TY - THES A1 - Karl, Veronika T1 - Augmented Lagrangian Methods for State Constrained Optimal Control Problems T1 - Augmentierte Lagrange-Verfahren für zustandsbeschränkte Optimalsteuerungsprobleme N2 - This thesis is concerned with the solution of control and state constrained optimal control problems, which are governed by elliptic partial differential equations. Problems of this type are challenging since they suffer from the low regularity of the multiplier corresponding to the state constraint. Applying an augmented Lagrangian method we overcome these difficulties by working with multiplier approximations in $L^2(\Omega)$. For each problem class, we introduce the solution algorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with numerical examples. The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal control problems. We start by studying linear-quadratic objective functionals, which include the standard tracking type term and an additional regularization term as well as the case, where the regularization term is replaced by an $L^1(\Omega)$-norm term, which makes the problem ill-posed. We deepen our study of the augmented Lagrangian algorithm by examining the more complicated class of optimal control problems that are governed by a semilinear partial differential equation. The second part investigates the broader class of multi-player control problems. While the examination of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs. The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to the analysis of the uniqueness of normalized equilibria. N2 - Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Regularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Problemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multiplikatoren in $L^2(\Omega)$ verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsalgorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen Ergebnisse durch numerische Beispiele. Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klassischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit konvexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie einem $L^2(\Omega)$-Regularisierungsterm oder einem $L^1(\Omega)$-Term zusammen. Wir erweitern unsere Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrundeliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimalsteuerungsproblems maßgeblich. Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und untersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Generalized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert betrachtet. KW - Optimale Kontrolle KW - Optimierung KW - Nash-Gleichgewicht KW - optimal control KW - state constraints KW - augmented Lagrangian method KW - Elliptische Differentialgleichung KW - Optimale Steuerung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213846 ER - TY - THES A1 - Börgens, Eike Alexander Lars Guido T1 - ADMM-Type Methods for Optimization and Generalized Nash Equilibrium Problems in Hilbert Spaces T1 - ADMM-Methoden für Optimierungs- und Verallgemeinerte Nash-Gleichgewichtsprobleme in Hilberträumen N2 - This thesis is concerned with a certain class of algorithms for the solution of constrained optimization problems and generalized Nash equilibrium problems in Hilbert spaces. This class of algorithms is inspired by the alternating direction method of multipliers (ADMM) and eliminates the constraints using an augmented Lagrangian approach. The alternating direction method consists of splitting the augmented Lagrangian subproblem into smaller and more easily manageable parts. Before the algorithms are discussed, a substantial amount of background material, including the theory of Banach and Hilbert spaces, fixed-point iterations as well as convex and monotone set-valued analysis, is presented. Thereafter, certain optimization problems and generalized Nash equilibrium problems are reformulated and analyzed using variational inequalities and set-valued mappings. The analysis of the algorithms developed in the course of this thesis is rooted in these reformulations as variational inequalities and set-valued mappings. The first algorithms discussed and analyzed are one weakly and one strongly convergent ADMM-type algorithm for convex, linearly constrained optimization. By equipping the associated Hilbert space with the correct weighted scalar product, the analysis of these two methods is accomplished using the proximal point method and the Halpern method. The rest of the thesis is concerned with the development and analysis of ADMM-type algorithms for generalized Nash equilibrium problems that jointly share a linear equality constraint. The first class of these algorithms is completely parallelizable and uses a forward-backward idea for the analysis, whereas the second class of algorithms can be interpreted as a direct extension of the classical ADMM-method to generalized Nash equilibrium problems. At the end of this thesis, the numerical behavior of the discussed algorithms is demonstrated on a collection of examples. N2 - Die vorliegende Arbeit behandelt eine Klasse von Algorithmen zur Lösung restringierter Optimierungsprobleme und verallgemeinerter Nash-Gleichgewichtsprobleme in Hilberträumen. Diese Klasse von Algorithmen ist angelehnt an die Alternating Direction Method of Multipliers (ADMM) und eliminiert die Nebenbedingungen durch einen Augmented-Lagrangian-Ansatz. Im Rahmen dessen wird in der Alternating Direction Method of Multipliers das jeweilige Augmented-Lagrangian-Teilproblem in kleinere Teilprobleme aufgespaltet. Zur Vorbereitung wird eine Vielzahl grundlegender Resultate präsentiert. Dies beinhaltet entsprechende Ergebnisse aus der Literatur zu der Theorie von Banach- und Hilberträumen, Fixpunktmethoden sowie konvexer und monotoner mengenwertiger Analysis. Im Anschluss werden gewisse Optimierungsprobleme sowie verallgemeinerte Nash-Gleichgewichtsprobleme als Variationsungleichungen und Inklusionen mit mengenwertigen Operatoren formuliert und analysiert. Die Analysis der im Rahmen dieser Arbeit entwickelten Algorithmen bezieht sich auf diese Reformulierungen als Variationsungleichungen und Inklusionsprobleme. Zuerst werden ein schwach und ein stark konvergenter paralleler ADMM-Algorithmus zur Lösung von separablen Optimierungsaufgaben mit linearen Gleichheitsnebenbedingungen präsentiert und analysiert. Durch die Ausstattung des zugehörigen Hilbertraums mit dem richtigen gewichteten Skalarprodukt gelingt die Analyse dieser beiden Methoden mit Hilfe der Proximalpunktmethode und der Halpern-Methode. Der Rest der Arbeit beschäftigt sich mit Algorithmen für verallgemeinerte Nash-Gleichgewichtsprobleme, die gemeinsame lineare Gleichheitsnebenbedingungen besitzen. Die erste Klasse von Algorithmen ist vollständig parallelisierbar und es wird ein Forward-Backward-Ansatz für die Analyse genutzt. Die zweite Klasse von Algorithmen kann hingegen als direkte Erweiterung des klassischen ADMM-Verfahrens auf verallgemeinerte Nash-Gleichgewichtsprobleme aufgefasst werden. Abschließend wird das Konvergenzverhalten der entwickelten Algorithmen an einer Sammlung von Beispielen demonstriert. KW - Constrained optimization KW - Nash-Gleichgewicht KW - ADMM KW - Generalized Nash Equilibrium Problem KW - Verallgemeinertes Nash-Gleichgewichtsproblem KW - Hilbert-Raum KW - Optimierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218777 ER -