, Thomas T1 - Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration JF - Frontiers in Bioengineering and Biotechnology N2 - The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories. KW - nanocellulose KW - DNA storage KW - light-gated proteins KW - single-electron transistors KW - protein chip Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283033 SN - 2296-4185 VL - 10 ER -