TY - THES A1 - Kreikenbohm, Annika Franziska Eleonore T1 - Classifying the high-energy sky with spectral timing methods T1 - Klassifizierung des Hochenergiehimmels mittels spektralen und Zeitreihen-Methoden N2 - Active galactic nuclei (AGN) are among the brightest and most frequent sources on the extragalactic X-ray and gamma-ray sky. Their central supermassive blackhole generates an enormous luminostiy through accretion of the surrounding gas. A few AGN harbor highly collimated, powerful jets in which are observed across the entire electromagnetic spectrum. If their jet axis is seen in a small angle to our line-of-sight (these objects are then called blazars) jet emission can outshine any other emission component from the system. Synchrotron emission from electrons and positrons clearly prove the existence of a relativistic leptonic component in the jet plasma. But until today, it is still an open question whether heavier particles, especially protons, are accelerated as well. If this is the case, AGN would be prime candidates for extragalactic PeV neutrino sources that are observed on Earth. Characteristic signatures for protons can be hidden in the variable high-energy emission of these objects. In this thesis I investigated the broadband emission, particularly the high-energy X-ray and gamma-ray emission of jetted AGN to address open questions regarding the particle acceleration and particle content of AGN jets, or the evolutionary state of the AGN itself. For this purpose I analyzed various multiwavelength observations from optical to gamma-rays over a period of time using a combination of state-of-the-art spectroscopy and timing analysis. By nature, AGN are highly variable. Time-resolved spectral analysis provided a new dynamic view of these sources which helped to determine distinct emission processes that are difficult to disentangle from spectral or timing methods alone. Firstly, this thesis tackles the problem of source classification in order to facilitate the search for interesting sources in large data archives and characterize new transient sources. I use spectral and timing analysis methods and supervised machine learning algorithms to design an automated source classification pipeline. The test and training sample were based on the third XMM-Newton point source catalog (3XMM-DR6). The set of input features for the machine learning algorithm was derived from an automated spectral modeling of all sources in the 3XMM-DR6, summing up to 137200 individual detections. The spectral features were complemented by results of a basic timing analysis as well as multiwavelength information provided by catalog cross-matches. The training of the algorithm and application to a test sample showed that the definition of the training sample was crucial: Despite oversampling minority source types with synthetic data to balance out the training sample, the algorithm preferably predicted majority source types for unclassified objects. In general, the training process showed that the combination of spectral, timing and multiwavelength features performed best with the lowest misclassification rate of \\sim2.4\\%. The methods of time-resolved spectroscopy was then used in two studies to investigate the properties of two individual AGN, Mrk 421 and PKS 2004-447, in detail. Both objects belong to the class of gamma-ray emitting AGN. A very elusive sub-class are gamma-ray emitting Narrow Line Seyfert 1 (gNLS1) galaxies. These sources have been discovered as gamma-ray sources only recently in 2010 and a connection to young radio galaxies especially compact steep spectrum (CSS) radio sources has been proposed. The only gNLS1 on the Southern Hemisphere so far is PKS2004-447 which lies at the lower end of the luminosity distribution of gNLS1. The source is part of the TANAMI VLBI program and is regularly monitored at radio frequencies. In this thesis, I presented and analyzed data from a dedicated multiwavelength campaign of PKS 2004-447 which I and my collaborators performed during 2012 and which was complemented by individual observations between 2013 and 2016. I focussed on the detailed analysis of the X-ray emission and a first analysis of its broadband spectrum from radio to gamma-rays. Thanks to the dynamic SED I could show that earlier studies misinterpreted the optical spectrum of the source which had led to an underestimation of the high-energy emission and had ignited a discussion on the source class. I show that the overall spectral properties are consistent with dominating jet emission comprised of synchrotron radiation and inverse Compton scattering from accelerated leptons. The broadband emission is very similar to typical examples of a certain type of blazars (flat-spectrum radio quasars) and does not present any unusual properties in comparison. Interestingly, the VLBI data showed a compact jet structure and a steep radio spectrum consistent with a compact steep spectrum source. This classified PKS 2004-447 as a young radio galaxy, in which the jet is still developing. The investigation of Mrk 421 introduced the blazar monitoring program which I and collaborator have started in 2014. By observing a blazar simultaneously from optical, X-ray and gamma-ray bands during a VHE outbursts, the program aims at providing extraordinary data sets to allow for the generation of a series of dynamical SEDs of high spectral and temporal resolution. The program makes use of the dense VHE monitoring by the FACT telescope. So far, there are three sources in our sample that we have been monitoring since 2014. I presented the data and the first analysis of one of the brightest and most variable blazar, Mrk 421, which had a moderate outbreak in 2015 and triggered our program for the first time. With spectral timing analysis, I confirmed a tight correlation between the X-ray and TeV energy bands, which indicated that these jet emission components are causally connected. I discovered that the variations of the optical band were both correlated and anti-correlated with the high-energy emission, which suggested an independent emission component. Furthermore, the dynamic SEDs showed two different flaring behaviors, which differed in the presence or lack of a peak shift of the low-energy emission hump. These results further supported the hypothesis that more than one emission region contributed to the broadband emission of Mrk 421 during the observations. Overall,the studies presented in this thesis demonstrated that time-resolved spectroscopy is a powerful tool to classify both source types and emission processes of astronomical objects, especially relativistic jets in AGN, and thus provide a deeper understanding and new insights of their physics and properties. N2 - Aktive Galaxienkerne (active galactic nuclei, AGN) gehören zu den hellsten und häufigsten Quellen am extragalaktischen Röntgen- und Gammastrahlenhimmel. Das zentrale supermassive Schwarze Loch erzeugt durch Akkretion des umgebenden Gases eine enorme Leuchtkraft. Einige AGN beherbergen zudem stark kollimierte, leuchtstarke Jets die im gesamten elektromagnetischen Spektrum beobachtet werden. Betrachtet man Jets unter einem kleinen Winkel zu unserer Sichtlinie (sog. Blazare), kann die Jetemission die anderen Strahlungskomponenten des Systems überstrahlen. Die Synchrotronemission von relativistischen Elektronen und Positronen beweist eindeutig die Existenz einer leptonischen Plasmakomponente in Jets. Bis heute aber ist es offen, ob auch schwerere Teilchen, insbesondere Protonen, beschleunigt werden können. Wenn dies der Fall ist, wären AGN vielversprechende Quellen für extragalaktische PeV-Neutrinos, die auf der Erde beobachtet werden. Charakteristische Merkmale von Protonen könnten in der variablen hochenergetischen Emission dieser Objekte verborgen sein. In dieser Arbeit untersuchte ich daher die Breitbandemission, insbesondere die hochenergetische Röntgen- und Gammastrahlung, von AGN mit Jets, um verschiedene offene Fragen bezüglich Jets in AGN zu adressieren. Thematisiert werden sowohl die Teilchenbeschleunigung, wie auch die Plasmakomposition von Jets, oder der evolutionäre Zustand eines AGN selbst. Zu diesem Zweck analysierte ich mittels einer Kombination aus hochmodernen Methoden der Spektroskopie und Zeitreihenanalyse verschiedene Wellenlängenbeobachtungen, die das Breitbandspektrum von optischen bis Gammastrahlen zu verschiedenen Zeitpunkten abdeckten. Von Natur aus sind AGN sehr variabel. Die Kombination der zeitaufgelöster Spektroskopie lieferte somit eine neue dynamische Sicht auf diese Quellen, die dazu beitrug, unterschiedliche Emissionsprozesse zu bestimmen, die sich nur schwer von getrennten Spektral- oder Zeitreihen-Verfahren unterscheiden lassen. Diese Arbeit behandelt zunächst das Problem der Quellenklassifikation, um die Suche nach interessanten Quellen in großen Datenarchiven zu erleichtern und neue variable Quellen zu charakterisieren. Ich nutzte die Zeit- und Spektralanalyse Methoden sowie überwachte Machine-Learning Algorithmen, um ein automatisiertes Verfahren zur Quellklassifizierung zu entwerfen. Das Auswahl der Test- und Trainingsbeispiele basierte auf dem dritten XMM-Newton Punktquellenkatalog (3XMM-DR6). Die Attribute für den maschinellen Lernalgorithmus wurden aus einer automatisierten Spektralmodellierung aller Quellen in dem 3XMM-DR6 definiert, die über 137200 individuelle Detektionen umfasst. Die spektralen Eigenschaften wurden durch Ergebnisse einer einfachen Zeitreihenanalyse sowie durch Multiwellenlängeninformationen ergänzt. Letztere ergaben sich aus den Abgleichen verschiedener Quellkataloge. Das Trainieren des Algorithmus und die Anwendung auf die Testquellen zeigte, dass die Definition der Trainingsquellen für die Vorhersage von Quellklassen unbekannter Quellen entscheidend war. Obwohl das Trainingsset mittels der Generierung von synthetischen Daten von Minderheitsquellklassen ausbalanciert wurde, prognostizierte der Algorithmus bevorzugt jene Quellentypen für nicht klassifizierte Objekte, die am häufigsten im ursprünglichen Trainingsset vorkamen. Im Allgemeinen zeigte der Trainingsprozess, dass die Kombination von Spektral-, Zeitreihen- und Multiwellenlängenattributen bei der Klassifizierung einer großen Menge von unbekannten Objekten mit der niedrigsten Fehlklassifizierungsrate von \\sim2.4\\% am besten war. Die zeitaufgelöste Spektroskopie wurde in zwei zusätzlichen Studien an einzelnen außergewöhnlichen Quellen, Mrk 421 und PKS 2004-447, benutzt, um deren Eigenschaften im Detail zu untersuchen. Beide Objekte gehören zu der Klasse von AGN, die Gammastrahlung emittieren. Eine sehr schwer fassbare Unterklasse sind sogenannte $\gamma$-emittierende Narrow Line Seyfert 1 (gNLS1) Galaxien. Gammastrahlung dieser Quellen wurden erst im Jahr 2010 entdeckt. Man vermutet eine Verbindung zu jungen Radiogalaxien, insbesondere zu kompakten Radioquellen mit einem steilen Radiospektrum (sog. Compact Steep Spectrum sources, CSS). Die bisher einzige bestätigte gNLS1 auf der südlichen Hemisphäre ist PKS 2004-447, die am unteren Ende der Helligkeitsverteilung von gNLS1 liegt. Die Quelle ist Teil des TANAMI VLBI-Programms und wird regelmäßig im Radiobereich beobachtet. In dieser Dissertation präsentiere ich Ergebnisse einer Multiwellenlängen-Kampagne von PKS 2004-447, die ich und meine Kollegen 2012 durchgeführt haben und die durch weitere Einzelbeobachtungen zwischen 2013 und 2016 ergänzt wurde. Ich konzentrierte mich auf die detaillierte Analyse der Röntgenemission und eine erste Analyse der dynamischen Multiwellenlängen Spektralen Energieverteilung (spectral energy distribution, SED) von Radio bis Gammastrahlung. Dank der dynamischen SED konnte ich zeigen, dass frühere Studien das optische Spektrum der Quelle falsch interpretierten, was zu einer Unterschätzung der hochenergetischen Emission führte und eine Diskussion über die Quellklasse entfachte. In meiner Studie zeigte ich, dass die gesamten spektralen Eigenschaften konsistent durch Jetemission erklärt werden kann, die Synchrotronstrahlung und Inverse Comptonstreuung von beschleunigten Leptonen umfasst. Die Breitbandemission ist typischen Exemplaren von Flachspektrum-Radio-Quasaren sehr ähnlich und weist im Vergleich keine ungewöhnlichen Eigenschaften auf. Interessanterweise zeigten die hochaufgelöste Radiobeobachtungen eine kompakte Jet-Struktur und ein steiles Radiospektrum, das mit den Eigenschaften von kompakten Quellen mit steilem Radiospektrum (compact steep spectrum sources, CSS sources) verträglich ist. Dies klassifiziert PKS 2004-447 als junge Radiogalaxie, in der sich der Jet noch entwickelt. Die Untersuchung von Mrk 421 führt das Blazar-Monitoring-Program ein, das ich und meine Mitarbeiter 2014 begonnen haben. Dabei werden Blazare während eines Strahlungsausbruchs im TeV Energieband gleichzeitig in den optischen, Röntgen- und Gammastrahlenbändern beobachtet. Das Ziel des Programms ist die Erzeugung von dynamischen SEDs von hoher spektraler und zeitlicher Auflösung zu ermöglichen. Das Programm nutzt dafür die dichte Überwachung von Blazaren im TeV Bereich durch das FACT-Teleskop. Seit 2014 sind drei markante Blazare Teil unseres Programms. 2015 zeigte eine unserer beobachteten Quellen, Mrk 421, einen moderaten Ausbruch im TeV Band und löste damit unser Programm zum ersten Mal aus. In dieser Arbeit habe ich unsere Beobachtungen im Optischen bis TeV Bereich dieser Quelle benutzt um eine erste zeitaufgelöste Spektroskopie der dynamischen SED dieser Quelle vorzunehmen. Die Analyse der Flussvariabilität in unterschiedlichen Energiebändern bestätigte eine enge Korrelation zwischen der Röntgen- und TeV-Emission. Dies deutet darauf hin, dass diese Strahlungskomponenten im Jet kausal verknüpft sind. Ich entdeckte, dass die Helligkeitsvariationen im optischen Band scheinbar sowohl korreliert als auch antikorreliert mit der Strahlung im Röntgen- und Gammaband waren, was auf eine unabhängige Emissionskomponente hinwies. Darüber hinaus zeigten die dynamischen SEDs zwei unterschiedliche Verhalten bei Strahlungsausbrüchen, die sich im Vorhandensein oder Fehlen einer Verschiebung des niederenergetischen Emissionsmaximums unterschieden. Diese Ergebnisse unterstützen die Hypothese, dass während der Beobachtungen von Mrk 421 mehr als eine Emissionsregion zu dessen Breitbandemission beigetragen haben. Die Studien in dieser Arbeit zeigen, dass die zeitaufgelöste Spektroskopie ein leistungsfähiges Werkzeug ist, um sowohl Quellentypen als auch die Emissionsprozesse einzelner Quellen zu klassifizieren und so ein tieferes Verständnis und neue Einblicke in die Physik und Eigenschaften astronomischer Objekte, insbesondere relativistischer Jets in AGN zu ermöglichen. KW - Astronomie KW - Astroteilchenphysik KW - Röntgenastronomie KW - Maschinelles Lernen KW - Multiwavelength Astronomy KW - High-energy astrophysics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192054 ER - TY - THES A1 - Geißler, Florian T1 - Transport properties of helical Luttinger liquids T1 - Transporteigenschaften von helikalen Luttinger Flüssigkeiten N2 - The prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensional edge channels are helical in nature, meaning that there is a locking of the spin orientation of an electron and its direction of motion. Due to the symmetry of time-reversal, elastic backscattering off interspersed impurities is suppressed in such a helical system, and transport is approximately ballistic. This allows in principle for the realization of novel energy-efficient devices, ``spintronic`` applications, or the formation of exotic bound states with non-Abelian statistics, which could be used for quantum computing. The present work is concerned with the general transport properties of one-dimensional helical states. Beyond the topological protection mentioned above, inelastic backscattering can arise from various microscopic sources, of which the most prominent ones will be discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of electron-electron interactions can be of major importance in this context. First, we review well-established techniques of many-body physics in one dimension such as perturbative renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The latter allow us to treat electron interactions in an exact way. Those methods then are employed to derive the corrections to the conductance in a helical transport channel, that arise from various types of perturbations. Particularly, we focus on the interplay of Rashba spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-particle backscattering. It is demonstrated, that microscopic details of the system, such as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence of non-interacting leads attached to the system, can fundamentally alter the transport signature. By comparison of the predicted corrections to the conductance to a transport experiment, one can gain insight about the microscopic processes and the structure of a quantum spin Hall sample. Another important mechanism we analyze is backscattering induced by magnetic moments. Those findings provide an alternative interpretation of recent transport measurements in InAs/GaSb quantum wells. N2 - Mit der Vorhersage und der experimentellen Entdeckung von topologischen Isolatoren wurde die Grundlage für eine vollkommen neue Art von elektronischen Bauelementen geschaffen. Diese neue Klasse von Materialien zeichnet sich gegenüber herkömmlichen Metallen und Halbleitern durch besondere Transporteigenschaften der Probenoberfläche aus, wobei elektrische Leitung in Randkanälen an den topologischen Grenzflächen des Systems stattfindet. Eine spezielle Form des zweidimensionalen topologischen Isolators stellt der Quanten-Spin-Hall-Zustand dar, welcher in bestimmten Materialien mit starker Spin-Bahn-Kopplung beobachtet werden kann. Die hier auftretenden eindimensionalen Leitungskanäle sind von helikaler Natur, was bedeutet, dass die Orientierung des Spins eines Elektrons und seine Bewegungsrichtung fest miteinander gekoppelt sind. Aufgrund von Symmetrien wie Zeitumkehr ist elastische Rückstreuung an eventuell vorhandenen Störstellen in solchen helikalen Kanälen verboten, sodass elektrische Leitung als nahezu ballistisch betrachtet werden kann. Prinzipiell bieten sich dadurch neue Möglichkeiten zur Konstruktion von energieeffizienten Transistoren, “Spintronik“-Bauelementen, oder zur Erzeugung von speziellen Zuständen, die für den Betrieb eines Quantencomputers benutzt werden könnten. Die vorliegende Arbeit beschäftigt sich mit den allgemeinen Transporteigenschaften von eindimensionalen, helikalen Randzuständen. Neben dem oben erwähnten topologischen Schutz gibt es zahlreiche Störquellen, die inelastische Rückstreuprozesse induzieren. Die wichtigsten davon werden im Rahmen dieser Dissertation beleuchtet. Entscheidend wirkt hierbei oft die Rolle von Elektron-Elektron-Wechselwirkungen, welche in eindimensionalen Systemen generell von großer Bedeutung ist. Zunächst werden bewährte Techniken der Festkörperphysik wie etwa Abelsche Bosonisierung (mithilfe derer Wechselwirkungen in einer Raumdimension exakt berücksichtigt werden können), die Theorie von Luttinger Flüssigkeiten, oder die störungstheoretische Renormierungsgruppenanalyse rekapituliert. Diese Methoden werden im Weiteren benutzt, um die Korrekturen zum Leitwert eines helikalen Transportkanals zu berechnen, welche aufgrund von ausgewählten Störungen auftreten können. Ein Fokus liegt hierbei auf dem Zusammenspiel vonWechselwirkungen und Rashba Spin-Bahn-Kopplung als Quelle inelastischer Ein-Teilchen- oder Zwei-Teilchen-Rückstreuung. Mikroskopische Details wie etwa die Existenz einer Impulsobergrenze, welche das Energiespektrum beschränkt, oder die Anwesenheit von wechselwirkungsfreien Spannungskontakten, sind dabei von grundsätzlicher Bedeutung. Die charakteristische Form der vorhergesagten Korrekturen kann dazu dienen, die Struktur und die mikroskopischen Vorgänge im Inneren einer Quanten-Spin- Hall-Probe besser zu verstehen. Ein weiterer grundlegender Mechanismus ist Rückstreuung verursacht durch magnetische Momente. Aus der entsprechenden Analyse der Korrekturen zur Leitfähigkeit ergeben sich interessante Übereinstimmungen mit aktuellen Experimenten in InAs/GaSb Quantentrögen. KW - Topologischer Isolator KW - Luttinger-Flüssigkeit KW - 1D transport KW - Backscattering KW - Correlated electron effects KW - Transporteigenschaft KW - Elektronischer Transport KW - Dimension 1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153450 ER - TY - JOUR A1 - Kernreiter, T. A1 - Governale, M. A1 - Zülicke, U. A1 - Hankiewicz, E. M. T1 - Anomalous Spin Response and Virtual-Carrier-Mediated Magnetism in a Topological Insulator JF - Physical Review X N2 - We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q=0 (long-wavelength) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Landé g factors for the bulk and edge electrons. The variety of counterintuitive spin-response properties revealed in our study arises from the system’s versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrödinger-type physics; it mimics the behavior of chiral Dirac fermions or reflects the material’s symmetry-protected topological order. KW - spin response KW - magnetism KW - nanophysics KW - topological insulators Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166582 VL - 6 IS - 021010 ER - TY - JOUR A1 - Bechtle, Philip A1 - Camargo-Molina, José Eliel A1 - Desch, Klaus A1 - Dreiner, Herbert K. A1 - Hamer, Matthias A1 - Krämer, Michael A1 - O'Leary, Ben A1 - Porod, Werner A1 - Sarrazin, Björn A1 - Stefaniak, Tim A1 - Uhlenbrock, Mathias A1 - Wienemann, Peter T1 - Killing the cMSSM softly JF - The European Physical Journal C N2 - We investigate the constrained Minimal Supersymmetric Standard Model (cMSSM) in the light of constraining experimental and observational data from precision measurements, astrophysics, direct supersymmetry searches at the LHC and measurements of the properties of the Higgs boson, by means of a global fit using the program Fittino. As in previous studies, we find rather poor agreement of the best fit point with the global data. We also investigate the stability of the electro-weak vacuum in the preferred region of parameter space around the best fit point. We find that the vacuum is metastable, with a lifetime significantly longer than the age of the Universe. For the first time in a global fit of supersymmetry, we employ a consistent methodology to evaluate the goodness-of-fit of the cMSSM in a frequentist approach by deriving p values from large sets of toy experiments. We analyse analytically and quantitatively the impact of the choice of the observable set on the p value, and in particular its dilution when confronting the model with a large number of barely constraining measurements. Finally, for the preferred sets of observables, we obtain p values for the cMSSM below 10 %, i.e. we exclude the cMSSM as a model at the 90 % confidence level. KW - Dark Matter KW - Higgs Boson KW - Higgs Mass KW - Supersymmetry Breaking KW - Light Supersymmetric Particle Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165045 VL - 76 IS - 96 ER - TY - THES A1 - Fleckenstein, Christoph Thomas T1 - Conception and detection of exotic quantum matter in mesoscopic systems T1 - Konzeption und Detektion von exotischer Quantenmaterie in mesoskopischen Systemen N2 - In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements. We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials – a structure we coin anti-wire – are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions. N2 - In der vorliegenden Arbeit untersuchen wir Nanobauteile auf der Basis von topologischen Isolatoren. Diese neue Materialklasse zeichnet sich in erster Linie durch ein isolierendes Inneres aus, während gleichzeitig die Oberfläche leitende Eigenschaften besitzt. Zustände, welche mit diesen leitenden Eigenschaften in Verbindung gebracht werden, können in niedrigster Ordnung durch eine Dirac-Theorie beschrieben werden. Im Falle eines zweidimensionalen topologischen Isolators impliziert das, zusammen mit Zeit-Umkehr Symmetrie, eine helikale Natur dieser Randzustände. Interessante Physik entsteht dann insbesondere, wenn zwei solcher helikalen Randkanalzustände in einer Verengung zusammengeführt werden. Dies hat verschiedene Konsequenzen. Innerhalb der Verengung findet man die gleiche Anzahl an fermionischen Feldern wie man sie auch in einem Quantendraht erwartet. Gleichzeitig besitzt eine solche Konstruktion aber mehr Symmetrien verglichen mit gewöhnlichen Quantendrähten. Außerdem kann eine Verengung in einem zwei-dimensionalen topologischen Isolator auf natürliche Weise helikal kontaktiert werden, so dass spin-aufgelöste Transportmessungen durchgeführt werden können. Diese einzigartige Kombination von Eigenschaften impliziert verschiedenste physikalische Effekte. Wie wir in dieser Arbeit zeigen entsteht in engen Schlitzen, welche in einen homogenen zwei-dimensionalen topologischen Isolator tranchiert werden, eine topologisch supraleitende Phase mit nicht-Abelschen Majorana Moden an den Systemrändern. Diese exotischen Teilchen können mit einem relativ einfachen Transportexperiment nachgewiesen werden, indem man diesen sogenannten Anti-Quantendraht schwach mit einem helikalen Randkanal koppelt und dort die Transportcharakteristiken misst. Die Präsenz von Majorana Moden ist verknüpft mit dem Entstehen von unkonventioneller Supraleitung, insbesondere von sogenannter odd-frequency Supraleitung. Wir zeigen, dass dies vielmehr eine allgemeine Erscheinung in derartigen supraleitenden Strukturen ist. Symmetrien sind von elementarer Bedeutung für viele physikalische Effekte. So führt zum Beispiel die natürlich auftretende Ladungs-Konjugation Symmetrie zusammen mit einem zeit-periodischen elektromagnetischen Feld in topologischen Anti-Quantendrähten zu einer topologischen Floquet Nichtgleichgewichts-Phase, welche wiederum durch Transportmessungen detektiert werden kann. Symmetrien spielen auch und insbesondere für Wechselwirkungseffekte eine wichtige Rolle. Hier ist besonders die Existenz eines Dirac-Punktes von großer Bedeutung. In dessen (energetischer) Nähe ist es möglich wechselwirkungs-induzierte Bandlücken zu erzeugen. Anders als Einteilchen-Bandlücken können wechselwirkungs-induzierte Bandlücken zu einer hohen Grundzustandsentartung führen. Diese wiederum ermöglicht die Entstehung komplexer nicht-Abelscher Teilchen, falls zusätzlich supraleitende Ordnung vorhanden ist. Interessanterweise können derartige Vielteilchen-Bandlücken in unserem System schon bei nur schwacher elektronischer Wechselwirkung auftreten. Dieses untypische Verhalten ermöglicht letztendlich die Entstehung von Z4 parafermionen an Grenzflächen unterschiedlicher Ordnung. KW - Kondensierte Materie KW - Supraleitung KW - Topologie KW - non-Abelian anyons Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212847 ER - TY - JOUR A1 - Fleszar, Andrzej A1 - Hanke, Werner T1 - Two-dimensional metallicity with a large spin-orbit splitting: DFT calculations of the atomic, electronic, and spin structures of the Au/Ge(111)-(√3 x √3)R30° surface JF - Advances in Condensed Matter Physics N2 - Density functional theory (DFT) is applied to study the atomic, electronic, and spin structures of the Au monolayer at the Ge(111) surface. It is found that the theoretically determined most stable atomic geometry is described by the conjugated honeycomb-chained-trimer (CHCT) model, in a very good agreement with experimental data. The calculated electronic structure of the system, being in qualitatively good agreement with the photoemission measurements, shows fingerprints of the many-body effects (self-interaction corrections) beyond the LDA or GGA approximations. The most interesting property of this surface system is the large spin splitting of its metallic surface bands and the undulating spin texture along the hexagonal Fermi contours, which highly resembles the spin texture at the Dirac state of the topological insulator Bi\(_{2}\)Te\(_{3}\). These properties make this system particularly interesting from both fundamental and technological points of view. KW - topological insulators KW - gas KW - density functional theory KW - conjugated honeycomb-chained-trimer KW - spin structures KW - Au/Ge(111) Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149221 VL - 2015 IS - 531498 ER - TY - THES A1 - Northe, Christian T1 - Interfaces and Information in Gauge/Gravity Duality T1 - Schnittstellen und Informationen in Eich/Gravitations-Dualität N2 - This dissertation employs gauge/gravity duality to investigate features of ( 2 + 1 ) -dimensional quantum gravity in Anti-de Sitter space (AdS) and its relation to conformal field theory (CFT) in 1 + 1 dimensions. Concretely, we contribute to research on the frontier of gauge/gravity with condensed matter as well as the frontier with quantum informa- tion. The first research topic of this thesis is motivated by the Kondo model, which describes the screening of magnetic impurities in metals by conduction electrons at low temperatures. This process has a de- scription in the language of string theory via fluctuating surfaces in spacetime, called branes. At high temperatures the unscreened Kondo impurity is modelled by a stack of pointlike branes. At low tempera- tures this stack condenses into a single spherical, two-dimensional brane which embodies the screened impurity. This thesis demonstrates how this condensation process is naturally reinvoked in the holographic D1/D5 system. We find brane configu- rations mimicking the Kondo impurities at high and low energies and establish the corresponding brane condensation, where the brane grows two additional dimensions. We construct supergravity solutions, which fully take into account the effect of the brane on its surrounding space- time before and after the condensation takes place. This enables us to compute the full impurity entropies through which we confirm the validity of the g-theorem. The second research topic is rooted in the connection of geometry with quantum information. The motivation stems from the “complexity equals volume” proposal, which relates the volume of wormholes to the cicruit complexity of a thermal quantum state. We approach this proposal from a pragmatic point of view by studying the properties of certain volumes in gravity and their description in the CFT. We study subregion complexities, which are the volumes of the re- gions subtended by Ryu-Takayanagi (RT) geodesics. On the gravity side we reveal their topological properties in the vacuum and in ther- mal states, where they turn out to be temperature independent. On the field theory side we develop and proof a formula using kinematic space which computes subregion complexities without referencing the bulk. We apply our formula to global AdS 3 , the conical defect and a black hole. While entanglement, i.e. minimal boundary anchored geodesics, suffices to produce vacuum geometries, for the conical defect we also need geodesics windings non-trivially around the singularity. The black hole geometry requires additional thermal contributions. N2 - In dieser Dissertation geht es um die Beziehung zwischen Quantengra- vitation im (2+1)-dimensionalen Anti-de Sitter-Raum und konformer Feldtheorie in 1+1 Dimensionen. Insbesondere stellt diese Arbeit neue Zusammenhänge her zwischen der Eichtheorie/Gravitationsdualität oder Holographie einerseits und der Festkörperphysik sowie auch der Quan- teninformationstheorie andererseits. Das erste Thema dieser Arbeit ist inspiriert durch den Kondo-Effekt. Dieser beschreibt die Abschirmung magnetischer Störstellen in einem Metall durch Leitungselektronen bei tiefen Temperaturen. Die String- Theorie kann diesen Prozess mittels fluktuierender Flächen in der Raum- zeit, sogenannten Branen, beschreiben. Bei hohen Temperaturen mo- delliert die String-Theorie die magnetische Störstelle als Stapel punkt- förmiger Branen. Bei tiefen Temperaturen kondensiert dieser Stapel zu einer einzelnen zwei-dimensionalen, sphärischen Brane. Diese Kon- densation ist gleichbedeutend mit der magnetischen Abschirmung der Störstelle. Ein Ziel dieser Dissertation ist es zu zeigen, dass diese Kondensation auf natürliche Weise im holographischen D1/D5-System implementiert wird. Hierzu beschreiben wir analoge Kondo-Störstellen als Stapel von Branen, die bei sinkenden Energien zu einer sphärischen Brane konden- sieren, welche zwei extra Dimensionen besitzt. Hiernach konstruieren wir die Supergravitationslösungen, welche den vollständigen Einfluss der Branen-Störstelle auf die umgebende Raumzeit vor und nach der Kondensation berücksichtigt. Diese Lösungen erlauben es die Entropien der Störstellen zu bestimmen, womit wir die Gültigkeit des g-Theorems bestätigen. Als nächstes widmet sich diese Arbeit der Beziehung zwischen Ge- ometrie und Quanteninformation. Die Motivation stammt vom “com- plexity equals volume”-Vorschlag, welcher das Volumen eines Wurm- loches mit der Schaltkreis-Komplexität eines thermischen Zustandes verbindet. Um solche Zusammenhänge zu untersuchen, wählen wir einen pragmatischen Zugang, indem wir uns den Eigenschaften bestimmter Volumina zuwenden. Wir untersuchen sogenannte Teilregionskomplexitäten. Diese sind Volumima von Regionen, die durch Ryu-Takayanagi-Flächen beran- det werden. Auf der Gravitationsseite enthüllen wir deren topologische Eigenschaften im Vakuum und in thermischen Zuständen. In Letzteren zeigen wir, dass Teilregionskomplexitäten temperaturunabhängig sind. Zuletzt untersuchen wir Teilregionskomplexitäten im Rahmen der Feld- theorie. Unter Verwendung des kinematischen Raumes entwickeln und beweisen wir eine Formel zur Berechnung von Teilregionskomplexitäten in der CFT ohne auf die Gravitationsseite Bezug nehmen zu müssen. KW - Information KW - Gauge/Gravity Duality KW - Interfaces KW - Quantum Information Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191594 ER - TY - JOUR A1 - Adrián-Martínez, S. A1 - Ageron, M. A1 - Aharonian, F. A1 - Aiello, S. A1 - Albert, A. A1 - Ameli, F. A1 - Annasontzis, E. A1 - Andre, M. A1 - Androulakis, G. A1 - Anghinolfi, M. A1 - Anton, G. A1 - Ardid, M. A1 - Avgitas, T. A1 - Barbarino, G. A1 - Baret, B. A1 - Barrios-Martí, J. A1 - Belhorma, B. A1 - Belias, A. A1 - Berbee, A. A1 - van den Berg, A. A1 - Bertin, V. A1 - Beurthey, S. A1 - van Beeveren, V. A1 - Beverini, N. A1 - Biagi, S. A1 - Biagioni, A. A1 - Billault, M. A1 - Bondì, M. A1 - Bormuth, R. A1 - Bouhadef, B. A1 - Bourlis, G. A1 - Bourret, S. A1 - Boutonnet, C. A1 - Bouwhuis, M. A1 - Bozza, C. A1 - Bruijn, R. A1 - Brunner, J. A1 - Buis, E. A1 - Busto, J. A1 - Cacopardo, G. A1 - Caillat, L. A1 - Calmai, M. A1 - Calvo, D. A1 - Capone, A. A1 - Caramete, L. A1 - Cecchini, S. A1 - Celli, S. A1 - Champion, C. A1 - Cherkaoui El Moursli, R. A1 - Cherubini, S. A1 - Chiarusi, T. A1 - Circella, M. A1 - Classen, L. A1 - Cocimano, R. A1 - Coelho, J. A. B. A1 - Coleiro, A. A1 - Colonges, S. A1 - Coniglione, R. A1 - Cordelli, M. A1 - Cosquer, A. A1 - Coyle, P. A1 - Creusot, A. A1 - Cuttone, G. A1 - D'Amico, A. A1 - De Bonis, G. A1 - De Rosa, G. A1 - De Sio, C. A1 - Di Capua, F. A1 - Di Palma, I. A1 - Díaz García, A. F. A1 - Distefano, C. A1 - Donzaud, C. A1 - Dornic, D. A1 - Dorosti-Hasankiadeh, Q. A1 - Drakopoulou, E. A1 - Drouhin, D. A1 - Drury, L. A1 - Durocher, M. A1 - Eberl, T. A1 - Eichie, S. A1 - van Eijk, D. A1 - El Bojaddaini, I. A1 - El Khayati, N. A1 - Elsaesser, D. A1 - Enzenhöfer, A. A1 - Fassi, F. A1 - Favali, P. A1 - Fermani, P. A1 - Ferrara, G. A1 - Filippidis, C. A1 - Frascadore, G. A1 - Fusco, L. A. A1 - Gal, T. A1 - Galatà, S. A1 - Garufi, F. A1 - Gay, P. A1 - Gebyehu, M. A1 - Giordano, V. A1 - Gizani, N. A1 - Gracia, R. A1 - Graf, K. A1 - Grégoire, T. A1 - Grella, G. A1 - Habel, R. A1 - Hallmann, S. A1 - van Haren, H. A1 - Harissopulos, S. A1 - Heid, T. A1 - Heijboer, A. A1 - Heine, E. A1 - Henry, S. A1 - Hernández-Rey, J. J. A1 - Hevinga, M. A1 - Hofestädt, J. A1 - Hugon, C. M. F. A1 - Illuminati, G. A1 - James, C. W. A1 - Jansweijer, P. A1 - Jongen, M. A1 - de Jong, M. A1 - Kadler, M. A1 - Kalekin, O. A1 - Kappes, A. A1 - Katz, U. F. A1 - Keller, P. A1 - Kieft, G. A1 - Kießling, D. A1 - Koffeman, E. N. A1 - Kooijman, P. A1 - Kouchner, A. A1 - Kulikovskiy, V. A1 - Lahmann, R. A1 - Lamare, P. A1 - Leisos, A. A1 - Leonora, E. A1 - Lindsey Clark, M. A1 - Liolios, A. A1 - Llorenz Alvarez, C. D. A1 - Lo Presti, D. A1 - Löhner, H. A1 - Lonardo, A. A1 - Lotze, M. A1 - Loucatos, S. A1 - Maccioni, E. A1 - Mannheim, K. A1 - Margiotta, A. A1 - Marinelli, A. A1 - Mariş, O. A1 - Markou, C. A1 - Martínez-Mora, J. A. A1 - Martini, A. A1 - Mele, R. A1 - Melis, K. W. A1 - Michael, T. A1 - Migliozzi, P. A1 - Migneco, E. A1 - Mijakowski, P. A1 - Miraglia, A. A1 - Mollo, C. M. A1 - Mongelli, M. A1 - Morganti, M. A1 - Moussa, A. A1 - Musico, P. A1 - Musumeci, M. A1 - Navas, S. A1 - Nicoleau, C. A. A1 - Olcina, I. A1 - Olivetto, C. A1 - Orlando, A. A1 - Papaikonomou, A. A1 - Papaleo, R. A1 - Păvălaş, G. E. A1 - Peek, H. A1 - Pellegrino, C. A1 - Perrina, C. A1 - Pfutzner, M. A1 - Piattelli, P. A1 - Pikounis, K. A1 - Poma, G. E. A1 - Popa, V. A1 - Pradier, T. A1 - Pratolongo, F. A1 - Pühlhofer, G. A1 - Pulvirenti, S. A1 - Quinn, L. A1 - Racca, C. A1 - Raffaelli, F. A1 - Randazzo, N. A1 - Rapidis, P. A1 - Razis, P. A1 - Real, D. A1 - Resvanis, L. A1 - Reubelt, J. A1 - Riccobene, G. A1 - Rossi, C. A1 - Rovelli, A. A1 - Saldaña, M. A1 - Salvadori, I. A1 - Samtleben, D. F. E. A1 - Sánchez García, A. A1 - Sánchez Losa, A. A1 - Sanguineti, M. A1 - Santangelo, A. A1 - Santonocito, D. A1 - Sapienza, P. A1 - Schimmel, F. A1 - Schmelling, J. A1 - Sciacca, V. A1 - Sedita, M. A1 - Seitz, T. A1 - Sgura, I. A1 - Simeone, F. A1 - Siotis, I. A1 - Sipala, V. A1 - Spisso, B. A1 - Spurio, M. A1 - Stavropoulos, G. A1 - Steijger, J. A1 - Stellacci, S. M. A1 - Stransky, D. A1 - Taiuti, M. A1 - Tayalati, Y. A1 - Tézier, D. A1 - Theraube, S. A1 - Thompson, L. A1 - Timmer, P. A1 - Tönnis, C. A1 - Trasatti, L. A1 - Trovato, A. A1 - Tsirigotis, A. A1 - Tzamarias, S. A1 - Tzamariudaki, E. A1 - Vallage, B. A1 - Van Elewyk, V. A1 - Vermeulen, J. A1 - Vicini, P. A1 - Viola, S. A1 - Vivolo, D. A1 - Volkert, M. A1 - Voulgaris, G. A1 - Wiggers, L. A1 - Wilms, J. A1 - de Wolf, E. A1 - Zachariadou, K. A1 - Zornoza, J. D. A1 - Zúñiga, J. T1 - Letter of intent for KM3NeT 2.0 JF - Journal of Physics G-Nuclear and Particle Physics N2 - The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and KW - neutrino astronomy KW - eutrino physics KW - deep sea neutrino telescope KW - neutrino mass hierarchy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188050 VL - 43 IS - 8 ER - TY - JOUR A1 - Gedalin, Michael A1 - Dröge, Wolfgang T1 - Ion dynamics in quasi-perpendicular collisionless interplanetary shocks: a case study JF - Frontiers in Physics N2 - Interplanetary shocks are believed to play an important role in the acceleration of charged particles in the heliosphere. While the acceleration to high energies proceeds via the diffusive mechanism at the scales exceeding by far the shock width, the initial stage (injection) should occur at the shock itself. Numerical tracing of ions is done in a model quasi-perpendicular shock front with a typical interplanetary shock parameters (Mach number, upstream ion temperature). The analysis of the distribution of the transmitted solar wind is used to adjust the cross-shock potential which is not directly measured. It is found that, for typical upstream ion temperatures, acceleration of the ions from the tail of the solar wind distribution is unlikely. Pickup ions with a shell distribution are found to be effectively energized and may be injected into further diffusive acceleration regime. Pre-accelerated ions are efficiently upscaled in energies. A part of these ions is returned to the upstream region where they can further be diffusively accelerated. KW - collisionless shocks KW - particle acceleration KW - non-linear waves KW - ion dynamics KW - heliospheric shocks Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189407 SN - 2296-424X VL - 1 ER - TY - JOUR A1 - Adrián-Martínez, S. A1 - Albert, A. A1 - André, M. A1 - Anton, G. A1 - Ardid, M. A1 - Aubert, J.-J. A1 - Avgitas, T. A1 - Baret, B. A1 - Barrios-Martí, J. A1 - Basa, S. A1 - Bertin, V. A1 - Biagi, S. A1 - Bormuth, R. A1 - Bou-Cabo, M. A1 - Bouwhuis, M.C. A1 - Bruijn, R. A1 - Brunner, J. A1 - Busto, J. A1 - Capone, A. A1 - Caramete, L. A1 - Carr, J. A1 - Celli, S. A1 - Chiarusi, T. A1 - Circella, M. A1 - Coleiro, A. A1 - Coniglione, R. A1 - Costantini, H. A1 - Coyle, P. A1 - Creusot, A. A1 - Deschamps, A. A1 - De Bonis, G. A1 - Distefano, C. A1 - Donzaud, C. A1 - Dornic, D. A1 - Drouhin, D. A1 - Eberl, T. A1 - El Bojaddaini, I. A1 - Elsässer, D. A1 - Enzenhöfer, A. A1 - Fehn, K. A1 - Felis, I. A1 - Fusco, L.A. A1 - Galatà, S. A1 - Gay, P. A1 - Geißelsöder, S. A1 - Geyer, K. A1 - Giordano, V. A1 - Gleixner, A. A1 - Glotin, H. A1 - Gracia-Ruiz, R. A1 - Graf, K. A1 - Hallmann, S. A1 - van Haren, H. A1 - Heijboer, A.J. A1 - Hello, Y. A1 - Hernández-Rey, J.-J. A1 - Hößl, J. A1 - Hofestädt, J. A1 - Hugon, C. A1 - Illuminati, G. A1 - James, C.W. A1 - de Jong, M. A1 - Kadler, M. A1 - Kalekin, O. A1 - Katz, U. A1 - Kießling, D. A1 - Kouchner, A. A1 - Kreter, M. A1 - Kreykenbohm, I. A1 - Kulikovskiy, V. A1 - Lachaud, C. A1 - Lahmann, R. A1 - Lefèvre, D. A1 - Leonora, E. A1 - Loucatos, S. A1 - Marcelin, M. A1 - Margiotta, A. A1 - Marinelli, A. A1 - Martínez-Mora, J.A. A1 - Mathieu, A. A1 - Michael, T. A1 - Migliozzi, P. A1 - Moussa, A. A1 - Mueller, C. A1 - Nezri, E. A1 - Păvălaș, G.E. A1 - Pellegrino, C. A1 - Perrina, C. A1 - Piattelli, P. A1 - Popa, V. A1 - Pradier, T. A1 - Racca, C. A1 - Riccobene, G. A1 - Roensch, K. A1 - Saldaña, M. A1 - Samtleben, D.F.E. A1 - Sanguineti, M. A1 - Sapienza, P. A1 - Schnabel, J. A1 - Schüssler, F. A1 - Seitz, T. A1 - Sieger, C. A1 - Spurio, M. A1 - Stolarczyk, Th. A1 - Sánchez-Losa, A. A1 - Taiuti, M. A1 - Trovato, A. A1 - Tselengidou, M. A1 - Turpin, D. A1 - Tönnis, C. A1 - Vallage, B. A1 - Vallée, C. A1 - Van Elewyck, V. A1 - Vivolo, D. A1 - Wagner, S. A1 - Wilms, J. A1 - Zornoza, J.D. A1 - Zúñiga, J. T1 - A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope JF - Journal of Cosmology and Astroparticle Physics N2 - A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator. KW - dark matter experiments KW - neutrino detectors KW - dark matter detectors KW - neutrino astronomy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189035 VL - 2016 IS - 5 ER - TY - JOUR A1 - Dreiner, Herbi K. A1 - Krauss, Manuel E. A1 - O'Leary, Ben A1 - Opferkuch, Toby A1 - Staub, Florian T1 - Validity of the CMSSM interpretation of the diphoton excess JF - Physical Review D N2 - It has been proposed that the observed diphoton excess at 750 GeV could be explained within the constrained minimal supersymmetric standard model via resonantly produced stop bound states. We reanalyze this scenario critically and extend previous work to include the constraints from the stability of the electroweak vacuum and from the decays of the stoponium into a pair of Higgs bosons. It is shown that the interesting regions of parameter space with a light stop and Higgs of the desired mass are ruled out by these constraints. This conclusion is not affected by the presence of the bound states because the binding energy is usually very small in the regions of parameter space which can explain the Higgs mass. Thus, this also leads to strong constraints on the diphoton production cross section which is in general too small. KW - Minimal supersymmetric model KW - 2-loop level KW - Bound-states KW - Higgs-boson KW - MSSM KW - Mass KW - Spheno KW - Sarah KW - Spectrum KW - Breaking Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187429 VL - 94 IS - 5 ER - TY - JOUR A1 - Hirsch, Martin A1 - Krauss, Manuel E. A1 - Opferkuch, Toby A1 - Porod, Werner A1 - Staub, Florian T1 - A constrained supersymmetric left-right model JF - JOURNAL OF HIGH ENERGY PHYSICS N2 - We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC. KW - supersymmetry KW - phenomenology KW - LHC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168016 VL - 03 IS - 009 ER - TY - JOUR A1 - Li, Gang A1 - Yan, Binghai A1 - Thomale, Ronny A1 - Hanke, Werner T1 - Topological nature and the multiple Dirac cones hidden in Bismuth high-Tc superconductors JF - Scientific Reports N2 - Recent theoretical studies employing density-functional theory have predicted BaBiO\(_{3}\) (when doped with electrons) and YBiO\(_{3}\) to become a topological insulator (TI) with a large topological gap (~0.7 eV). This, together with the natural stability against surface oxidation, makes the Bismuth-Oxide family of special interest for possible applications in quantum information and spintronics. The central question, we study here, is whether the hole-doped Bismuth Oxides, i.e. Ba\(_{1-X}\)K\(_{X}\)BiO\(_{3}\) and BaPb\(_{1-X}\)Bi\(_{X}\)O\(_{3}\), which are "high-Tc" bulk superconducting near 30 K, additionally display in the further vicinity of their Fermi energy E\(_{F}\) a topological gap with a Dirac-type of topological surface state. Our electronic structure calculations predict the K-doped family to emerge as a TI, with a topological gap above E\(_{F}\). Thus, these compounds can become superconductors with hole-doping and potential TIs with additional electron doping. Furthermore, we predict the Bismuth-Oxide family to contain an additional Dirac cone below E\(_{F}\) for further hole doping, which manifests these systems to be candidates for both electron-and hole-doped topological insulators. KW - localized wannier functions KW - total energy calculations KW - phase transitions KW - insulator KW - BaPb\(_{1-X}\)Bi\(_{X}\)O\(_{3}\) KW - temperature KW - system KW - wave basis set KW - initio molecular dynamics KW - diffraction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148569 VL - 5 IS - 10435 ER - TY - JOUR A1 - Um, Jaegon A1 - Hinrichsen, Haye A1 - Kwon, Chulan A1 - Park, Hyunggyu T1 - Total cost of operating an information engine JF - New Journal of Physics N2 - We study a two-level system controlled in a discrete feedback loop, modeling both the system and the controller in terms of stochastic Markov processes. We find that the extracted work, which is known to be bounded from above by the mutual information acquired during measurement, has to be compensated by an additional energy supply during the measurement process itself, which is bounded by the same mutual information from below. Our results confirm that the total cost of operating an information engine is in full agreement with the conventional second law of thermodynamics. We also consider the efficiency of the information engine as a function of the cycle time and discuss the operating condition for maximal power generation. Moreover, we find that the entropy production of our information engine is maximal for maximal efficiency, in sharp contrast to conventional reversible heat engines. KW - wrath KW - information engine KW - mutual information KW - fluctuation theorem KW - Maxwell demon KW - Szilárd KW - efficiency KW - maximum power Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148286 VL - 17 IS - 085001 ER - TY - THES A1 - Kreter, Michael T1 - Targeting the mystery of extragalactic neutrino sources - A Multi-Messenger Window to the Extreme Universe - T1 - Auf der Jagd nach extragalaktischen Neutrino Punktquellen - Ein Multi-Messenger Fenster in das Hochenergie-Universum - N2 - Active Galactic Nuclei (AGNs) are among the most powerful and most intensively studied objects in the Universe. AGNs harbor a mass accreting supermassive black hole (SMBH) in their center and emit radiation throughout the entire electromagnetic spectrum. About 10% show relativistic particle outflows, perpendicular to the so-called accretion disk, which are known as jets. Blazars, a subclass of AGN with jet orientations close to the line-of-sight of the observer, are highly variable sources from radio to TeV energies and dominate the γ- ray sky. The overall observed broadband emission of blazars is characterized by two distinct emission humps. While the low-energy hump is well described by synchrotron radiation of relativistic electrons, both leptonic processes such as inverse Compton scattering and hadronic processes such as pion-photoproduction can explain the radiation measured in the high-energy hump. Neutrinos, neutral, nearly massless particles, which only couple to the weak force 1 are exclusively produced in hadronic interactions of protons accelerated to relativistic energies. The detection of a high-energy neutrino from an AGN would provide an irrefutable proof of hadronic processes happening in jets. Recently, the IceCube neutrino observatory, located at the South Pole with a total instrumented volume of about one km 3 , provided evidence for a diffuse high-energy neutrino flux. Since the atmospheric neutrino spectrum falls steeply with energy, individual events with the clearest signature of coming from an extraterrestrial origin are those at the highest energies. These events are uniformly distributed over the entire sky and are therefore most likely of extragalactic nature. While the neutrino event (known as “BigBird”) with a reconstructed energy of ∼ 2 PeV has already been detected in temporal and spatial agreement with a single blazar in an active phase, still, the chance coincidence for such an association is only on the order of ∼ 5%. The neutrino flux at these high energies is low, so that even the brightest blazars only yield a Poisson probability clearly below unity. Such a small probability is in agreement with the observed all-sky neutrino flux otherwise, the sky would already be populated with numerous confirmed neutrino point sources. In neutrino detectors, events are typically detected in two different signatures 2 . So-called shower-like electron neutrino events produce a large particle cascade, which leads to a pre- cise energy measurement, but causes a large angular uncertainty. Track-like muon neutrino events, however, only produce a single trace in the detector, leading to a precise localization but poor energy reconstruction. The “BigBird” event was a shower-like neutrino event, tem- porally coincident with an activity phase of the blazar PKS 1424−418, lasting several months. Shower-like neutrino events typically lead to an angular resolution of ∼ 10 ◦ , while track-like events show a localization uncertainty of only ∼ 1 ◦ . Considering the potential detection of a track-like neutrino event in agreement with an activity phase of a single blazar lasting only days would significantly decrease the chance coincidence of such an association. In this thesis, a sample of bright blazars, continuously monitored by Fermi/LAT in the MeV to GeV regime, is considered as potential neutrino candidates. I studied the maximum possible neutrino ex- pectation of short-term blazar flares with durations of days to weeks, based on a calorimetric argumentation. I found that the calorimetric neutrino output of most short-term blazar flares is too small to lead to a substantial neutrino detection. However, for the most extreme flares, Poisson probabilities of up to ∼ 2% are reached, so that the possibility of associated neutrino detections in future data unblindings of IceCube and KM3NeT seems reasonable. On 22 September 2017, IceCube detected the first track-like neutrino event (named IceCube- 170922A) coincident with a single blazar in an active phase. From that time on, the BL Lac object TXS 0506+056 was subject of an enormous multiwavelength campaign, revealing an en- hanced flux state at the time of the neutrino arrival throughout several different wavelengths. In this thesis, I first studied the long-term flaring behavior of TXS 0506+056, using more than nine years of Fermi/LAT data. I found that the activity phase in the MeV to GeV regime already started in early 2017, months before the arrival of IceCube-170922A. I performed a calorimetric analysis on a 3-day period around the neutrino arrival time and found no sub- stantial neutrino expectation from such a short time range. By computing the calorimetric neutrino prediction for the entire activity phase of TXS 0506+056 since early 2017, a possible association seems much more likely. However, the post-trial corrected chance coincidence for a long-term association between IceCube-170922A and the blazar TXS 0506+056 is on the level of ∼ 3.5 σ, establishing TXS 0506+056 as the most promising neutrino point source candidate in the scientific community. Another way to explain a high-energy neutrino signal without an observed astronomical counterpart, would be the consideration of blazars at large cosmological distances. These high-redshift blazars are capable of generating the observed high-energy neutrino flux, while their γ-ray emission would be efficiently downscattered by Extragalactic Background Light (EBL), making them almost undetectable to Fermi/LAT. High-redshift blazars are impor- tant targets, as they serve as cosmological probes and represent one of the most powerful classes of γ-ray sources in the Universe. Unfortunately, only a small number of such objects could be detected with Fermi/LAT so far. In this thesis, I perform a systematic search for flaring events in high-redshift γ-ray blazars, which long-term flux is just below the sensitiv- ity limit of Fermi/LAT. By considering a sample of 176 radio detected high-redshift blazars, undetected at γ-ray energies, I was able to increase the number of previously unknown γ-ray blazars by a total of seven sources. Especially the blazar 5BZQ J2219−2719, at a distance of z = 3.63 was found to be the most distant new γ-ray source identified within this thesis. In the final part of this thesis, I studied the flaring behavior of bright blazars, previously considered as potential neutrino candidates. While the occurrence of flaring intervals in blazars is of purely statistical nature, I found potential differences in the observed flaring behavior of different blazar types. Blazars can be subdivided into BL Lac (BLL) objects, Flat-Spectrum Radio Quasar (FSRQ) and Blazars Candidates of Uncertain type (BCU). FSRQs are typ- ically brighter than BL Lac or BCU type blazars, thus longer flares and more complicated substructures can be resolved. Although BL Lacs and BCUs are capable of generating signifi- cant flaring episodes, they are often identified close to the detection threshold of Fermi/LAT. Long-term outburst periods are exclusively observed in FSRQs, while BCUs can still con- tribute with flare durations of up to ten days. BL Lacs, however, are only detected in flaring states of less than four days. FSRQs are bright enough to be detected multiple times with time gaps between two subsequent flaring intervals ranging between days and months. While BL Lacs can show time gaps of more than 100 days, BCUs are only observed with gaps up to 20 days, indicating that these objects are detected only once in the considered time range of six years. The newly introduced parameter “Boxyness” describes the averaged flux in an identified flaring state and does highly depend on the shape of the considered flare. While perfectly box-like flares (flares which show a constant flux level over the entire time range) correspond to an averaged flux which is equal the maximum flare amplitude, irregular shaped flares generate a smaller averaged flux. While all blazar types show perfectly box-shaped daily flares, BL Lacs and BCUs are typically not bright enough to be resolved for multiple days. The work presented in this thesis illustrates the challenging state of multimessenger neu- trino astronomy and the demanding hunt for the first extragalactic neutrino point sources. In this context, this work discusses the multiwavelength emission behavior of blazars as a promising class of neutrino point sources and allows for predictions of current and future source associations N2 - Aktive Galaxienkerne (Active Galactic Nuclei, AGNs) zählen zu den extremsten und am intensivsten studierten Objekten im Universum. In ihrem Zentrum befindet sich ein Materie-akkretierendes supermassives schwarzes Loch. AGNs senden Strahlung im gesamten elektromagnetischen Spektrum aus, während lediglich etwa 10% dieser Galaxien Teilchen in so-genannten Jets auf relativistische Energien beschleunigen können. Eine Unterklasse von AGNs, bekannt als Blazare verfügt über Jets, welche unter einem geringen Sichtwinkel beobachtet werden. Diese Quellen sind höchst variabel und dominieren den beobachteten Him- mel im Gammabereich. Multiwellenlängen-Beobachtungen von Blazaren zeigen eine typische Doppelhöckerstruktur. Während der niederenergetische Höcker gut durch leptonische Prozesse wie zum Beispiel Synchrotronstrahlung beschrieben werden kann, lässt sich die Emission des hochenergie-Höckers sowohl durch leptonische als auch durch hadronische Prozesse beschreiben. Neutrinos, nahezu masselose, neutrale Elementarteilchen werden ausschließlich in hadronischen Prozessen generiert. Der Nachweis eines hochenergetischen Neutrinos in Koinzidenz mit einem AGN würde somit einen unwiderlegbaren Beweis für das Vorhandensein relativistischer Protonen in diesen Quellen liefern. Die Existenz eines diffusen hochenergetischen Neutrino-Flusses konnte bereits durch das IceCube Experiment nachgewiesen werden. Bei dem IceCube Detektor handelt es sich um einen Cherenkov Detektor am Südpol mit einer gesamten instrumentierten Fläche von etwa 1 km\(^3\). Hochenergetische Neutrinos sind überwiegend von extraterrestrischer Natur, da atmosphärische Neutrinos ab Energien von > 100 TeV durch ihr steiles Spektrum sehr unwahrscheinlich werden. Da diese hochenergetischen Neutrinos gleichmäßig über den gesamten Himmel verteilt sind, kann von einem extra- galaktischen Ursprung ausgegangen werden. Das so genannte “BigBird” Ereignis, welches mit einer Energie von 2 PeV rekonstruiert wurde, ist in zeitlicher und räumlicher Übereinstimmung mit einem monatelangen Ausbruch des Blazars PKS 1424-418 detektiert worden. Dennoch liegt die Wahrscheinlichkeit für eine Korrelation dieser beiden Ereignisse lediglich bei etwa 5%. Aufgrund des sehr geringen zu erwartenden Neutrino-Flusses bei diesen hohen Energien ist eine Neutrino-Erwartung individueller Quellen von deutlich unter einem Ereignis nicht verwunderlich. Anderenfalls wäre der Himmel bereits mit identifizierten Neutrino- Quellen bevölkert. Neutrino-Detektoren weisen Neutrino-Ereignisse üblicherweise in zwei unterschiedlichen Signaturen nach. Bei dem “BigBird” Ereignis handelte es sich um ein sogenanntes “shower-like” Elektronen-Neutrino-Ereignis. Dieses erzeugt eine Teilchenkaskade innerhalb des Detektors, was zu einer Positionsunsicherheit von 10\(^◦\) an Himmel führt. “Track-like” Myon-Ereignisse hingegen erzeugen lediglich eine Teilchenspur und resultieren somit in einer Positionsunsicherheit von 1\(^◦\). Zur Detektion korrelierter Ereignisse wären somit ein “track-like” Neutrino- Ereignis, sowie ein Blazar Ausbruch von lediglich wenigen Tagen erforderlich. In dieser Arbeit untersuche ich eine Auswahl von 150 hellen Blazaren, welche kontinuierlich im MeV-GeV Bereich mit Fermi/LAT beobachtet werden. Basierend auf einem kalorimetrischen Ansatz untersuche ich die maximal zu erwartende Neutrino Anzahl kurzer Aktivitätsphasen mit einer Dauer von einigen Tagen bis Wochen. Die maximale Neutrino-Erwartung solcher kurzen Intervalle ist deutlich zu gering, um eine korrelierte Neutrino-Blazar Detektion erklären zu können. Dennoch, für die extremsten Ausbrüche sind Poisson-Wahrscheinlichkeiten von 2% zu erwarten, was diese Quellen zu vielversprechenden Kandidaten in zukünftigen Neutrino-Punktquellen-Suchen macht. Am 22. September 2017 detektierte IceCube ein hochenergetisches “track-like” Neutrino-Ereignis (bekannt als IceCube-170922A) in Übereinstimmung mit einer Phase erhöhter Aktivität des Blazars TXS 0506+056. In dieser Arbeit untersuche ich zunächst das Langzeit-Emissionsverhalten dieser Quelle über einen Zeitraum von mehr als neun Jahren im MeV-GeV Bereich mithilfe von Fermi/LAT Daten. Die Aktivitätsphase dieser Quelle begann bereits Anfang 2017, Monate vor der Detektion von IceCube-170922A. Basierend auf einer kalorimetrischen Neutrino-Abschätzung konnte keine signifikante Neutrino-Erwartung in einem Zeitraum von drei Tagen um den Zeitpunkt der Neutrino-Detektion gefunden werden. Unter Berücksich- tigung der gesamten Aktivitätsphase seit Anfang 2017 erscheint eine mögliche Korrelation beider Ereignisse kalorimetrisch deutlich wahrscheinlicher. Die korrigierte Zufallswahrscheinlichkeit liegt in der Größenordnung von 3.5 σ, wodurch sich TXS 0506+056 als die vielver- sprechendste extragalaktische Neutrino Punktquelle etabliert. Eine weitere Möglichkeit das Auftreten hochenergetischer Neutrinos ohne Zuordnung zu einer astrophysikalischen Quelle, besteht in der Berücksichtigung von Blazaren bei hohen kosmologischen Distanzen. Solche Blazare mit hoher Rotverschiebung wären im Stande den gemessenen Neutrino-Fluss zu erzeugen, zugleich jedoch undetektiert durch Fermi/LAT zu bleiben. Durch die hohen kosmologischen Entfernungen dieser Blazare werden mögliche hochenergetis- che Photonen am extragalaktischen Hintergrundlicht (Extragalactic Background Light, EBL) hin zu kleineren Energien gestreut. Blazare bei hohen Rotverschiebungen sind überproportional relevante Quellen, da diese zu den extremsten Gamma-Quellen im Universum zählen und zudem wichtiger Bestandteil im Verständnis der Entwicklung von AGNs sind. Leider sind bisher nur sehr wenige solcher Quellen von Fermi/LAT detektiert worden. In dieser Ar- beit führe ich eine systematische Suche nach Phasen erhöhter Gamma-Aktivität in Blazaren mit hoher Rotverschiebung durch, deren gemittelter Langzeitfluss unterhalb der Sensitivitätsgrenze von Fermi/LAT liegt. Basierend auf einer Auswahl von 176 im Gamma-Bereich undetektierten Blazaren mit hoher Rotverschiebung konnte die Anzahl bisher unbekannter Gamma-Quellen hoher Rotverschiebung um sieben Quellen gesteigert werden. Insbesondere der Blazar 5BZQ J2219-2719, welcher sich bei einer Rotverschiebung von z = 3.63 befindet, repräsentiert die am weitesten entfernte, neu identifizierte Gamma-Quelle innerhalb dieser Arbeit. Im letztem Kapitel dieser Arbeit beschäftige ich mich mit dem Langzeit-Emissionsverhalten heller Blazare, welche zuvor als vielversprechende Neutrino-Kandidaten untersucht wurden. Während das Auftreten von Ausbrüchen von rein statistischer Natur ist, konnte ich mögliche Unterschiede im gemessenen Emissionsverhalten unterschiedlicher Blazar-Klassen feststellen. Blazare lassen sich in BL Lac (BLL) Objekte, Flat-Spectrum Radio Quasar (FSRQ) und Blazar-Kandidaten unbekannten Types (BCU) unterteilen. FSRQs sind im Allgemeinen hellere MeV-GeV Quellen als BL Lacs und BCUs, und zeigen daher häufiger und längere Ausbruch-Phasen. Während BL Lacs und BCUs zu signifikanten Ausbrüchen im Stande sind, werden diese Quellen häufig an der Detektionsschwelle von Fermi/LAT beobachtet. Perioden erhöhter Aktivität mit einer Dauer von mehreren Monaten können ausschließlich in FSRQs aufgelöst werden. Wobei BCUs noch Ausbrüche von etwa zehn Tagen zeigen, werden BL Lacs nicht länger als vier Tage in Folge detektiert. FSRQs werden üblicherweise in mehreren unabhängigen Ausbrüchen detektiert. Daher zeigen diese Quellen sowohl kurze Lücken von einigen Tagen zwischen der Detektion zweier aufeinanderfolgender Ausbrüche, als auch Lücken von mehr als 100 Tagen. BL Lacs werden ebenfalls in unabhängigen Ausbruchphasen identifiziert, mit Lücken von etwa 100 Tagen. BCUs hingehen zeigen lediglich eine einzelne Aktivität- sphase. Der neu definierte Parameter “Boxyness” beschreibt den mittleren Fluss innerhalb eines Ausbruchs und hängt sehr von dessen Form ab. Perfekte “boxartige”/kastenförmige Ausbrüche zeigen eine konstante Fluss-Amplitude. Irreguläre Ausbrüche hingegen führen zu einem reduzierten mittleren Fluss. Alle Blazar-Klassen verfügen über perfekte “boxartige” Ausbrüche von lediglich einem Tag. Typischerweise sind BL Lacs und BCUs nicht hell genug um auf längeren Zeitskalen detektiert zu werden. Aufgrund der beschränkten Sensitivität von Fermi/LAT, können Unterstrukturen von weniger als einem Tag leider nicht aufgelöst werden. Diese Arbeit spiegelt die Herausforderungen in der neuen Disziplin der Neutrino Astronomie, sowie die vielversprechende Jagd nach den ersten extragalaktischen Neutrino Punktquellen wieder. In diesem Zusammenhang werden Blazare als ein sprechendsten Objekte möglicher zukünftiger Neutrino-Assoziationen diskutiert. KW - Blazar KW - Active Galactic Nuclei KW - Neutrinos KW - Multi-Messenger Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179845 ER - TY - JOUR A1 - Hsu, Pin-Jui A1 - Kügel, Jens A1 - Kemmer, Jeannette A1 - Toldin, Francesco Parisen A1 - Mauerer, Tobias A1 - Vogt, Matthias A1 - Assaad, Fakher A1 - Bode, Matthias T1 - Coexistence of charge and ferromagnetic order in fcc Fe JF - Nature Communications N2 - Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg–Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena. KW - ferromagnetism KW - phase transitions and critical phenomena KW - coexistence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173969 VL - 7 ER - TY - JOUR A1 - Erdmenger, Johanna A1 - Fernández, Daniel A1 - Flory, Mario A1 - Megías, Eugenio A1 - Straub, Ann-Kathrin A1 - Witkowski, Piotr T1 - Time evolution of entanglement for holographic steady state formation JF - Journal of High Energy Physics N2 - Within gauge/gravity duality, we consider the local quench-like time evolution obtained by joining two 1+1-dimensional heat baths at different temperatures at time \(t\) = 0. A steady state forms and expands in space. For the 2+1-dimensional gravity dual, we find that the “shockwaves” expanding the steady-state region are of spacelike nature in the bulk despite being null at the boundary. However, they do not transport information. Moreover, by adapting the time-dependent Hubeny-Rangamani-Takayanagi prescription, we holographically calculate the entanglement entropy and also the mutual information for different entangling regions. For general temperatures, we find that the entanglement entropy increase rate satisfies the same bound as in the ‘entanglement tsunami’ setups. For small temperatures of the two baths, we derive an analytical formula for the time dependence of the entanglement entropy. This replaces the entanglement tsunami-like behaviour seen for high temperatures. Finally, we check that strong subadditivity holds in this time-dependent system, as well as further more general entanglement inequalities for five or more regions recently derived for the static case. KW - Physics KW - AdS-CFT Correspondence KW - Gauge-gravity correspondence KW - Holography and condensed matter physics (AdS/CMT) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173798 VL - 2017 IS - 10 ER - TY - JOUR A1 - Lee, Ching Hua A1 - Papić, Zlatko A1 - Thomale, Ronny T1 - Geometric construction of quantum Hall clustering Hamiltonians JF - Physical Review X N2 - Many fractional quantum Hall wave functions are known to be unique highest-density zero modes of certain "pseudopotential" Hamiltonians. While a systematic method to construct such parent Hamiltonians has been available for the infinite plane and sphere geometries, the generalization to manifolds where relative angular momentum is not an exact quantum number, i.e., the cylinder or torus, remains an open problem. This is particularly true for non-Abelian states, such as the Read-Rezayi series (in particular, the Moore-Read and Read-Rezayi Z\(_3\) states) and more exotic nonunitary (Haldane-Rezayi and Gaffnian) or irrational (Haffnian) states, whose parent Hamiltonians involve complicated many-body interactions. Here, we develop a universal geometric approach for constructing pseudopotential Hamiltonians that is applicable to all geometries. Our method straightforwardly generalizes to the multicomponent SU(n) cases with a combination of spin or pseudospin (layer, subband, or valley) degrees of freedom. We demonstrate the utility of our approach through several examples, some of which involve non-Abelian multicomponent states whose parent Hamiltonians were previously unknown, and we verify the results by numerically computing their entanglement properties. KW - wave functions KW - Landau level KW - states KW - excitations KW - fluid Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145233 VL - 5 IS - 4 ER - TY - THES A1 - Trüstedt, Jonas Elias T1 - Long-wavelength radio observations of blazars with the Low-Frequency Array (LOFAR) T1 - Beobachtungen von Blazaren bei langen Radio-Wellenlängen mit dem Low-Frequency Array (LOFAR) N2 - Aktive Galaxienkerne (AGN) gehören zu den hellsten Objekten in unserem Universum. Diese Galaxien werden als aktiv bezeichnet, da ihre Zentralregion heller ist als alle Sterne in einer Galaxie zusammen beitragen könnten. Das Zentrum besteht aus einem supermassiven schwarzen Loch, das von einer Akkretionsscheibe und weiter außerhalb von einem Torus aus Staub umgeben ist. Diese AGN können über das ganze elektromagnetische Spektrum verteilt gefunden werden, von Radiowellen über Wellenlängen im optischen und Röntgenbereich bis hin zur $\gamma$-Strahlung. Allerdings sind nicht alle Objekte bei jeder Wellenlänge detektierbar. In dieser Arbeit werden überwiegend Blazare bei niedrigen Radiofrequenzen untersucht. Blazare gehören zu den radio-lauten AGN, welche üblicherweise stark kollimierte Jets senkrecht zur Akkretionsscheibe aussenden. Bei Blazaren sind diese Jets in die Richtung des Beobachters gerichtet und ihre Emissionen sind stark variabel. \\ AGN werden anhand ihres Erscheinungsbildes verschiedenen Untergruppen zugeordnet. Diese Untergruppen werden in einem vereinheitlichen AGN Modell zusammengeführt, welches besagt, dass diese Objekte sich nur in ihrer Luminosität und ihrem Winkel zur Sichtlinie unterscheiden. Blazare sind diejenigen Objekte, deren Jets in unsere Sichtrichtung zeigen, während die Objekte deren Jets eher senkrecht zur Sichtlinie orientiert sind als Radiogalaxien bezeichnet werden. Daraus folgt, dass Blazare die Gegenstücke zu Radiogalaxien mit einem anderen Winkel zur Sichtlinie sind. Diese Beziehung soll unter anderem in dieser Arbeit untersucht werden. \\ Nach ihrer Entdeckung in den 1940er Jahren wurden die aktiven Galaxien bei allen zugänglichen Wellenlängen untersucht. Durch die Entwicklung von Interferometern aus Radioteleskopen, welche eine erhöhte Auflösung bieten, konnten die Beobachtungen stark verbessert werden. In den letzten 20 Jahren wurden viele AGN regelmäßig beobachtet. Dies erfolgte unter anderem durch Programme wie dem MOJAVE Programm, welches 274 AGNs regelmäßig mithilfe der Technik der ``Very Long Baseline Interferometry" (VLBI) beobachtet. Durch diese Beobachtungen konnten Informationen zur Struktur und Entwicklung der AGN und Jets gesammelt werden. Allerdings sind die Prozesse zur Bildung von Jets und deren Kollimation noch nicht vollständig bekannt. Durch relativistische Effekte ist es schwierig die eigentlichen Größen der Jets anstelle der scheinbaren zu messen. Um die intrinsische Energie von Jets zu messen, sollen die ausgedehnten Emissionsregionen untersucht werden, in denen die Jets enden und mit dem Intergalaktischen Medium interagieren. Beobachtungen bei niedrigen Radiofrequenzen sind empfindlicher um solche ausgedehnte, diffuse Emissionsregionen zu detektieren. \\ Seit Dezember 2012 ist ein neues Radioteleskop für niedrige Frequenzen in Betrieb, dessen Stationen aus Dipolantennen besteht. Die meisten dieser Stationen sind in den Niederlanden verteilt (38 Stationen) und werden durch 12 internationale Stationen in Deutschland, Frankreich, Schweden, Polen und England ergänzt. Dieses Instrument trägt den Namen ``Low Frequency Array'' (LOFAR). LOFAR bietet die Möglichkeit bei Frequenzen von 30--250 MHz bei einer höheren Auflösung als bisherige Radioteleskope zu beobachten (Winkelauflösungen unter 1 arcsec für das gesamte Netzwerk aus Teleskopen). \\ Diese Arbeit behandelt die Ergebnisse von Blazaruntersuchungen mithilfe von LOFAR-Beobachtungen. Dafür wurden AGNs aus dem MOJAVE Programm verwendet um von den bisherigen Multiwellenlängen-Beobachtungen und Untersuchungen der Kinematik zu profitieren. Das ``Multifrequency Snapshot Sky Survey'' (MSSS) Projekt hat den gesamten Nordhimmel mit kurzen Beobachtungen abgerastert. Aus dem daraus resultierenden vorläufigen Katalog wurden die Flussdichten und Spektralindizes für MOJAVE-Blazare untersucht. In den kurzen Beobachtungen von MSSS sind nur die Stationen in den Niederlanden verwendet worden, wodurch Auflösung und Sensitivität begrenzt sind. Für die Erstellung des vorläufigen Kataloges wurde die Auflösung auf $\sim$120 arcsec beschränkt. Ein weiterer Vorteil der MOJAVE Objekte ist die regelmäßige Beobachtung der AGN mit dem ``Owens Vally Radio Observatory'' zur Erstellung von Lichtkurven bei 15 GHz. Dadurch ist es möglich nahezu zeitgleiche Flussdichtemessungen bei 15 GHz zu den entsprechenden MSSS-Beobachtungen zu bekommen. Da diese Beobachtungen zu ähnlichen Zeitpunkten durchgeführt wurden sind diese Flussdichten weniger von der Variabilität der Blazare beeinflusst. Die Spektralindizes berechnet aus den Flussdichten von MSSS und OVRO können verwendet werden um den Anteil an ausgedehnter Emission der AGNs abzuschätzen. \\ Im Vergleich der Flussdichten aus dem MSSS Katalog mit den Beobachtungen von OVRO fällt auf, dass die Flussdichten bei niedrigen Frequenzen tendenziell höher sind, was durch den höheren Anteil an ausgedehnter Struktur zu erwarten ist. Die Spektralindexverteilung zwischen MSSS und OVRO zeigt ihren höchsten Wert bei $\sim-0.2$. In der Verteilung existieren Objekte mit steilerem Spektralindex durch den höheren Anteil von ausgedehnter Emission in der Gesamtflussdichte, doch über die Hälfte der untersuchten Objekte besitzt flache Spektralindizes. Die flachen Spektralindizes bedeuten, dass die Emissionen dieser Objekte größtenteils von relativistischen Effekten beeinflusst sind, die schon aus Beobachtungen bei GHz-Frequenzen bekannt sind. \\ Durch neue Auswertung der MSSS Beobachtungsdaten konnten Bilder bei einer verbesserten Auflösung von $\sim$20--30 arcsec erstellt werden, wodurch bei einigen Blazaren ausgedehnte Struktur detektiert werden konnte. Diese höher aufgelösten Bilder sind allerdings nicht komplett kalibriert und können somit nur für strukturelle Informationen verwendet werden. Die Überarbeitung der Beobachtungsdaten konnte für 93 Objekte für ein Frequenzband durchgeführt werden. Für 45 der 93 Objekte konnten sogar alle vorhandenen Frequenzbänder überarbeitet werden und dadurch gemittelte Bilder erstellt werden. Diese Bilder werden in dieser Arbeit vorgestellt. Die resultierenden Bilder mit verbesserter Auflösung wurden verwendet um Objekte auszuwählen, die mit allen LOFAR-Stationen beobachtet und auf ausgedehnte Struktur untersucht werden können. \\ Im zweiten Teil der Arbeit werden die Ergebnisse von internationalen LOFAR Beobachtungen von vier Blazaren präsentiert. Da sich die Auswertung und Kalibration von internationalen LOFAR Beobachtungen noch in der Entwicklung befindet, wurde ein Schwerpunkt auf die Kalibration und deren Beschreibung gelegt. Die Kalibration kann zwar noch verbessert werden, aber die Bilder aus der angewandten Kalibration erreichen eine Auflösung von unter 1 arcsec. Die Struktur der untersuchten vier Blazare entspricht den Erwartungen für Radiogalaxien unter einem anderen Sichtwinkel. Durch die gemessenen Flussdichten der ausgedehnten Struktur aus den Helligkeitsverteilungen konnte die Luminosität der ausgedehnten Emissionen berechnet werden. Im Vergleich mit den Luminositäten, die von Radiogalaxien bekannt sind, entsprechen auch diese Werte den Erwartungen des vereinheitlichten AGN Modells. \\ Durch die in dieser Arbeit vorgestellte Kalibration können noch mehr Blazare mit LOFAR inklusive den internationalen Stationen beobachtet werden und somit Bilder der Struktur bei ähnlicher Auflösung erstellt werden. Durch eine erhöhte Anzahl von untersuchten Blazaren könnten anschließend auch statistisch signifikante Ergebnisse erzielt werden.\\ N2 - Active galactic nuclei (AGNs) are among the brightest sources in our universe. These galaxies are considered active because their central region is brighter than the luminosities of all stars in a galxies can provide. In their center is a supermassive black hole (SMBH) surrounded by an accretion disk and further out a dusty torus. AGN can be found with emission over the whole electromagnetic spectrum, starting at radio frequencies over optical and X-ray emission up to the $\gamma$-rays. Not all of these sources are detected in each frequency regime. In this work mainly blazars are examined at low radio frequencies. Blazars are a subclass of radio-loud AGN. These radio-loud sources usually exhibit highly collimated jets perpendicular to the accretion disk. For blazars these jets are pointed in the direction of the observer and their emission is highly variable. \\ AGN are classified in different subclasses based on their morphology. These different subclasses are combined in the AGN unification model, which explains the different morphologies by having sources only varying in their luminosities and their angle to the line of sight to the observer. Blazars are these targets, where the jet is pointing towards the observer, while the AGN observed edge on are called radio galaxies. This means that blazars should be the counterparts to radio galaxies seen from a different angle. Testing this is one of the goals in this work. \\ After the discovery of AGN in the 1940s these objects have been studied at all wavelengths. With the development of interferometry with radio telescopes the angular resolution for radio observations could be improved. In the last 20 years many AGN are regularly monitored. One of these monitoring programs is the MOJAVE program, monitoring 274 AGNs with using the Very Long Baseline Interferometry (VLBI) technique. The monitoring provides information on the evolution and structure of AGN and their jets. However, the mechanisms of the jet formation and their collimation are not fully understood. Due to relativistic effects it is difficult to obtain intrinsic instead of apparent parameters of these jets. One approach to get closer to the intrinsic jet power is by observing the regions, in which the jets end and interact with the intergalactic medium. Observations at lower radio frequencies are more sensitive for extended diffuse emission. \\ Since December 2012 a new radio telescope for low frequencies is observing. It is a telescope with stations consisting of dipole antennas. The major part of the array located in the Netherlands (38 stations) with 12 additional international stations in Germany, France, Sweden, Poland and the United Kingdom. This instrument is called the Low Frequency Array (LOFAR). LOFAR offers the possibility to observe at frequencies between 30--250 MHz in combination with angular resolution (below 1 arcsec for the full array), which was not available with previous telescopes. \\ In this work results of blazar studies with LOFAR observations are presented. To take advantage of a large database with multi-wavelength observations and kinematic studies the MOJAVE 1.5 Jy flux limited sample was chosen. Based on the preliminary results of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) the flux densities and spectral indices of blazars of the MOJAVE sample are examined. 125 counterparts of MOJAVE blazars were found in the MSSS catalog. Since the MSSS observations only contain the stations in the Netherlands and observes in snapshots, the angular resolution and the sensitivity is limited. The first MSSS catalog was produced with an angular resolution of $\sim$120 arcsec and a sensitivity of $\sim$50--100 mJy. Another advantage of the MOJAVE sample is the monitoring of these sources with the Owens Valley Radio Observatory (OVRO) at 15 GHz to produce radio lightcurves. With these observations it is possible to get quasi-simultaneous flux densities at 15 GHz for the corresponding MSSS observations. By having quasi-simultaneous observations the variability of the blazars affects the flux densities less than with the use of archival data. The spectral indices obtained by the combination of MSSS and OVRO flux densities can be used to estimate the contribution of the diffuse extended emission for these AGNs. \\ Comparing the MSSS catalog with the OVRO data points, the flux densities have a tendency to be higher at low frequencies. This is expected due to the higher contribution of extended emission. The broadband spectral index distribution shows a peak at $\sim-0.2$. While some sources seem to have steeper spectral indices meaning that extended emission contributes a large fraction of the total flux density, more than the half of the sample shows flat spectral indices. The flat spectral indices show that the total flux densities of these sources are dominated by their relativistic beamed emission regions, which is the same for the observations at GHz frequencies. \\ To obtain more detailed images of these sources the MSSS measurement sets including sources of the sample were reprocessed to improve the angular resolution to $\sim$30 arcsec. The higher angular resolution reveals extended diffuse emission of several blazars. Since the reimaging results were not fully calibrated only the morphology at this resolution could be examined. However, with the short snapshot observations the images obtained with this strategy are affected from artifacts. The reimaging could be successfully performed for 93 sources in one frequency band. For 45 of these sources all availabe frequency bands could be reprocessed and used to created averaged images. These images are presented in this work. As a results of the reimaging process a pilot sample was defined to observe targets with diffuse extended emission using the whole LOFAR array including the international stations. \\ The second part of this work presents the results of a pilot sample consisting of four blazars observed with the LOFAR international array. Since the calibration of this kind of LOFAR observation is still in development, the main focus was the description of the used calibration strategy. The calibration strategies still has some limitation but resulted in images with angular resolutions of less than 1 arcsec. The morphology of all four blazars show features confirming the expectations of their counterpart radio galaxies. With the flux densities of the extended emission found in these brightness distributions the extended radio luminosities are calculated. Comparing these to the radio galaxy classifications also confirm the expectations from the unification model. \\ By extending the sample of observed blazars with LOFAR international in future the calibration strategy can be used to create similar high resolution images. A larger sample can be used to test the unification model with statistical significant results. \\ KW - Blazar KW - Radioastronomie KW - Blazars KW - Active Galaxies KW - Radio Interferometry KW - Radio astronomy KW - LOFAR KW - Aktive Galaxie KW - Radioteleskop Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144406 ER - TY - THES A1 - Schnells, Vera T1 - Fractional Insulators and their Parent Hamiltonians T1 - Fraktionale Isolatoren und die zugehörigen Hamiltonoperatoren N2 - In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name “fractional insulator”. Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as “topological time reversal symmetry breaking”. Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the “311-state”. For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction. N2 - In den letzten Jahren waren zweidimensionale Quantenflu¨ssigkeiten mit fraktionalen Anregungen aufgrund ihrer möglichen Anwendung auf dem aufstrebenden Forschungsgebiet der Quantencomputer und Quantenkryptographie von großem Interesse. Diese Dissertation hat sich zum Ziel gesetzt, einem tieferen Verständnis bekannter und neuer fraktionaler Quanten-Hall-Zust¨ande und ihrer Stabilisierung in lokalen Modellen beizutragen. In diesem Zusammenhang werden zwei Themen betrachtet: Chirale Spinflüssigkeiten und fraktional quantisierte, topologische Phasen. Die chirale Spinflüssigkeit ist eines der wenigen Beispiele fu¨r Spinflu¨ssigkeiten mit fraktionaler Statistik. Trotz ihrer zahlreichen vielversprechenden Eigenschaften beruhen die bisher vorgeschlagenen mikroskopischen Modelle für diesen Zustand alle auf nichtlokalen Wechselwirkungen. Dies erschwert eine experimentelle Realisierung. Im ersten Teil dieser Dissertation stellen wir die ersten Eltern-Hamiltonoperatoren vor, für die die Abelschen und nicht-Abelschen chiralen Spinflüssigkeiten die exakten und, abgesehen von einer topologischen Entartung, einzigen Grundzustände sind. Wir haben eine Methode entwickelt, um ausgehend von einem Vernichtungsoperator für die chirale Spinflüssigkeit eine lokale Mehrkörper-Wechselwirkung zu konstruieren. Numerisch finden wir für verschiedene Systemgrößen und Gittergeometrien Eigenspektren mit großer Anregungslücke und können mit Maschinengenauigkeit die Eindeutigkeit der chiralen Spinflüssigkeit als Grundzustand des jeweiligen Systems bestätigen. Damit liefern unsere Ergebnisse ein exaktes Spinmodell, in dem fraktionale Quantisierung untersucht werden kann. Topologische Isolatoren sind derzeit eines der am häufigsten untersuchten Themen in der Physik der kondensierten Materie. Mit ihrer Entdeckung kam die Frage auf: Gibt es eine verschränkte Gruppe fraktionaler Phasen mit Zeitumkehrsymmetrie? Ein intuitiver Ansatz für die theoretische Konstruktion eines solchen fraktionalen topologischen Isolators besteht darin, das direkte Produkt eines fraktionalen Quanten-HallZustands und seines Zeitumkehrkonjugats zu bilden. Solche Zustände bringen jedoch konzeptionell keinen Mehrwert, da Systeme bestehend aus einem Zustand und seinem Spiegelbild ohne zusätzliche Verschränkung im Kontext der topologischen Isolatoren im Detail erforscht sind. Daher wird aktuell nach Möglichkeiten gesucht, eine topologische Verschränkung zwischen verschiedenen Spinarten umzusetzen. Für alle Anwendungen in der Praxis scheint die Zeitumkehrsymmetrie jedoch die Menge möglicher fraktionaler Zustände auf solche ohne Verschränkung zwischen den beiden Spinspezies zu begrenzen. Im zweiten Teil dieser Dissertation schlagen wir eine neue Universalitätsklasse von fraktional quantisierten, topologisch geordneten Isolatoren vor, die wir “fraktionalen Isolator” nennen. Inspiriert vom fraktionalen Quanten-Hall-Effekt, Spin-Flüssigkeiten und fraktionalen Chern-Isolatoren entwickeln wir eine Wellenfunktion, die eine neue Klasse topologischer Ordnung in einem zweidimensionalen Kristall aus SpinOrbit-gekoppelten Elektronen beschreibt. Unser Ansatz basiert darauf, die topologische Ordnung gegen die Zeitumkehrsymmetrie verstoßen zu lassen, während alle lokal beobachtbaren Größen zeitumkehrinvariant sind. Wir bezeichnen diese Situation als “topologische Zeitumkehrsymmetriebrechung”. Unser Zustand basiert auf den Halperin-Doppelschichtzuständen und kann als ein Zweischichtensystem aus einer ↑-Spinund einer ↓-Spin-Sphäre betrachtet werden. Die Konstruktion beginnt mit zwei Laughlin-Zuständen für die ↑-Spin- und ↓-Spin-Elektronen und einem Wechselwirkungsterm, der eine Verschränkung zwischen den beiden Schichten erzeugt. Wir erhalten einen neuen Zustand, den “311-Zustand”, der lokal zeitumkehrinvariant ist. Für Systeme mit bis zu sechs ↑-Spin- und sechs ↓-Spin-Elektronen finden wir einen approximativen Eltern-Hamiltonoperator mit einer physikalisch realistischen, lokalen Wechselwirkung. KW - Spinflüssigkeit KW - Topologischer Isolator KW - Quantum many-body systems KW - Fractional quantum Hall effect KW - Chiral spin liquids KW - Topological insulators KW - Quantum Hall effect KW - Quanten-Vielteilchensysteme KW - Fraktionaler Quanten-Hall-Effekt KW - Chirale Spinflússigkeiten KW - Topologische Isolatoren KW - Quanten-Hall-Effekt Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185616 ER - TY - THES A1 - Ganse, Urs T1 - Kinetische Simulationen solarer Typ II Radiobursts T1 - Kinetic Simulations of Solar Type II Radio Bursts N2 - Die Emission solarer Typ II Radiobursts ist ein seit Jahrzehnten beobachtetes Phänomen der heliosphärischen Plasmaphysik. Diese Radiobursts, die im Zusammenhang mit der Propagation koronaler Schockfronten auftreten, zeigen ein charakteristisches, zweibandiges Emissionsspektrum. Mit expandierendem Schock driften sie zu niedrigeren Frequenzen. Analytische Theorien dieser Emission sagen nichtlineare Plasmawellenwechselwirkung als Ursache voraus, doch aufgrund des geringen Sonnenabstands der Emissionsregion ist die in-situ Datenlage durch Satellitenmessungen äusserst schlecht, so dass eine endgültige Verifikation der vorhergesagten Vorgänge bisher nicht möglich war. Mit Hilfe eines kinetischen Plasma-Simulationscodes nach dem Particle-in-Cell Prinzip wurde in dieser Dissertation die Plasmaumgebung in der Foreshock-Region einer koronalen Schockfront modelliert. Das Propagations- und Kopplungsverhalten elektrostatischer und elektromagnetischer Wellenmoden wurde untersucht. Die vollständige räumliche Information über die Wellenzusammensetzung in der Simulation erlaubt es, die Kinematik nichtlinearer Wellenkopplungen genauestens zu untersuchen. Es zeigte sich ein mit der analytischen Theorie der Drei-Wellen-Wechselwirkung konsistentes Bild der Erzeugung solarer Radiobursts: durch elektromagnetischen Zerfall elektrostatischer Moden kommt es zur Erzeugung fundamentaler, sowie durch Verschmelzung gegenpropagierender elektrostatischer Moden zur Anregung harmonischer Radioemission. Kopplungsstärken und Winkelabhängigkeit dieser Prozesse wurden untersucht. Mit dem somit zur Verfügung stehenden, numerischen Laborsystem wurde die Parameter-Abhängigkeit der Wellenkopplungen und entstehenden Radioemissionen bezüglich Stärke des Elektronenbeams und des solaren Abstandes untersucht. N2 - The emission of solar type II radiobursts is a phenomenon of heliospheric plasma physics which has been observed for several decades. These radio bursts, which appear in conjunction with propagating coronal shocks, show a characteristic two-banded emission spectrum, drifting towards lower frequencies as the shock expands. Analytic theories predict nonlinear plasma wave interaction as the cause of these emissions. However, due to its low solar distance, in-situ satellite measurements of the emission regions’ properties are extremely scarce. Hence, a conclusive verification of the predicted processes was hitherto not attainable. Using a kinetic plasma simulation code based on the particle-in-cell approach, the plasma environment in a coronal shock’s foreshock region was modelled in this thesis. The propagation and coupling behaviour of electrostatic and electromagnetic wavemodes was investigated. Complete spatial information of the wave composition as obtainable from the simulations allowed to finely analyze the kinematics of nonlinear wave interactions. The results showed excitation of solar radiobursts in agreement with analytics predictions of three wave interaction processes, based on the nonlinear processes: electromagnetic decay of electrostatic modes is responsible for the fundamental and coalcescense of counterpropagating electrostatic waves responsable for the harmonic radio emission. Coupling strengths and angular dependences of these processes were then studied. With the numerical laboratory system obtained through this modelling effort, the parameter dependence of wave copulings and resulting radio emissions were explored, based on variation of electron beam strength and solar distance of the emission region. KW - Heliosphäre KW - Burst KW - Mathematisches Modell KW - Heliosphere KW - Plasma Physics KW - Electromagnetic Waves KW - Electrostatic Waves KW - Nonlinear Interaction KW - Plasma KW - Elektromagnetische Welle KW - Elektrostatische Welle Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73676 ER - TY - THES A1 - Lange, Sebastian T1 - Turbulenz und Teilchentransport in der Heliosphäre - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen - T1 - Turbulence and particle transport within the heliosphere - simulations of incompressible MHD-plasmas and test particles - N2 - Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseauswürfen zurückgeführt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Veränderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosphärischen Bedingungen bei drei solaren Radien bestätigt werden. Vor allem zeigten sich Hinweise für das Erreichen der kritischen Balance, einem Schlüsselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden präsentiert, in denen die Bedeutsamkeit für die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erklärt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Darüber hinaus wurden grundlegende Erkenntnisse über die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verständnis für die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr adäquat beschrieben werden können. N2 - In the past years, the origin of high energetic solar particles could be clearly connected to shock acceleration at coronal mass ejections. Caused by resonant wave-particle interactions, on the one hand, the particles change their energy because of scattering, on the other hand, the dynamics of plasma waves in such acceleration regions are significantly influenced by these processes through self--generated wave modes. In this dissertation, the basic physical regime of turbulence and particle transport were described via numerical modeling. The simulation of the plasma dynamics uses the methodology of magnetohydrodynamics, whereas the kinetic description of single particles is calculated by elementary electrodynamic equations of motion. The common plasma turbulence theories by Goldreich and Sridhar could be confirmed by simulations resembling conditions at three solar radii. Foremost, evidence for the critical balance has been found, which is a key parameter of these theories. Furthermore, results of the dynamic evolution of amplified wavemodes are presented, which are very important for the general turbulence development. In this context, the wave-steepening was identified as a central process, which is an efficient energy transport mechanism in parallel direction to the magnetic background field. This explains turbulent structures at high parallel wavenumbers, which are not described by the Goldreich-Sridhar model. Moreover, a fundamental understanding of the quasilinear theory of particle transport has been achieved. Specifically, more detailed insight into the interpretation of the diffusion coefficients of wave-particle interactions could be obtained. For the first time, simulations of particle scattering at amplified wave modes showed complex resonant structures, which cannot be described by analytical approaches adequately. KW - Heliosphäre KW - Sonnenwind KW - Turbulente Strömung KW - Transportprozess KW - Teilchentransport KW - turbulence KW - high-energy particles KW - heliosphere KW - magnetohydrodynamics KW - Numerisches Modell KW - Turbulenz KW - Energiereiches Teilchen KW - Magnetohydrodynamik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74012 ER - TY - THES A1 - Uhlemann, Christoph Frank T1 - Holographic Description of Curved-Space Quantum Field Theory and Gravity T1 - Holographische Beschreibung von Quantenfeldtheorie auf gekrümmter Raumzeit und Gravitation N2 - The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these tensions is partly in the structure of the geometry with AdS conformal boundary, while another one arises for a particular limiting case where the bulk and boundary descriptions naively disagree. Besides technical challenges, the hierarchy of boundaries for the geometry with AdS conformal boundary offers an interesting option. Namely, having the dual theory on the conformal boundary itself defined on an AdS space offers the logical possibility of implementing a second instance of AdS/CFT. We discuss an appropriate geometric setting allowing for the notion of the boundary of a boundary and identify limitations for such multi-layered dualities. In the second part we consider five-dimensional supergravities whose solutions can be lifted to actual string-theory backgrounds. We work out the asymptotic structure of the theories on asymptotically-AdS spaces and calculate the Weyl anomaly of the dual CFTs. These holographic calculations confirm the expectations from the field-theory side and provide a non-trivial test of the AdS/CFT conjecture. Moreover, building on the previous results we show that in addition to the usual Dirichlet also more general boundary conditions can be imposed. That allows to promote the boundary metric to a dynamical quantity and is expected to yield a holographic description for a conformal supergravity on the boundary. The boundary theory obtained this way exhibits pathologies such as perturbative ghosts, which is in fact expected for a conformal gravity. The fate of these ghosts beyond perturbation theory is an open question and our setting provides a starting point to study it from the string-theory perspective. That discussion leads to a regime where the holographic description of the boundary theory requires quantization of the bulk supergravity. A necessary ingredient of any supergravity is a number of gravitinos as superpartners of the graviton, for which we thus need an effective-QFT description to make sense of AdS/CFT beyond the limit where bulk theory becomes classical. In particular, quantization should be possible not only on rigid AdS, but also on generic asymptotically-AdS spacetimes which may not be Einstein. In the third part we study the quantization and causality properties of the gravitino on Friedmann-Robertson-Walker spacetimes to explicitly show that a consistent quantization can be carried out also on non-Einstein spaces, in contrast to claims in the recent literature. Furthermore, this reveals interesting non-standard effects for the gravitino propagation, which in certain cases is restricted to regions more narrow than the expected light cones. N2 - Die AdS/CFT-Dualitäten ermöglichen einen Zugang zu stark gekoppelten Quantenfeldtheorien (QFT), welche einerseits für die Beschreibung der Natur eine große Rolle spielen, andererseits aber mittels der üblichen mathematischen Methoden schwer zu behandeln sind. Die etablierten Beispiele solcher Dualitäten identifizieren klassische supersymmetrische Gravitationstheorien auf (d+1)-dimensionalen anti-de Sitter Räumen (AdS) mit d-dimensionalen stark gekoppelten konformen Feldtheorien (CFT). Die AdS Raumzeiten besitzen einen zeitartigen konformen Rand, auf dem die duale CFT definiert ist. In diesem Sinn sind die Dualitäten also holographisch, und dieser Zugang hat zu beachtlichen Fortschritten im Verständnis von CFT auf der Minkowski-Raumzeit und dem Einstein-Zylinder geführt. Auf der anderen Seite ist das Verständnis von QFT auf allgemeineren gekrümmten Raumzeiten von besonderem Interesse und nicht-trivial bereits für freie Theorien. Darüber hinaus bleibt das Verständnis von Gravitation als Quantentheorie eines der schwierigsten Probleme in der Physik. Beide Fragestellungen können holographisch betrachtet werden, und wir untersuchen hier Verallgemeinerungen der AdS/CFT-Dualitäten, welche auf der niederdimensionalen Seite QFT auf gekrümmten Räumen und als weitere Verallgemeinerung auch Gravitation beschreiben. Im ersten Teil erweitern wir die holographische Beschreibung von QFT auf festen gekrümmten Raumzeiten, welche sich Gravitationstheorien auf asymptotisch-AdS Räumen mit der entsprechenden Randstruktur bedient. Wir diskutieren Geometrien, deren konformer Rand mit de Sitter oder AdS Raumzeiten identifiziert werden kann, um CFTs auf diesen Räumen holographisch zu beschreiben. Nachdem wir die holographische Renormierung etabliert haben, studieren wir die Unitaritätseigenschaften der CFTs mit Hilfe der dualen bulk-Beschreibung. Die Geometrie mit AdS als Rand zeigt eine Reihe von interessanten Eigenschaften, hauptsächlich da der Rand dieser Geometrie selbst einen Rand hat. Wir untersuchen beide Geometrien und lösen potenzielle Differenzen zwischen den Rand- und bulk-Theorien, welche mit einer Dualität inkompatibel wären. Der Ursprung dieser Differenzen liegt zum einen in der Struktur der Geometrie mit AdS als Rand und rührt zum anderen von einem speziellen Grenzfall, in dem sich die beiden Beschreibungen auf den ersten Blick unterscheiden. Neben technischen Herausforderungen bietet die Hierarchie von Rändern bei der Geometrie mit AdS als Rand eine interessante Option: Mit der dualen CFT wiederum definiert auf einem AdS Raum besteht zumindest prinzipiell die Möglichkeit, eine weitere Instanz von AdS/CFT zu implementieren. Wir diskutieren den passenden geometrischen Rahmen, in dem der Begriff des Randes eines Randes ein wohldefiniertes Konzept ist, und identifizieren Einschränkungen für solche mehrstufige Dualitäten. Im zweiten Teil behandeln wir fünfdimensionale supersymmetrische Gravitationstheorien, deren Lösungen als Stringtheorie-Konfigurationen interpretiert werden können. Wir arbeiten die asymptotische Struktur dieser Theorien auf asymptotisch-AdS Räumen heraus und berechnen die Weyl-Anomalie der dualen CFTs. Diese Rechnungen bestätigen die Erwartungen von der Feldtheorieseite und liefern damit einen nicht-trivialen Test der AdS/CFT-Vermutung. Aufbauend auf diesen Resultaten zeigen wir, dass zusätzlich zu den üblichen Dirichlet- auch allgemeinere Randbedingungen gestellt werden können. Damit wird die Randmetrik zu einer dynamischen Größe und es ergibt sich eine duale Beschreibung für eine konforme Supergravitationstheorie auf dem Rand. Die so erhaltene Randtheorie weist pathologische Eigenschaften wie perturbative Geister auf, was für konforme Gravitationstheorien zu erwarten ist. Die Rolle dieser Geister über die Störungstheorie hinaus ist eine offene Frage und unsere Konstruktion bietet einen Startpunkt, sie von der Stringtheorie-Perspektive zu untersuchen. Dies führt uns in einen Bereich, in dem die holographische Beschreibung der Randtheorie die Quantisierung der bulk-Theorie erfordert. Ein Bestandteil jeder supersymmetrischen Gravitationstheorie ist das Gravitino als Partner des Gravitons, für welches wir daher eine Beschreibung in Form von effektiver QFT benötigen. Insbesondere sollte die Quantisierung auch auf allgemeineren Hintergründen, die nicht notwendig die Einstein-Bedingung erfüllen, möglich sein. Im dritten Teil studieren wir die Quantisierung und Kausalitätseigenschaften des Gravitinos auf Friedmann-Robertson-Walker Raumzeiten. Dabei zeigen wir, dass eine konsistente Quantisierung auch auf Raumzeiten möglich ist, die nicht der Einstein-Bedingung genügen, im Gegensatz zu anderslautenden Schlussfolgerungen in der aktuellen Literatur. Darüber hinaus finden wir interessante Effekte für die Propagation der Gravitinos, welche in bestimmten Fällen auf echte Teilmengen der zu erwartenden Lichtkegel eingeschränkt ist. KW - AdS-CFT-Korrespondenz KW - Quantenfeldtheorie KW - AdS/CFT KW - string theory KW - conformal field theory KW - quantum field theory KW - Stringtheorie KW - Konforme Feldtheorie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74362 ER - TY - THES A1 - Schelter, Jörg T1 - The Aharonov-Bohm effect and resonant scattering in graphene T1 - Aharonov-Bohm-Effekt und resonante Streuung in Graphen N2 - In this thesis, the electronic transport properties of mesoscopic condensed matter systems based on graphene are investigated by means of numerical as well as analytical methods. In particular, it is analyzed how the concepts of quantum interference and disorder, which are essential to mesoscopic devices in general, are affected by the unique electronic and transport properties of the graphene material system. We consider the famous Aharonov–Bohm effect in ring-shaped transport geometries, and, besides providing an overview over the recent developments on the subject, we study the signatures of fundamental phenomena such as Klein tunneling and specular Andreev reflection, which are specific to graphene, in the magnetoconductance oscillations. To this end, we introduce and utilize a variant of the well-known recursive Green’s function technique, which is an efficient numerical method for the calculation of transport observables in effectively non-interacting open quantum systems in the framework of a tight binding model. This technique is also applied to study the effects of a specific kind of disorder, namely short-range resonant scatterers, such as strongly bound adatoms or molecules, that can be modeled as vacancies in the graphene lattice. This numerical analysis of the conductance in the presence of resonant scatterers in graphene leads to a non-trivial classification of impurity sites in the graphene lattice and is further substantiated by an independent analytical treatment in the framework of the Dirac equation. The present thesis further contains a formal introduction to the topic of non-equilibrium quantum transport as appropriate for the development of the numerical technique mentioned above, a general introduction to the physics of graphene with a focus on the particular phenomena investigated in this work, and a conclusion where the obtained results are summarized and open questions as well as potential future developments are highlighted. N2 - In dieser Arbeit werden die elektronischen Transporteigenschaften von Graphen-basierten mesoskopischen Festkörpersystemen mittels numerischer und analytischer Methoden untersucht. Im Besonderen wird analysiert, wie Konzepte von Quanteninterferenz und Unordnung, die eine wesentliche Rolle für mesoskopische Systeme spielen, durch die einzigartigen elektronischen und Transporteigenschaften von Graphen beeinflusst werden. Wir betrachten den berühmten Aharonov-Bohm-Effekt in ringförmigen Transportgeometrien, geben einen Überblick über die Entwicklung dieses Themas in den letzten Jahren und befassen uns mit den charakteristischen Merkmalen, die fundamentale Phänomene wie Klein-Tunneln und gerichtete Andreev-Reflexion, welche spezifisch für Graphen sind, in den Magnetooszillationen der elektrischen Leitfähigkeit aufweisen. Dazu führen wir eine Variante der Methode der rekursiven Greenschen Funktionen ein, die ein effizientes numerisches Verfahren zur Berechnung von Transportobservablen in effektiv nicht-wechselwirkenden, offenen Quantensystemen im Rahmen eines „tight binding“-Modells darstellt. Diese Methode wird desweiteren zur Erforschung eines speziellen Typs von Unordnung herangezogen, nämlich kurzreichweitiger, resonanter Streuzentren wie stark gebundene Adatome oder Moleküle, die als Fehlstellen in der Graphen-Gitterstruktur modelliert werden können. Diese numerische Analyse der elektrischen Leitfähigkeit bei Anwesenheit resonanter Streuzentren in Graphen führt zu einer nicht-trivialen Klassifizierung von Fremdatom-Gitterplätzen innerhalb des Graphen-Gitters und wird durch eine unabhängige analytische Behandlung im Rahmen der Dirac-Gleichung bekräftigt. Die vorliegende Arbeit enthält weiterhin eine formale Einführung in das Thema des Nichtgleichgewichts-Quantentransports, wie es für die Entwicklung der genannten numerischen Methode dienlich ist, eine allgemeine Einführung in die Physik von Graphen mit Fokus auf die speziellen Aspekte, die in dieser Arbeit untersucht werden, sowie eine abschließende Darstellung, in der die erhaltenen Ergebnisse zusammengefasst und offene Fragen sowie mögliche zukünftige Entwicklungen hervorgehoben werden. KW - Graphen KW - Aharonov-Bohm-Effekt KW - Resonanzstreuung KW - graphene KW - Aharonov-Bohm effect KW - resonant scattering KW - recursive Green's functions KW - Direkte numerische Simulation KW - Festkörperphysik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74662 ER - TY - THES A1 - Edelhäuser, Lisa T1 - Model Independent Spin Determination at Hadron Colliders T1 - Modellunabhängige Spinbestimmung an Hadronbeschleunigern N2 - Mit dem Ende des Jahres 2011 haben die beiden LHC-Experimente ATLAS und CMS jeweils ungef\"ahr 5 inverse Femtobarn an Daten bei einer Energie von 7 TeV aufgenommen. Die bisher analysierten Daten geben nur sehr vage Hinweise auf neue Physik an der TeV-Skala. Trotzdem erwartet man, dass sich an dieser Skala neue Physik zeigt, die bekannte Probleme des Standardmodells behebt. In den letzten Jahrzehnten wurden viele Erweiterungen des Standardmodells der Teilchenphysik und ihre Ph\"anomenologie dazu ausgearbeitet. Sobald sich neue Physik zeigt, stellt sich die Aufgabe, ihre Beschaffenheit und das zugrunde liegende Modell zu finden. Erste Hinweise k\"onnen nat\"urlich schon das Massenspektrum und die Quantenzahlen wie z.B. die elektrische und die Farbladung der neuen Teilchen liefern. \\ In zwei sehr bekannten und gut untersuchten Modellklassen, Supersymmetrie und Extradimensionen, haben neue Teilchen allerdings sehr \"ahnliche Eigenschaften an der erreichbaren Energieskala. Beide Modelle f\"uhren Partnerteilchen zu den bekannten Standardmodell-Teilchen ein, die, abgesehen von der Masse, sehr \"ahnliche Eigenschaften besitzen. Aus diesem Grund ist es n\"otig, weitere Kriterien zu ihrer Unterscheidung einzusetzen.\\ Ein hilfreicher Unterschied ergibt sich aus der Konstruktion beider Modelle: W\"ahrend in Modellen mit Extradimensionen die Partnerteilchen gleichen Spin wie die Standardmodell-Teichen haben, ist der Spin der Partnerteilchen in supersymmetrischen Modellen um 1/2 verschieden. Dieser Unterschied hat nun interessante Auswirkungen auf die jeweilige Ph\"anomenologie der Modelle.\\ Zum Beispiel kann man ausnutzen, dass die unterschiedlichen Spins die absoluten Wirkungsquerschnitte beeinflussen. Diese Methode setzt allerdings voraus, dass man die Massen und Kopplungsst\"arken sehr genau kennt. Eine weitere Herangehensweise nutzt aus, dass Winkelverteilungen vom Spin der involvierten Teilchen abh\"angen k\"onnen. Eine wichtige darauf basierende Methode stellt einen Zusammenhang zwischen der invariante-Masse-Verteilung $d\Gamma/d\sff$ zweier Zerfallsprodukte und dem Spin des intermedi\"aren Teilchens, \"uber welches der Zerfall abl\"auft, her.\\ In dieser Arbeit untersuchen wir als erstes den Einfluss von Operatoren h\"oherer Ordnung auf die Spinbestimmung in Zerfallsketten. Wir klassifizieren als erstes die relevanten Operatoren der Dimension 5 und 6. Wir berechnen die neuen Beitr\"age und diskutieren ihre Auswirkungen auf die Bestimmung von Kopplungen und Spin in diesen Zerf\"allen.\\ Im weiteren betrachten wir zwei Szenarien, die nicht die \"ublichen Zerfallsketten beinhalten:\\ In Dreik\"orperzerf\"allen kann die oben erw\"ahnte Methode nicht angewendet werden, da das intermedi\"are Teilchen nicht auf die Massenschale gehen kann. Solche off-shell'' Zerf\"alle k\"onnen in Szenarien wie split-Supersymmetrie oder split-Universal Extra Dimensions'' wichtig sein. Man kann hier die sogenannte Narrow width approximation'' nicht anwenden, welche eine notwendige Voraussetzung f\"ur einen einfachen Zusammenhang zwischen Spin und der invariante-Masse-Verteilung ist. Wir arbeiten eine Strategie f\"ur diese Dreik\"orperzerf\"alle aus, mittels derer man zwischen den unterschiedlichen Spinszenarien unterscheiden kann. Diese Strategie beruht darauf, dass man hier die differentielle Zerfallsbreite als globalen Phasenraumfaktor mal einem Polynom in der invarianten Masse $\sff$ schreiben kann. Die hierbei auftretenden Koeffizienten sind nur Funktionen der involvierten Massen und Kopplungen, und wir zeigen, wie beispielsweise ihre Wertebereiche und Vorzeichen dazu benutzt werden k\"onnen, um den zugrunde liegenden Zerfall zu bestimmen. Am Ende testen wir diese Strategie in einer Reihe von Monte Carlo-Simulationen, und diskutieren auch den Einfluss des off-shell'' Teilchens. Im letzten Teil betrachten wir eine Topologie mit sehr kurzen Zefallsketten, in der man den oben genannten Zusammenhang zwischen Spin und invarianter Masse ebenfalls nicht anwenden kann. Wir untersuchen eine bestimmte Variable, die zur Unterscheidung von Supersymmetrie und Universal Extra Dimensions'' eingef\"uhrt wurde. Dabei nutzt man aus, dass sich das Problem im Hochenergielimes auf die zugrunde liegenden Produktionsprozesse reduziert. Wir diskutieren, wie man diese Variable auch in Szenarien anwenden kann, in denen dieser Limes keine gute N\"aherung darstellt. Dazu betrachten wir die m\"oglichen Spinszenarien mit renormierbaren Kopplungen und untersuchen im Detail, wie gut diese Variable zwischen verschiedenen Spin-, Massen- und Kopplungsszenarien unterscheiden kann. Wir finden beispielsweise, dass das Spinszenario, welches den supersymmetrischen Fall beinhaltet, von den meisten anderen Spinszenarien gut unterscheidbar ist. N2 - By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2.\\ These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass $\sff$ of the adjacent particles. In this thesis we first study the influence of higher than dimension 4 operators on spin determination in such decay chains. We write down the relevant dimension 5 and 6 operators and calculate their contributions to the invariant mass distribution. We discuss how they affect the determination of spin and couplings.\\ We then address two scenarios which do not involve decay chains in the usual sense. In three body decays, the method pointed out above cannot be applied since it can only be used if the mediating particle is produced on-shell. For off-shell decays, which are important e.g. in split-Supersymmetry or split-Universal Extra Dimensions, the narrow width approximation cannot be made which previously led to the simple relation between spin and the highest power of $\sff$. We work out a strategy for these three body decays that can distinguish between the different spin scenarios. The method relies on the fact that the differential decay width $d\Gamma /d\sff$ can be rewritten in this limit as a global phase space function and a polynomial in $\sff$. The coefficients in this polynomial are functions of masses and couplings and we show that they have distinct signs or ratios depending on the spins involved in the decay. We test the strategy in a series of Monte Carlo studies and discuss the influence of the intermediate particle's mass. In the last part we consider a topology with very short decay chains. Again one cannot use the relation between spin and invariant mass. We investigate one variable that has been invented for the discrimination of Supersymmetry and Universal Extra Dimensions in the high energy limit which reduces the problem to the underlying production process. We show how this variable can also be used in new physics scenarios where the high energy limit is not a viable approximation. We include all possible spin scenarios with renormalizable interactions and study in detail the influence of the involved masses and couplings on the discrimination power of this variable. We find for example that the scenario containing the supersymmetric case is well distinguishable from most other spin scenarios. KW - Elementarteilchenphysik KW - Beyond the standard model KW - spin determination KW - Spin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71030 ER - TY - GEN A1 - Reents, Georg A1 - Schiekel, Bernhard T1 - In memoriam Karl Kraus N2 - Prof. Dr. Karl Kraus Forscher und Lehrer am Physikalischen Institut der Universität Würzburg Curriculum vitae und Publikationsliste KW - Kraus KW - Karl / Lebenslauf KW - Kraus-Darstellung KW - Kraus representation KW - curriculum vitae Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71296 ER - TY - THES A1 - Weidinger, Matthias T1 - Variabilität entlang der Blazar-Sequenz - Hinweise auf die Zusammensetzung relativistischer Ausflüsse Aktiver Galaxienkerne T1 - Variability along the Blazar-Sequence - Hints for the composition of the relativistic outflows of Active Galactic Nuclei N2 - Die vorliegende Arbeit beschäftigt sich mit der Abstrahlung von Aktiven Galaxienkernen. Das erste Maximum der charakteristischen Doppelpeakstruktur des $\nu F_{\nu}$-Spektrums vom Blazaren ist zweifelsfrei Synchrotronstrahlung hochenergetischer Elektronen innerhalb des relativistischen Ausflusses des zugrundeliegenden Aktiven Galaxienkerns. Die zum zweiten (hochenergetischen) Maximum beitragenden Strahlungsprozesse und Teilchenspezies hingegen sind Gegenstand aktueller Diskussionen. In dieser Arbeit wir ein vollständig selbstkonsistentes und zeitabhängiges hybrides Emissionsmodell, welches auch Teilchenbeschleunigung berücksichtigt, entwickelt und auf verschiedene Blazar-Typen entlang der Blazar-Sequenz, von BL Lac Objekten mit verschiedenen Peakfrequenzen bis hin zu Flachspektrum-Radioquasaren, angewendet. Die spektrale Emission ersterer kann gut im rein leptonischen Grenzfall, d.h. der zweite $\nu F_{\nu}$-Peak kommt durch invers Compton-gestreute Synchrotronphotonen der abstrahlenden Elektronen selbst zustande, beschrieben werden. Zur Beschreibung letzterer muss man nicht-thermische Protonen innerhalb des Jets zulassen um die Dominanz des zweiten Maximums im Spektrum konsistent zu erklären. In diesem Fall besteht der zweite Peak aus Protonensynchrotronstrahlung und Kaskadenstrahlung der photohadronischen Prozesse. Mit dem entwickelten Modell ist es möglich auch die zeitliche Information, welche durch Ausbrüche von Blazaren bereitgestellt wird, auszunutzen um zum einen die freien Modellparameter weiter einzuschränken und -viel wichtiger- zum anderen leptonisch dominierte Blazare von hadronischen zu unterscheiden. Hierzu werden die typischen Zeitunterschiede in den Interbandlichtkurven als hadronischer Fingerabdruck benutzt.\\ Mit einer Stichprobe von 16 Spektren von zehn Blazaren entlang der Blazar-Sequenz, welche in unterschiedlichen Flusszuständen und mit starker Variabilität beobachtet wurden, ist es möglich die wichtigsten offenen Fragen der Physik relativistischer Ausbrüche in systematischer Art und Weise zu adressieren. Anhand der modellierten Ausbrüche kann man erkennen, dass sechs Quellen rein leptonisch dominiert sind, aber vier Protonen bis auf $\gamma \approx 10^{11}$ beschleunigen, was Auswirkungen auf die möglichen Quellen extragalaktischer kosmischer Strahlung unter den Blazaren hat. Darüber hinaus findet sich eine Abhängigkeit zwischen dem Magnetfeld der Emissionsregion und der injizierten Leuchtkraft, welche unabhängig von den zugrunde liegenden Teilchenpopulationen Gültigkeit besitzt. In diesem Zusammenhang lässt sich die Blazar-Sequenz als ein evolutionäres Szenario erklären: die Sequenz $FSRQ \rightarrow LBL/IBL \rightarrow HBL$ kommt aufgrund abnehmender Gasdichte der Hostgalaxie und damit einhergehender abnehmender Akkretionsrate zustande, dies wird durch weitere kosmologische Beobachtungen bestätigt. Eine abnehmende Materiedichte innerhalb des relativistischen Ausflusses wird von einem abnehmenden Magnetfeld begleitet, d.h. aber auch, dass Protonen weit vor den Elektronen nicht mehr im Strahlungsgebiet gehalten werden können. Die Blazar-Sequenz ist also ein Maß für die Hadronizität des Jets. Dies erklärt zudem die Dichotomie von FSRQs und BL Lac Objekten sowie die Zweiteilung in anderen Erscheinungsformen von AGN, z.B. FR-I und FR-II Radiogalaxien.\\ Während der Modellierung wird gezeigt, dass man Blazar-Spektren, speziell im hadronischen Fall, nicht mehr statisch betrachten kann, da es zu kumulierten Effekten aufgrund der langen Protonensynchrotronzeitskala kommt. Die niedrige Luminosität der Quellen und unterschiedlich lange Beobachtungszeiten verschiedener Experimente verlangen bei variablen Blazaren auch im leptonischen Fall eine zeitabhängige Betrachtung. Die Kurzzeitvariabilität scheint bei einzelnen Blazaren stets die selbe Ursache zu haben, unterscheidet sich aber bei der Betrachtung verschiedener Quellen. Zusätzlich wird für jeden Blazar, der in verschiedenen Flusszuständen beobachtet werden konnte, der Unterschied zwischen Lang- und Kurzzeitvariabilität, auch im Hinblick auf einen möglichen globalen Grundzustand hin, betrachtet. N2 - The work at hand deals with the radiative properties of active galactic nuclei. The first peak in the characteristic double humped spectral energy distribution of blazars is undoubtedly synchrotron emission of highly energetic electrons within the relativistic outflow of the subjacent active galactic nucleus whereas the contributing processes and particle species giving rise to the second, high energy peak are still a matter of debate. In this work a fully selfconsistent and timedependent hybrid emission model, including particle acceleration, is developed and applied to various types of sources from high frequency peaked BL Lac objects to the luminous flat spectrum radio quasars along the blazar-sequence. While the spectral emission of the first is well described leptonically, i.e. the second peak is Compton upscattered synchrotron photons by the radiating electrons themselves, one needs to introduce non-thermal protons within the jet of the latter to explain the $\gamma$-dominance in their spectra consistently. In this case the second peak consists of synchrotron radiation of highly relativistic protons and reprocessed radiation from photohadronic interactions. With the developed framework it is possible to exploit outbursts of blazars, and hence the provided timing information on the one hand to tighten down the model parameters and on the other hand, more importantly, to discriminate between purely leptonic blazars and hadronically dominated ones using the typical timelags in the interband lightcurves as a fingerprint.\\ With a sample of 16 spectra of ten blazars along the sequence, observed at different flux levels exhibiting strong variability, it is possible to address the most important questions concerning the physics of the relativistic outflow in a systematic way. As modelled outbursts indicate, six blazars are well described in a leptonic context while four accelerate protons up to $\gamma \approx 10^{11}$. The impact on possible sources of extragalactic cosmic rays among blazars are discussed. Furthermore a correlation between the magnetic field within the jet and the injected luminosity is found being independent from the underlying particle species. In this context the blazar-sequence is explained as an evolutionary scenario, the decreasing gas-density in the hostgalaxy and hence the declining accretion rate giving rise to the sequence $FSRQ \rightarrow LBL/IBL \rightarrow HBL$ also confirmed by cosmological observations. The decreasing mass-loading of the outflow goes hand in hand with a abating magnetic field, i.e. protons become less confined way before the electrons. Therefore the blazar-sequence can be interpreted as the hadronicness of a jet. This also consistently explains the dichotomy between FSRQs and BL Lacs as well as in other manifestations of AGN, namely FR-I and FR-II radiogalaxies.\\ During the modelling it is shown that blazar spectra, especially of hadronically dominated AGN, are not to be interpreted in a time-independent, static limit since outbursts are accumulated due to relatively long proton synchrotron timescales. Low flux levels and diverse integration times of experiments in various energy bands will also require for a time-resolved treatment of variable sources, even leptonic ones. The systematic investigation of short time variability depicts, that it is excited in the same way for various outbursts of the same blazar, but has no common cause concerning different sources. Additionally the difference between long- and short-time variability is emphasized for each blazar observed at different flux levels in context with a possible lowstate of each source. KW - Blazar KW - AGN KW - Jet KW - Strahlungsprozesse: Nicht-Thermisch KW - AGN KW - blazar KW - jet KW - radiation: non thermal KW - Strahlung KW - Mathematisches Modell KW - Astrophysik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70508 ER - TY - THES A1 - Kiesel, Maximilian Ludwig T1 - Unconventional Superconductivity in Cuprates, Cobaltates and Graphene: What is Universal and what is Material-Dependent in strongly versus weakly Correlated Materials? T1 - Unkonventionelle Supraleitung in Kupraten, Cobaltaten und Graphen: Was ist universell und was ist material-abhängig in stark- gegenüber schwach-korrelierten Materialien? N2 - Eine allgemeingültige Theorie für alle unterschiedlichen Arten von unkonventionellen Supraleitern ist immer noch eine der ungelösten Kernfragen der Festkörperphysik. Momentan ist es nicht einmal bewiesen, dass es überhaupt einen gemeinsamen grundlegenden Mechanismus gibt, sondern es müssen vielleicht mehrere verschiedene Ursachen für unkonventionelle Supraleitung berücksichtigt werden. Der Einfluss der Elektron-Phonon-Wechselwirkung ist dabei noch nicht abschließend geklärt. In dieser Dissertation wird ein rein elektronischer Paarungsmechanismus untersucht, in welchem die Paarung durch Spin-Fluktuationen vermittelt wird, was nach dem aktuellen Stand der Forschung auf dem Gebiet der unkonventionellen Supraleiter am wahrscheinlichsten ist. Der Schwerpunkt liegt dabei auf der Bestimmung von Material-unabhängigen Eigenschaften der supraleitenden Phase. Diese können durch eine Auswahl sehr unterschiedlicher Systeme herausgearbeitet werden. Eine Untersuchung der Phasendiagramme gibt außerdem Auskunft darüber, welche konkurrierenden Quantenfluktuationen den supraleitenden Zustand abschwächen oder verstärken. Für diese Analyse von sehr unterschiedlichen supraleitenden Materialien ist der Einsatz einer einzelnen numerischen Lösungsmethode unzureichend. Für diese Dissertation ist dies aber kein Nachteil, sondern vielmehr ein großer Vorteil, da der Einsatz verschiedener Techniken die Abhängigkeit der Ergebnisse von der verwendeten Numerik reduziert und dadurch der grundlegende Mechanismus besser untersucht werden kann. Im speziellen werden in dieser Dissertation die Kuprate mit der Variationellen Clusternäherung ausgewertet, weil die Elektronen hier eine starke Wechselwirkung untereinander besitzen. Besonders die Frage eines möglichen Klebstoffs für die Cooper-Paare wird ausführlich diskutiert, auch mit einer Unterscheidung in retardierte und nicht-retardierte Beträge. Den Kupraten werden das Kobaltat NaCoO sowie Graphen gegenübergestellt. Diese Materialien sind jedoch schwach korrelierte Systeme, so dass hier die Funkionelle Renormierungsgruppe als numerisches Grundgerüst dient. Die Ergebnisse sind reichhaltige Phasendiagramme mit vielen verschiedenen langreichweitigen Ordnungen, wie zum Beispiel d+id-wellenartige Supraleitung. Diese bricht die Zeitumkehr-Symmetrie und besitzt eine vollständige Bandlücke, welche im Falle von NaCoO jedoch eine stark Dotierungs-abhängige Anisotropie aufweist. Als letztes wird das Kagome-Gitter allgemein diskutiert, ohne ein konkretes Material zu beschreiben. Hier hat eine destruktive Interferenz zwischen den Elektronen auf verschiedenen Untergittern drastische Auswirkungen auf die Instabilitäten der Fermi-Fläche, so dass die übliche Spin-Dichte-Welle und die damit verbundene d+id-wellenartige Supraleitung unterdrückt werden. Dadurch treten ungewöhnliche Spin- und Ladungsdichte-Ordnungen sowie eine nematische Pomeranchuck Instabilität hervor. Zusammengefasst bietet diese Dissertation einen Einblick in unterschiedliche Materialklassen von unkonventionellen Supraleitern. Dadurch wird es möglich, die Material-spezifischen Eigenschaften von den universellen zu trennen. N2 - A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate NaCoO and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on the kagome lattice are completing the discussion, where a sublattice interference dramatically affects the Fermi-surface instabilities, suppressing the usual spin-density wave and d+id-wave superconductivity. Thereby, some different fascinating charge and bond orders as well as a nematic are observable. In short, this thesis provides an insight to distinct classes of unconventional superconductors with appropriate simulation techniques. This facilitates to separate the material specific properties from the universal ones. KW - Supraleitung KW - Kuprate KW - Cobaltate KW - Superconductivity KW - Cuprates KW - Cobaltates KW - Graphene KW - functional Renormalization Group KW - Graphen KW - Keramischer Supraleiter KW - Cluster-Entwicklung KW - Renormierungsgruppe Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76421 ER - TY - THES A1 - Budich, Jan Carl T1 - Fingerprints of Geometry and Topology on Low Dimensional Mesoscopic Systems T1 - Signaturen der Geometrie und Topologie in niedrigdimensionalen mesoskopischen Systemen N2 - In this PhD thesis, the fingerprints of geometry and topology on low dimensional mesoscopic systems are investigated. In particular, holographic non-equilibrium transport properties of the quantum spin Hall phase, a two dimensional time reversal symmetric bulk insulating phase featuring one dimensional gapless helical edge modes are studied. In these metallic helical edge states, the spin and the direction of motion of the charge carriers are locked to each other and counter-propagating states at the same energy are conjugated by time reversal symmetry. This phenomenology entails a so called topological protection against elastic single particle backscattering by time reversal symmetry. We investigate the limitations of this topological protection by studying the influence of inelastic processes as induced by the interplay of phonons and extrinsic spin orbit interaction and by taking into account multi electron processes due to electron-electron interaction, respectively. Furthermore, we propose possible spintronics applications that rely on a spin charge duality that is uniquely associated with the quantum spin Hall phase. This duality is present in the composite system of two helical edge states with opposite helicity as realized on the two opposite edges of a quantum spin Hall sample with ribbon geometry. More conceptually speaking, the quantum spin Hall phase is the first experimentally realized example of a symmetry protected topological state of matter, a non-interacting insulating band structure which preserves an anti-unitary symmetry and is topologically distinct from a trivial insulator in the same symmetry class with totally localized and hence independent atomic orbitals. In the first part of this thesis, the reader is provided with a fairly self-contained introduction into the theoretical concepts underlying the timely research field of topological states of matter. In this context, the topological invariants characterizing these novel states are viewed as global analogues of the geometric phase associated with a cyclic adiabatic evolution. Whereas the detailed discussion of the topological invariants is necessary to gain deeper insight into the nature of the quantum spin Hall effect and related physical phenomena, the non-Abelian version of the local geometric phase is employed in a proposal for holonomic quantum computing with spin qubits in quantum dots. N2 - In dieser Doktorarbeit wird der Zusammenhang zwischen den mathematischen Bereichen der modernen Differentialgeometrie sowie der Topologie und den physikalischen Eigenschaften niedrigdimensionaler mesoskopischer Systeme erläutert. Insbesondere werden Phänomene des holographischen Quantentransportes in Quanten Spin Hall Systemen fernab des thermodynamischen Gleichgewichtes untersucht. Die Quanten Spin Hall Phase ist ein zweidimensionaler, zeitumkehrsymmetrischer elektrisch isolierender Zustand, dessen charakteristische Eigenschaft eindimensionale metallische Randzustände sind. Diese im Englischen als “helical edge states” bezeichneten Randkanäle zeichnen sic h dadurch aus, dass Spin und Bewegungsrichtung der Ladungsträger fest miteinander verknüpft sind und zwei Zustände mit gleicher Energie aber unterschiedlicher Bewegungsrichtung stets durch die Symmetrieoperation der Zeitumkehr zusammenhängen. Diese Phänomenologie bedingt einen sogenannten topologischen Schutz durch Zeitumkehrsymmetrie gegen elastische Einteilchenrückstreuung. Wir beschäftigen uns mit den Grenzen dieses Schutzes, indem wir inelastische Rückstreuprozesse in Betracht ziehen, wie sie etwa durch das Wechselspiel von extrinsischer Spin-Bahn Kopplung und Gitterschwingungen induziert werden können, oder aber indem wir Mehrteilchen-Streuprozesse untersuchen, welche die Coulomb-Wechselwirkung ermöglicht. Desweiteren werden Anwendungen aus dem Gebiet der Spintronik vorgeschlagen, welche auf einer dem Quanten Spin Hall Effekt eigenen Dualität zwischen dem Spin und dem Ladungsfreiheitsgrad beruhen. Diese Dualität existiert in einem aus zwei Randzuständen mit entgegengesetzter Helizität zusammengesetzten System, wie etwa durch zwei gegenüberliegende Ränder einer streifenförmigen Probe im Quanten Spin Hall Zustand realisiert. Konzeptionell gesehen ist der Quanten Spin Hall Zustand das erste experimentell nachgewiesene Beispiel eines symmetriegeschützten topologischen Zustandes nichtwechselwirkender Materie, also eines Bandisolators, welcher eine antiunitäre Symmetrie besitzt und sich von einem trivialen Isolator mit gleicher Symmetrie aber ausschliesslich lokalisierten und daher voneinander unabhängigen atomaren Orbitalen topologisch unterscheidet. Im ersten Teil dieser Dissertation geben wir eine Einführung in die theoretischen Konzepte, welche dem Forschungsgebiet der nichtwechselwirkenden topologischen Zustände zugrunde liegen. In diesem Zusammenhang werden die topologischen Invarianten, welche diese neuartigen Zustände charakterisieren, als globales Analogon zur lokalen geometrischen Phase dargestellt, welche mit einer zyklischen adiabatischen Entwicklung eines physikalischen Systems verknüpft ist. Während die ausführliche Diskussion der globalen Invarianten einem tieferen Verständnis des Quanten Spin Hall Effektes und damit verwandten physikalischen Phänomenen dienen soll, wird die nicht-Abelsche Variante der lokalen geometrischen Phase für einen Vorschlag zur Realisierung von holonomiebasierter Quanteninformationsverarbeitung genutzt. Das Quantenbit der von uns vorgeschlagenen Architektur ist ein in einem Quantenpunkt eingesperrter Spinfreiheitsgrad. KW - Topologischer Isolator KW - Quantenspinsystem KW - Quanten-Hall-Effekt KW - Topologische Isolatoren KW - Quanten Spin Hall Effekt KW - Berry Phase KW - Topology KW - Topological Insulator KW - Topolgical Phase KW - Quantum spin Hall KW - Keldysh formalism KW - Adiabatic Theorem of quantum mechanics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76847 ER - TY - JOUR A1 - Winter, Walter T1 - Neutrinos from Cosmic Accelerators Including Magnetic Field and Flavor Effects N2 - We review the particle physics ingredients affecting the normalization, shape, and flavor composition of astrophysical neutrinos fluxes, such as different production modes, magnetic field effects on the secondaries muons, pions, and kaons, and flavor mixing, where we focus on p? interactions. We also discuss the interplay with neutrino propagation and detection, including the possibility to detect flavor and its application in particle physics, and the use of the Glashow resonance to discriminate p? from pp interactions in the source. We illustrate the implications on fluxes and flavor composition with two different models: 1 the target photon spectrum is dominated by synchrotron emission of coaccelerated electrons and 2 the target photon spectrum follows the observed photon spectrum of gamma-ray bursts. In the latter case, the multimessenger extrapolation from the gamma-ray fluence to the expected neutrino flux is highlighted. KW - Magnetfeld Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75290 ER - TY - JOUR A1 - Kaiser, J. C. A1 - Riemer, N. A1 - Knopf, D. A. T1 - Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model N2 - Using the particle-resolved aerosol model PartMC-MOSAIC, we simulate the heterogeneous oxidation of a monolayer of polycyclic aromatic hydrocarbons (PAHs) on soot particles in an urban atmosphere. We focus on the interaction of the major atmospheric oxidants (O3, NO2, OH, and NO3) with PAHs and include competitive co-adsorption of water vapour for a range of atmospheric conditions. For the first time detailed heterogeneous chemistry based on the P¨oschl-Rudich-Ammann (PRA) framework is modelled on soot particles with a realistic size distribution and a continuous range of chemical ages. We find PAH half-lives, 1/2, on the order of seconds during the night, when the PAHs are rapidly oxidised by the gas-surface reaction with NO3. During the day, 1/2 is on the order of minutes and determined mostly by the surface layer reaction of PAHs with adsorbed O3. Such short half-lives of surface-bound PAHs may lead to efficient conversion of hydrophobic soot into more hygroscopic particles, thus increasing the particles’ aerosol-cloud interaction potential. Despite its high reactivity OH appears to have a negligible effect on PAH degradation which can be explained by its very low concentration in the atmosphere. An increase of relative humidity (RH) from 30% to 80% increases PAH half-lives by up to 50%for daytime degradation and by up to 100% or more for nighttime degradation. Uptake coefficients, averaged over the particle population, are found to be relatively constant over time for O3 (2×10-7 to 2×10-6) and NO2 (5×10-6 to 10-5) at the different levels of NOx emissions and RH considered in this study. In contrast, those for OH and NO3 depend strongly on the surface concentration of PAHs. We do not find a significant influence of heterogeneous reactions on soot particles on the gas phase composition. The derived half-lives of surfacebound PAHs and the time and particle population averaged uptake coefficients for O3 and NO2 presented in this paper can be used as parameterisations for the treatment of heterogeneous chemistry in large-scale atmospheric chemistry models. KW - Physik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75440 ER - TY - THES A1 - Walter, Stefan T1 - Exploring the Quantum Regime of Nanoelectromechanical Systems T1 - Erforschen des quantenmechanischen Zustandes von nanomechanischen Systemen N2 - This thesis deals with nanoelectromechanical systems in the quantum regime. Nanoelectromechanical systems are systems where a mechanical degree of freedom of rather macroscopic size is coupled to an electronic degree of freedom. The mechanical degree of freedom can without any constraints be modeled as the fundamental mode of a harmonic oscillator. Due to their size and the energy scales involved in the setting, quantum mechanics plays an important role in their description. We investigate transport through such nanomechanical devices where our focus lies on the quantum regime. We use non-equilibrium methods to fully cover quantum effects in setups where the mechanical oscillator is part of a tunnel junction. In such setups, the mechanical motion influences the tunneling amplitude and thereby the transport properties through the device. The electronics in these setups can then be used to probe and characterize the mechanical oscillator through signatures in transport quantities such as the average current or the current noise. The interplay between the mechanical motion and other physical degrees of freedom can also be used to characterize these other degrees of freedom, i.e., the nanomechanical oscillator can be used as a detector. In this thesis, we will show that a nanomechanical oscillator can be used as a detector for rather exotic degrees of freedom, namely Majorana bound states which recently attracted great interest, theoretically as well as experimentally. Again, the quantum regime plays an essential role in this topic. One of the major manifestations of quantum mechanics is entanglement between two quantum systems. Entanglement of quantum systems with few (discrete) degrees of freedom is a well established and understood subject experimentally as well as theoretically. Here, we investigate quantum entanglement between two macroscopic continuous variable systems. We study different setups where it is possible to entangle two nanomechanical oscillators which are not directly coupled to each other. We conclude with reviewing the obtained results and discuss open questions and possible future developments on the quantum aspects of nanomechanical systems. N2 - Diese Arbeit beschäftigt sich mit den quantenmechanischen Aspekten von nanoelektromechanischen Systemen. In nanomechanischen Systemen koppelt ein nahezu makroskopischer mechanischer Freiheitsgrad an einen elektronischen Freiheitsgrad. Ohne weitere Einschränkungen kann der mechanische Freiheitsgrad mit der fundamentalen Anregung eines harmonischen Oszillators beschrieben werden. Auf Grund der Größenordnung von beteiligten Längen- und Energieskalen spielt die Quantenmechanik eine sehr wichtige und nicht zu vernachlässigende Rolle in der Beschreibung dieser Systeme. In dieser Arbeit untersuchen wir elektrische Transporteigenschaften in solchen nanomechanischen Elementen, wobei unser Fokus in der Quantennatur dieser Systeme liegt. Um quantenmechanische Effekte gänzlich zu berücksichtigen, verwenden wir Nichtgleichgewichts-Methoden wie zum Beispiel den Keldysh Formalismus. Wir konzentrieren uns hauptsächlich auf Systeme, in denen der nanomechanische Oszillator Teil eines Tunnelkontaktes ist. In solchen Anordnungen wird die Tunnelbarriere durch den Oszillator moduliert, was zur Folge hat, dass auch die elektronischen Transporteigenschaften beeinflusst werden. Durch Signaturen in Transportgrößen der Elektronik, wie zum Beispiel des mittleren Tunnel-Stroms oder des Stromrauschens, ist es nun möglich den nanomechanischen Oszillator zu untersuchen und zu charakterisieren. Die Wechselwirkung zwischen dem mechanischem Freiheitsgrad und anderen Freiheitsgraden ermöglicht es diese anderen Freiheitsgrade zu charakterisieren. Folglich kann der nanomechanische Oszillator als Detektor benutzt werden. In dieser Arbeit zeigen wir, dass der nanomechanische Oszillator als Detektor für sehr exotische physikalische Freiheitsgrade verwendet werden kann. Diese exotischen Freiheitsgrade sind sogenannte gebundene Majoranazustände, die kürzlich in der theoretischen und experimentellen Physik viel Aufsehen erregt haben. Hier spielt die quantenmechanische Beschreibung des Systems wiederum eine große Rolle. Eines der wichtigsten und faszinierendsten Phänomene der Quantenmechanik ist die quantenmechanische Verschränkung zweier Quantensysteme. Die Verschränkung von quantenmechanischen Systemen mit wenigen (diskreten) Freiheitsgraden ist ein theoretisch und experimentell sehr gut verstandenes Phänomen. Wir untersuchen Verschränkung zwischen zwei makroskopischen Systemen mit kontinuierlichen Freiheitsgraden in zwei verschiedenen Anordnungen, die es erlauben zwei nanomechanische Oszillatoren zu verschränken, die nicht direkt miteinander gekoppelt sind. Schließlich fassen wir unsere Ergebnisse zusammen und diskutieren offene Fragen und künftige Entwicklungen, die sich mit der Quantennatur nanoelektromechanischer Systeme beschäftigen. KW - Nanoelektromechanik KW - nanoelectromechanical systems KW - majorana bound states KW - entanglement KW - Keldysh formalism KW - Nanoelektromechanische Systeme KW - Majorana Zustände KW - Verschränkung KW - Keldysh Formalismus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75188 ER - TY - THES A1 - Luitz, David J. T1 - Numerical methods and applications in many fermion systems T1 - Numerische Methoden und Anwendungen in Vielfermionensystemen N2 - This thesis presents results covering several topics in correlated many fermion systems. A Monte Carlo technique (CT-INT) that has been implemented, used and extended by the author is discussed in great detail in chapter 3. The following chapter discusses how CT-INT can be used to calculate the two particle Green’s function and explains how exact frequency summations can be obtained. A benchmark against exact diagonalization is presented. The link to the dynamical cluster approximation is made in the end of chapter 4, where these techniques are of immense importance. In chapter 5 an extensive CT-INT study of a strongly correlated Josephson junction is shown. In particular, the signature of the first order quantum phase transition between a Kondo and a local moment regime in the Josephson current is discussed. The connection to an experimental system is made with great care by developing a parameter extraction strategy. As a final result, we show that it is possible to reproduce experimental data from a numerically exact CT-INT model-calculation. The last topic is a study of graphene edge magnetism. We introduce a general effective model for the edge states, incorporating a complicated interaction Hamiltonian and perform an exact diagonalization study for different parameter regimes. This yields a strong argument for the importance of forbidden umklapp processes and of the strongly momentum dependent interaction vertex for the formation of edge magnetism. Additional fragments concerning the use of a Legendre polynomial basis for the representation of the two particle Green’s function, the analytic continuation of the self energy for the Anderson Kane Mele Model, as well as the generation of test data with a given covariance matrix are documented in the appendix. A final appendix provides some very important matrix identities that are used for the discussion of technical details of CT-INT. N2 - In der vorliegenden Dissertation werden verschiedene Themen aus dem Feld der stark korrelierten Viel-Fermionensysteme präsentiert. Zunächst wird in Kapitel 3 eine Monte Carlo Methode (CT-INT), welche der Autor implementiert, angewandt und erweitert hat, auf detaillierte Weise eingeführt. Das nachfolgende Kapitel diskutiert wie die Zweiteilchen Greensche Funktion in CT-INT berechnet werden kann und wie exakte Frequenzsummen ausgewertet werden können. Dies wird in einem Vergleich mit Daten aus exakter Diagonalisierung demonstriert. Abschließend wird die Verbindung zur dynamischen Cluster Näherung am Ende von Kapitel 4 aufgezeigt, wo diese Methoden von außerordentlicher Bedeutung sind. In Kapitel 5 wird eine umfangreiche CT-INT Studie eines stark korrelierten Josephson Kontakts vorgestellt. Insbesondere wird die Verbindung zwischen dem Phasenübergang erster Ordnung von einem Kondoregime zu einem Regime mit lokalem magnetischem Moment mit der Phasenverschiebung um pi des Josephson-Stroms herausgearbeitet. Es wird gezeigt, wie der Übergang zu einem realen experimentellen System durchgeführt werden kann, wobei besondere Sorgfalt auf die Entwicklung einer Strategie zur Extraktion der Modellparameter aus den experimentellen Daten gelegt wurde. Als Endergebnis demonstrieren wir, dass es es möglich ist, experimentelle Daten mit Hilfe einer numerisch exakten Modellrechnung zu reproduzieren. Als letztes Projekt wird eine Untersuchung des Randmagnetismus von Graphen vorgestellt. Dazu wird ein allgemeines effektives Modell eingeführt, welches einen komplizierten Wechselwirkungshamiltonian enthält. Hierfür wird eine Studie mit Hilfe von exakter Diagonalisierung des Hamiltonians in verschiedenen Parameterbereichen erarbeitet, wodurch wir argumentieren können, dass das Verbot von Umklappprozessen und die starke Impulsabhängigkeit der Wechselwirkung für die Bildung des Randmagnetismus verantwortlich sind. Zusätzlich dokumentieren einige Fragmente im Anhang theoretische Arbeiten zur Benutzung einer Basis von Legendre Polynomen zur Darstellung der Zweiteilchen Greenschen Funktion, zur analytischen Fortsetzung der Selbstenergie für das Anderson Kane Mele Modell sowie zur Erstellung von Testdaten mit einer analytisch bestimmbaren Kovarianzmatrix. Ein Anhang mit einigen Matrix Identitäten die wichtig für die Diskussion der technischen Details von CT-INT sind schließt diese Arbeit ab. KW - Fermionensystem KW - DCA KW - CT-INT KW - QMC KW - Monte Carlo KW - Strong correlations KW - Numerisches Verfahren KW - Festkörpertheorie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75927 ER - TY - JOUR A1 - Schenkel, Alexander A1 - Uhlemann, Christoph F. T1 - Field Theory on Curved Noncommutative Spacetimes N2 - We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005), 3511 and Classical Quantum Gravity 23 (2006), 1883], we describe noncommutative spacetimes by using (Abelian) Drinfel’d twists and the associated ?-products and ?-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal–Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein–Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall–Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green’s functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green’s functions for our examples are derived. KW - Physik KW - noncommutative field theory KW - Drinfel’d twists KW - deformation quantization KW - field theory on curved spacetimes Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68648 ER - TY - THES A1 - Wisniewski, Martina T1 - Numerische Untersuchung von Turbulenz und Teilchentransport in der Heliosphaere T1 - Numerical Investigations of Turbulence and Particle Transport in the Heliosphere N2 - Hochenergetische solare Teilchen werden bei ihrem Transport durch die Heliosphäre an turbulenten Magnetfeldern gestreut. Für das Verständnis dieses Streuprozesses ergeben sich aus heutiger Sicht zwei wesentliche Hindernisse: - Bei der Streuung hochenergetischer Teilchen an turbulenten Magnetfeldern handelt es sich um einen nichtlinearen Prozess, der durch analytische Theorien kaum zu beschreiben ist. - Der Streuprozess hängt stark von den tatsächlichen Magnetfeldern und somit auch von der Magnetfeldturbulenz ab. Unser bisheriges Verständnis der heliosphärischen Turbulenz ist leider aufgrund spärlicher experimenteller Daten deutlich eingeschränkt, was eine qualifizierte Umsetzung in analytischen und numerischen Ansätzen deutlich erschwert. Dies machte in der Vergangenheit künstliche Annahmen für die Modellerstellung notwendig. In dieser Arbeit wird der Teilchentransport mit Hilfe der Simulation von Testteilchen in einem turbulenten, magnetohydrodynamischen Plasma untersucht. Durch die Testteilchen werden auch die nichtlinearen Streuprozesse korrekt wiedergegeben, wodurch das erste hier genannte Hindernis überwunden wird. Dies wurde auch bereits in früheren numerischen Untersuchungen erfolgreich angewendet. Die Modellierung der Turbulenz für den Fall des Teilchentransports erfolgt in dieser Arbeit erstmalig auf Grundlage der magnetohydrodynamischen Gleichungen. Dabei handelt es sich um die mathematisch korrekte Wiedergabe der Magnetfeldturbulenz unterhalb der Ionen-Gyrofrequenz mit nur geringen numerischen Einschränkungen. Darüber hinaus erlaubt ein auf das physikalische Szenario anpassbarer Turbulenztreiber eine noch realistischere Simulation der Turbulenz. Durch diesen universell gültigen, numerischen Ansatz können für das zweite hier angegebene Hindernis jegliche künstlichen Annahmen vermieden werden. Die drei im Rahmen dieser Arbeit erstmals zusammengeführten Methoden (Testteilchen, magnetohydrodynamische Turbulenz, Turbulenztreiber) ermöglichen somit eine Untersuchung und Analyse von Transport- und Turbulenzphänomenen mit herausragender Qualität, die insbesondere für den Fall des Teilchentransports einen direkten Anschluss an experimentelle Ergebnisse ermöglichen. Wichtige Ergebnisse im Rahmen dieser Arbeit sind: - der Nachweis der Drei-Wellen-Wechselwirkung für schwache und einsetzende starke Turbulenz. - eine Analyse der Anisotropie der Turbulenz im Bezug auf das Hintergrundmagnetfeld in Abhängigkeit vom Treibmodell. Insbesondere die Anisotropie ist experimentell bislang kaum erfassbar. - eine Untersuchung der Auswirkung der Gyroresonanzen auf die Diffusionskoeffizienten hochenergetischer solarer Teilchen in allgemeiner Form. - die Simulation des Teilchentransports in der Heliosphäre auf Grundlage experimenteller Messdaten. Die genauere Analyse der Simulationsergebnisse ermöglicht insgesamt einen Zugang zum Verständnis des Transports, der durch experimentelle Untersuchungen nicht erfassbar ist. Bei der Simulation wurden lediglich die Magnetfeldstärke sowie die untersuchte Teilchenenergie vorgegeben. Aus der Analyse der Simulationsergebnisse ergibt sich dieselbe mittlere freie Weglänge, wie sie auch durch andere Verfahren direkt aus den Messergebnissen gewonnen werden konnte. Auch die vorwiegende Ausrichtung der hochenergetischen Teilchen parallel und antiparallel zum Hintergrundmagnetfeld in der Simulation entspricht experimentellen Untersuchungen. Es zeigt sich, dass diese allein aus den resonanten Streuprozessen der Teilchen mit den Magnetfeldern resultiert. Des Weiteren werden die Art der Diffusion, der Energieverlust der Teilchen während des Transportprozesses sowie die Gültigkeit der quasilinearen Theorie untersucht. N2 - High energetic solar particles are scattered during their transport through the heliosphere due to turbulent magnetic fields. Our today's understanding is mainly limited by two obstacles: - The scattering of high energetic particles due to turbulent magnetic fields is a nonlinear process and can therefore hardly be described by analytical theories. - The scattering process additionally depends on the actual magnetic fields and accordingly on the magnetic turbulence. Our today's understanding of the heliospheric turbulence, however, is considerably restricted due to sparse experimental data, which complicates the implementation of analytical and numerical theories. This fact necessitated artificial assumptions for the modeling in the past. In this work particle transport is investigated with simulations of test particles in turbulent magnetohydrodynamic plasmas. Due to the test particles the nonlinear scattering processes are expressed correctly. So we overcome the firstly mentioned obstacle. This test particle approach has already successfully been used in earlier numerical works. In this work the modelling of the turbulence was for the first time implemented on the basis of the magnetohydrodynamic equations for particle transport studies. This is the mathematical accurate description for magnetic field turbulence below the ion gyro-frequency with only small numerical limitations. Additionally the turbulence driver is adjustable to the physical scenario which allows an even more realistic simulation of the turbulence. With this universally valid numerical approach we can avoid any artificial assumptions for the secondly mentioned obstacle. In this work the three methods (test particles, magnetohydrodynamic turbulence, turbulence driver) have been combined for the first time. This makes it possible to investigate and analyse transport- and turbulence phenomena with outstanding quality. Especially for the particle transport simulations a direct link to experimental data is possible. The most important results of this work are - the detection of three wave interaction in weak and evolving strong magnetohydrodynamic turbulence. - the detailed analysis of turbulence anisotropy with respect to the mean background magnetic field depending on the actual driving model. Especially the anisotropy is hardly ascertainable in experiments up to now. - an investigation of the effect of the gyro-resonances on the diffusion coefficients of high energetic solar particles in general. - the simulation of particle transport in the heliosphere on the basis of experimental measurements. The detailed analysis of these simulation results allows an overall insight into particle transport which is inaccessible for experimental investigations. The only input parameter for these simulations are both the magnetic field strength and the investigated particle energy. The analysis of the simulation findings results in the same value for the mean free path as it is directly found by the measured data with different methods. The predominant orientation parallel and anti-parallel to the mean background magnetic field in the simulation also corresponds to experimental findings. It is shown that this is only a result of resonant particle scattering with the background magnetic fields. Furthermore the type of scattering, the energy loss of the particles during their transport and the validity of the quasilinear theory in this context are explored. KW - Sonnenwind KW - Heliosphäre KW - Turbulente Strömung KW - Transportprozess KW - Numerisches Modell KW - Teilchentransport KW - Astrophysik KW - Turbulenztheorie KW - Kosmische Strahlung KW - Magnetohydrodynamik KW - particle transport Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64652 ER - TY - THES A1 - Schenkel, Alexander T1 - Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes T1 - Nichtkommutative Gravitation und Quantenfeldtheorie auf Nichtkommutativen Gekrümmten Raumzeiten N2 - Über die letzten Jahrzehnte hat sich die nichtkommutative Geometrie zu einem etablierten Teilgebiet der reinen Mathematik und der theoretischen Physik entwickelt. Die Entdeckung, dass gewisse Grenzfälle der Quantengravitation und Stringtheorie zu nichtkommutativer Geometrie führen, motivierte die Suche nach Physik jenseits des Standardmodells der Elementarteilchenphysik und der Einstein'schen allgemeinen Relativitätstheorie im Rahmen von nichtkommutativen Geometrien. Einen ergiebigen Ansatz zu letzteren Theorien, welcher Deformationsquantisierung (Sternprodukte) mit Methoden aus der Theorie der Quantengruppen kombiniert, wurde von der Gruppe um Julius Wess entwickelt. Die resultierende Gravitationstheorie ist nicht nur imstande nichtkommutative Effekte der Raumzeit zu beschreiben, sondern sie erfüllt ebenfalls ein generalisiertes allgemeines Kovarianzprinzip, welches durch eine deformierte Hopf Algebra von Diffeomorphismen beschrieben wird. Gegenstand des ersten Teils dieser Dissertation ist es Symmetriereduktion im Rahmen von nichtkommutativer Gravitation zu verstehen und damit exakte Lösungen der nichtkommutativen Einstein'schen Gleichungen zu konstruieren. Diese Untersuchungen sind von großer Bedeutung um den physikalischen Inhalt dieser Theorien herauszuarbeiten und den Kontakt zu Anwendungen, z.B. im Rahmen nichtkommutativer Kosmologie und Physik schwarzer Löcher, herzustellen. Wir verallgemeinern die übliche Methode der Symmetriereduktion, welche eine Standardtechnik im Auffinden von Lösungen der Einstein'schen Gleichungen ist, auf nichtkommutative Gravitation. Es wird gezeigt, dass unsere Methode zur nichtkommutativen Symmetriereduktion für ein gegebenes symmetrisches System zu bevorzugten Deformationen führt. Für Abelsche Drinfel'd Twists klassifizieren wir alle konsistenten Deformationen von räumlich flachen Friedmann-Robertson-Walker Kosmologien und des Schwarzschild'schen schwarzen Loches. Aufgrund der deformierten Symmetriestruktur dieser Modelle können wir viele Beispiele von exakten Lösungen der nichtkommutativen Einstein'schen Gleichungen finden, bei welchen das nichtkommutative Metrikfeld mit dem klassischen übereinstimmt. Im Fokus des zweiten Teils sind Quantenfeldtheorien auf nichtkommutativen gekrümmten Raumzeiten. Dazu entwickeln wir einen neuen Formalismus, welcher algebraische Methoden der Quantenfeldtheorie mit nichtkommutativer Differentialgeometrie verknüpft. Als Resultat unseres Ansatzes erhalten wir eine Observablenalgebra für skalare Quantenfeldtheorien auf einer großen Klasse von nichtkommutativen gekrümmten Raumzeiten. Es wird eine präzise Relation zwischen dieser Algebra und der Observablenalgebra der undeformierten Quantenfeldtheorie hergeleitet. Wir studieren ebenfalls explizite Beispiele von deformierten Wellenoperatoren und finden, dass im Gegensatz zu dem einfachsten Modell des Moyal-Weyl deformierten Minkowski-Raumes, im Allgemeinen schon die Propagation freier Felder durch die nichtkommutative Geometrie beeinflusst wird. Die Effekte von konvergenten Deformationen werden in einfachen Spezialfällen untersucht, und wir beobachten neue Aspekte in diesen Quantenfeldtheorien, welche sich in formalen Deformationen nicht zeigten. Zusätzlich zu der erwarteten Nichtlokalität finden wir, dass sich die Beziehung zwischen der deformierten und der undeformierten Quantenfeldtheorie nichttrivial verändert. Wir beweisen, dass dies zu einem verbesserten Verhalten der nichtkommutativen Theorie bei kurzen Abständen, d.h. im Ultravioletten, führt. Im dritten Teil dieser Arbeit entwickeln wir Elemente eines leistungsfähigeren, jedoch abstrakteren, mathematischen Ansatzes zur Beschreibung der nichtkommutativen Gravitation. Das Hauptaugenmerk liegt auf globalen Aspekten von Homomorphismen zwischen und Zusammenhängen auf nichtkommutativen Vektorbündeln, welche fundamentale Objekte in der mathematischen Beschreibung von nichtkommutativer Gravitation sind. Wir beweisen, dass sich alle Homomorphismen und Zusammenhänge der deformierten Theorie mittels eines Quantisierungsisomorphismus aus den undeformierten Homomorphismen und Zusammenhängen ableiten lassen. Es wird ebenfalls untersucht wie sich Homomorphismen und Zusammenhänge auf Tensorprodukte von Moduln induzieren lassen. Das Verständnis dieser Induktion erlaubt es uns die nichtkommutative Gravitationstheorie von Wess et al. um allgemeine Tensorfelder zu erweitern. Als eine nichttriviale Anwendung des neuen Formalismus erweitern wir unsere Studien zu exakten Lösungen der nichtkommutativen Einstein'schen Gleichungen auf allgemeinere Klassen von Deformationen. N2 - Over the past decades, noncommutative geometry has grown into an established field in pure mathematics and theoretical physics. The discovery that noncommutative geometry emerges as a limit of quantum gravity and string theory has provided strong motivations to search for physics beyond the standard model of particle physics and also beyond Einstein's theory of general relativity within the realm of noncommutative geometries. A very fruitful approach in the latter direction is due to Julius Wess and his group, which combines deformation quantization (star-products) with quantum group methods. The resulting gravity theory does not only include noncommutative effects of spacetime, but it is also invariant under a deformed Hopf algebra of diffeomorphisms, generalizing the principle of general covariance to the noncommutative setting. The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. These are important investigations in order to capture the physical content of such theories and to make contact to applications in e.g. noncommutative cosmology and black hole physics. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative quantum field theory at short distances, i.e. in the ultraviolet. In the third part we develop elements of a more powerful, albeit more abstract, mathematical approach to noncommutative gravity. The goal is to better understand global aspects of homomorphisms between and connections on noncommutative vector bundles, which are fundamental objects in the mathematical description of noncommutative gravity. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of modules is clarified, and as a consequence we are able to add tensor fields of arbitrary type to the noncommutative gravity theory of Wess et al. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations. KW - Nichtkommutative Geometrie KW - Quantenfeldtheorie KW - Gravitationstheorie KW - Nichtkommutative Differentialgeometrie KW - Gravitation KW - Nichtlokale Quantenfeldtheorie KW - Quantenfeldtheorie KW - Noncommutative Geometry KW - Gravity KW - Quantum Field Theory on Curved Spacetimes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65823 ER - TY - THES A1 - Adamek, Julian T1 - Classical and Quantum Aspects of Anisotropic Cosmology T1 - Klassische und Quantentheoretische Gesichtspunkte der Anisotropen Kosmologie N2 - The idea that our observable Universe may have originated from a quantum tunneling event out of an eternally inflating false vacuum state is a cornerstone of the multiverse paradigm. Modern theories that are considered as an approach towards the ultraviolet-complete fundamental theory of particles and gravity, such as the various types of string theory, even suggest that a vast landscape of different vacuum configurations exists, and that gravitational tunneling is an important mechanism with which the Universe can explore this landscape. The tunneling scenario also presents a unique framework to address the initial conditions of our observable Universe. In particular, it allows to introduce deviations from the cosmological concordance model in a controlled and well-motivated way. These deviations are a central topic of this work. An important feature in most of the theories mentioned above is the presumed existence of additional space dimensions in excess of the three which we observe in our every-day experience. It was realized that these extra dimensions could avoid our detection if they are compactified to microscopic length scales far beyond the reach of current experiments. There also seem to be natural mechanisms available for dynamical compactification in those theories. These typically lead to a vast landscape of different vacuum configurations which also may differ in the number of macroscopic dimensions, only the total number of dimensions being determined by the theory. Transitions between these vacuum configurations may hence open up new directions which were previously compact, spontaneously compactify some previously macroscopic directions, or otherwise re-arrange the configuration of compact and macroscopic dimensions in a more general way. From within the bubble Universe, such a process may be perceived as an anisotropic background spacetime - intuitively, the dimensions which open up may give rise to preferred directions. If our 3+1 dimensional observable Universe was born in a process as described above, one may expect to find traces of a preferred direction in cosmological observations. For instance, two directions could be curved like on a sphere, while the third space direction is flat. Using a scenario of gravitational tunneling to fix the initial conditions, I show how the primordial signatures in such an anisotropic Universe can be obtained in principle and work out a particular example in more detail. A small deviation from isotropy also has phenomenological consequences for the later evolution of the Universe. I discuss the most important effects and show that backreaction can be dynamically important. In particular, under certain conditions, a buildup of anisotropic stress in different components of the cosmic fluid can lead to a dynamical isotropization of the total stress-energy tensor. The mechanism is again demonstrated with the help of a physical example. N2 - Die Vorstellung von einem Multiversum baut unter anderem auf dem Gedanken auf, dass unser beobachtbares Universum in einem Tunnelprozess entstanden sein könnte. Demzufolge hätte es sich dabei von einem ewig währenden, inflationären Vakuumzustand abgekoppelt. Die so entstehende Blase gleicht einer bewohnbaren Insel inmitten eines gewaltigen Ozeans. Moderne Theorien, die als gute Ansätze bezüglich einer fundamentalen und ultraviolett-vollständigen Beschreibung von Elementarteilchen und Gravitation angesehen werden, wie etwa die verschiedenen Ausprägungen der Stringtheorie, legen sogar nahe, dass eine ganze "Landschaft" (im Englischen "landscape") verschiedener Vakuumzustände existiert, und dass Tunnelprozesse einen wichtigen Mechanismus darstellen, mit dem das Universum die Vielzahl an Möglichkeiten erforschen und realisieren kann. Das Tunnelszenario stellt auch einen einzigartigen Rahmen zur Verfügung, um die Anfangsbedingungen unseres beobachtbaren Universums zu untersuchen. Insbesondere besteht damit die Möglichkeit, geringfügige Abweichungen vom kosmologischen Standardmodell in kontrollierter und gut motivierter Art und Weise zu realisieren. Solche Abweichungen stellen eines der zentralen Themen dieser Arbeit dar. Eine wichtige Besonderheit der eben erwähnten Theorien ist die Annahme, dass neben den drei uns bekannten Raumdimensionen eine Vielzahl weiterer existieren könnte. Diese Zusatzdimensionen könnten vor uns verborgen sein, wenn sie kompakt sind und nur extrem mikroskopische Ausmaße haben, so dass sie sich weit unterhalb des Auflösungsvermögens heutiger Experimente befinden. Mechanismen, welche eine solche mikroskopische Gestalt dynamisch erklären könnten, sind in den gängigen Theorien auf ganz natürliche Weise verfügbar. Typischerweise ergibt sich daraus das eben gezeichnete Bild einer ausgedehnten "Landschaft" verschiedener Konfigurationen. Die Vakuumzustände können sich nun auch in der Anzahl und Gestalt der mikroskopischen Dimensionen unterscheiden, da nur die Gesamtzahl an Raumdimensionen von der Theorie vorgegeben wird. Übergänge zwischen diesen Zuständen können also dazu führen, dass neue Raumrichtungen entstehen, indem mikroskopische Dimensionen sich plötzlich aufblähen, alte Raumrichtungen verschwinden, indem sie sich spontan ins Mikroskopische zusammenziehen, oder dass die Konfiguration der Raumdimensionen auf eine noch kompliziertere Art und Weise verändert wird. Aus Sicht des neu entstehenden "Universums" in der Blase führt ein solcher Prozess effektiv zu einem anisotropen Hintergrund - vereinfacht ausgedrückt können die neu entstehenden Raumrichtungen eine Vorzugsrichtung ausweisen. Wenn unser 3+1 dimensionales beobachtbares Universum in einem solchen Prozess entstanden ist, kann man vermuten, dass sich in kosmologischen Beobachtungen Hinweise auf eine Vorzugsrichtung finden lassen müssten. Zum Beispiel könnten zwei Raumrichtungen gekrümmt wie eine Kugeloberfläche sein, während die dritte Richtung keinerlei Krümmung aufweist. Indem ich ein Tunnelszenario benutze, um die Anfangsbedingungen festzulegen, gelingt es mir zu zeigen wie die primordialen Spuren eines solchen anisotropen Universums prinzipiell auszusehen haben und führe eine Berechnung anhand eines speziellen Beispiels explizit vor. Eine geringfügige Abweichung von Isotropie hat ebenfalls phänomenologische Auswirkungen auf die spätere Entwicklung des Universums. Ich gehe auf die wichtigsten Effekte ein und zeige außerdem, dass Rückkopplung dynamisch relevant sein kann. Insbesondere kann sich unter gewissen Voraussetzungen ein Ungleichgewicht der Druckkräfte in verschiedenen Komponenten der "kosmischen Flüssigkeit" aufbauen, das insgesamt zu einer dynamischen Isotropisierung des kollektiven Energie-Impuls-Tensors führt. Dieser Mechanismus wird ebenfalls anhand eines konkreten Beispiels beleuchtet. KW - Kosmologie KW - Anisotropes Universum KW - Quantenkosmologie KW - Bianchi-Kosmologie KW - Anisotropic Universe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65908 ER - TY - THES A1 - Englert, Anja T1 - Chaossynchronisation in Netzwerken mit zeitverzögerten Kopplungen T1 - Chaos synchronization in networks with time-delayed couplings N2 - Die vorliegende Arbeit beschäftigt sich mit der Chaossynchronisation in Netzwerken mit zeitverzögerten Kopplungen. Ein Netzwerk chaotischer Einheiten kann isochron und vollständig synchronisieren, auch wenn der Austausch der Signale einer oder mehreren Verzögerungszeiten unterliegt. In einem Netzwerk identischer Einheiten hat sich als Stabilitätsanalyse die Methode der Master Stability Funktion von Pecora und Carroll etabliert. Diese entspricht für ein Netzwerk gekoppelter iterativer Bernoulli-Abbildungen Polynomen vom Grade der größten Verzögerungszeit. Das Stabilitätsproblem reduziert sich somit auf die Untersuchung der Nullstellen dieser Polynome hinsichtlich ihrer Lage bezüglich des Einheitskreises. Eine solche Untersuchung kann beispielsweise numerisch mit dem Schur-Cohn-Theorem erfolgen, doch auch analytische Ergebnisse lassen sich erzielen. In der vorliegenden Arbeit werden Bernoulli-Netzwerke mit einer oder mehreren zeitverzögerten Kopplungen und/oder Rückkopplungen untersucht. Hierbei werden Aussagen über Teile des Stabilitätsgebietes getroffen, welche unabhängig von den Verzögerungszeiten sind. Des Weiteren werden Aussagen zu Systemen gemacht, welche sehr große Verzögerungszeiten aufweisen. Insbesondere wird gezeigt, dass in einem Bernoulli-Netzwerk keine stabile Chaossynchronisation möglich ist, wenn die vorhandene Verzögerungszeit sehr viel größer ist als die Zeitskala der lokalen Dynamik, bzw. der Lyapunovzeit. Außerdem wird in bestimmten Systemen mit mehreren Verzögerungszeiten anhand von Symmetriebetrachtungen stabile Chaossynchronisation ausgeschlossen, wenn die Verzögerungszeiten in bestimmten Verhältnissen zueinander stehen. So ist in einem doppelt bidirektional gekoppeltem Paar ohne Rückkopplung und mit zwei verschiedenen Verzögerungszeiten stabile Chaossynchronisation nicht möglich, wenn die Verzögerungszeiten in einem Verhältnis von teilerfremden ungeraden ganzen Zahlen zueinander stehen. Es kann zudem Chaossynchronisation ausgeschlossen werden, wenn in einem bipartiten Netzwerk mit zwei großen Verzögerungszeiten zwischen diesen eine kleine Differenz herrscht. Schließlich wird ein selbstkonsistentes Argument vorgestellt, das das Auftreten von Chaossynchronisation durch die Mischung der Signale der einzelnen Einheiten interpretiert und sich unter anderem auf die Teilerfremdheit der Zyklen eines Netzes stützt. Abschließend wird untersucht, ob einige der durch die Bernoulli-Netzwerke gefundenen Ergebnisse sich auf andere chaotische Netzwerke übertragen lassen. Hervorzuheben ist die sehr gute Übereinstimmung der Ergebnisse eines Bernoulli-Netzwerkes mit den Ergebnissen eines gleichartigen Netzwerkes gekoppelter Halbleiterlasergleichungen, sowie die Übereinstimmungen mit experimentellen Ergebnissen eines Systems von Halbleiterlasern. N2 - A network consisting of chaotic units can exhibit isochronal and complete synchronisation even if the signals need certain delay times from one unit to another. A common method to analyze the stability of such a synchronization is the master stability function by Pecora and Carroll. For a network of coupled iterative Bernoulli maps the master stability function reduces to the solution of polynoms with degree of the largest delay time. Therefore analyzing the stability means analyzing the roots of these polynomials concerning their value with respect to the unit circle. This can be done numerically by using the Schur-Cohn theorem, but analytic results are possible, as well. In this work Bernoulli networks with one or more time-delayed couplings and/or self-feedbacks are analyzed. Parts of the stability region which are independent of the value of the delay times have been found. Furthermore systems with large time delays have been analyzed. There is no stable chaos synchronization if the delay time is much larger than the internal time scale or the Lyapunov time, respectively. Stable synchronization can be excluded for certain systems with several delay times due to symmetry arguments concerning the ratios between the delay times. For example, a pair which is bidirectionally coupled with two delay times cannot exhibit stable chaos synchronization if these two delay times are in a ratio of relatively prime, odd numbers. Furthermore, chaos synchronization can be excluded for a bipartite network in which two large delay times differ by a small amount. Finally, a self consistent argument is presented which interprets chaos synchronization as a result of mixing signals of each unit in the network and which is supported by results of non-negative matrices concerning relatively prime cycles in a network. The results of the Bernoulli networks are tested on several chaotic networks. There is a very good agreement of the analytic results of Bernoulli networks with networks of coupled semiconductor laser equations as well as a very good agreement with real life experiments of semiconductor laser systems. KW - Chaos KW - Chaostheorie KW - Synchronisierung KW - Netzwerk KW - Chaos KW - Synchronization KW - Network Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65454 ER - TY - THES A1 - Cardoso Barato, Andre T1 - Nonequilibrium phase transitions and surface growth T1 - Nicht-Gleichgewicht Phasenübergänge und Wachstumsprozesse N2 - This thesis is concerned with the statistical physics of various systems far from thermal equilibrium, focusing on universal critical properties, scaling laws and the role of fluctuations. To this end we study several models which serve as paradigmatic examples, such as surface growth and non-equilibrium wetting as well as phase transitions into absorbing states. As a particular interesting example of a model with a non-conventional scaling behavior, we study a simplified model for pulsed laser deposition by rate equations and Monte Carlo simulations. We consider a set of equations, where islands are assumed to be point-like, as well as an improved one that takes the size of the islands into account. The first set of equations is solved exactly but its predictive power is restricted to the first few pulses. The improved set of equations is integrated numerically, is in excellent agreement with simulations, and fully accounts for the crossover from continuous to pulsed deposition. Moreover, we analyze the scaling of the nucleation density and show numerical results indicating that a previously observed logarithmic scaling does not apply. In order to understand the impact of boundaries on critical phenomena, we introduce particle models displaying a boundary-induced absorbing state phase transition. These are one-dimensional systems consisting of a single site (the boundary) where creation and annihilation of particles occur, while particles move diffusively in the bulk. We study different versions of these models and confirm that, except for one exactly solvable bosonic variant exhibiting a discontinuous transition with trivial exponents, all the others display a non-trivial behavior, with critical exponents differing from their mean-field values, representing a universality class. We show that these systems are related to a $(0+1)$-dimensional non-Markovian model, meaning that in nonequilibrium a phase transition can take place even in zero dimensions, if time long-range interactions are considered. We argue that these models constitute the simplest universality class of phase transition into an absorbing state, because the transition is induced by the dynamics of a single site. Moreover, this universality class has a simple field theory, corresponding to a zero dimensional limit of direct percolation with L{\'e}vy flights in time. Another boundary phenomena occurs if a nonequilibrium growing interface is exposed to a substrate, in this case a nonequilibrium wetting transition may take place. This transition can be studied through Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, is combined with a soft-wall potential. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, corresponding to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this thesis we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them. The entropy production for a Markov process with a nonequilibrium stationary state is expected to give a quantitative measure of the distance form equilibrium. In the final chapter of this thesis, we consider a Kardar-Parisi-Zhang interface and investigate how entropy production varies with the interface velocity and its dependence on the interface slope, which are quantities that characterize how far the stationary state of the interface is away from equilibrium. We obtain results in agreement with the idea that the entropy production gives a measure of the distance from equilibrium. Moreover we use the same model to study fluctuation relations. The fluctuation relation is a symmetry in the large deviation function associated to the probability of the variation of entropy during a fixed time interval. We argue that the entropy and height are similar quantities within the model we consider and we calculate the Legendre transform of the large deviation function associated to the height for small systems. We observe that there is no fluctuation relation for the height, nevertheless its large deviation function is still symmetric. N2 - Diese Dissertationsschrift befasst sich mit der statistischen Physik verschiedener Systeme fernab vom thermischen Gleichgewicht. Im Mittelpunkt stehen dabei die kritischen Eigenschaften, Skalierungsgesetze sowie die Rolle von Fluktuation. Dazu werden als paradigmatische Beispiele verschiedene Modellsysteme untersucht, unter anderem Wachstumsprozesse, Benetzungsphänomene fernab vom Gleichgewicht sowie Phasenübergänge in absorbierende Zustände. Als ein besonders interessantes Beispiel mit einem unkonventionellen Skalierungsverhalten wird zunächst ein Modell für gepulste Laserdeposition sowohl numerisch als auch mit Ratengleichungen untersucht. Wir betrachten dazu eine Approximation, das auf der Annahme punktförmiger Teilchen beruht, sowie ein verbessertes Gleichungssystem, das die Ausdehnung der deponierten Inseln mit berücksichtigt. Die numerisch integrierten Lösungen dieses verbesserten Systems stimmen mit den Simulationsresultaten hervorragend überein und reproduzieren ebenfalls den Crossover von kontinuierlicher zu gepulster Deposition. Darüber hinaus wird das Skalierungsverhalten der Nukleationsdichte im Detail untersucht und eine kürzlich eingeführte Hypothese logarithmischer Skalengesetze in Frage gestellt. Um den Einfluss von Randtermen auf kritische Phänomene unter Nichtgleichgewichtsbedingungen besser zu verstehen, wird ein Modell mit einem randinduzierten Phasenübergang eingeführt. Der Rand besteht aus hier einem einzigen Gitterplatz, an dem Teilchen erzeugt und vernichtet werden können, während die Teilchen im Innern des Systems lediglich diffundieren können. Es werden verschiedene Varianten dieses Modells untersucht, die mit Ausnahme einer bestimmten bosonischen Variante zu einer neuen Universalitätsklasse mit einem nichttrivialen kritischen Verhalten gehören. In der Arbeit wird gezeigt, dass diese Systeme effektiv auf ein 0+1-dimensionales Modell mit einer zeitlich nichtlokalen Dynamik reduziert werden können, dass also Phasenübergänge in nicht-Markovschen Nichtgleichgewichtssystemen sogar in 0 räumlichen Dimensionen, d.h. einem einzigen Punkt möglich sind. Es handelt sich wahrscheinlich um den einfachsten nichttrivialen Phasenübergang dieser Art, der formal dem nulldimensionalen Limes der sogenannten gerichteten Perkolation mit zeitlichen Levy-Flügen entspricht. Eine andere Art von Randeffekten tritt auf, wenn ein Wachstumsprozess fernab vom Gleichgewicht auf einem inerten Substrat stattfindet, wobei es zu einem Benetzungsphasenübergang kommen kann. Solche Systeme können anhand ihrer Langevin-Gleichung, z.B. der Kardar-Parisi-Zhang (KPZ)-Gleichung in einem geeigneten Potential, oder auf der Basis diskreter Wachstumsprozesse mit Deposition und Verdampfung von Teilchen auf einem Substrat untersucht werden. Benetzungsübergänge im thermischen Gleichgewicht stellen sich als Spezialfall heraus, der durch die Edwards-Wilkinson-Gleichung bzw. detaillierte Balance beschrieben wird. Die vorliegende Arbeit stellt analytische und numerische Methoden vor und demonstriert die reichhaltige Phänomenologie solcher Modelle. Das letzte Kapitel befasst sich mit der Rolle von Fluktuationen und der Entropieproduktion von Nichtgleichgewichtssystemen. Um zu überprüfen, ob sich die Entropieproduktion als ein Maß für den Abstand vom Gleichgewicht eignet, wird wiederum ein einfacher Wachstumsprozess untersucht, der diese Hypothese bestätigt. Das gleiche Modell wird benutzt, um verschiedene Fluktuationsrelationen zu testen, die auf Symmetrien in der Wahrscheinlichkeitsverteilung extremer Fluktionationen beruhen. Obwohl die Entropie und die Höhe der deponierten Schicht im stationären Zustand formal ähnliche Eigenschaften besitzen, gelingt es nicht, ein Fluktuationstheorem für die Höhenvariablen zu formulieren, obwohl die entsprechende Wahrscheinlichkeitsverteilung symmetrisch ist. Dies legt den Schluss nahe, dass Fluktuationstheoreme grundsätzlich nur auf der Basis von Wahrscheinlichkeitsströmen konstruiert werden können. KW - Nichtgleichgewichtsstatistik KW - Phasenumwandlung KW - Wachstumsprozess KW - Wachstum an Oberflächen KW - Statistische Mechanik KW - Skalierungsgesetz KW - Nonequilibrium Statistical Physics KW - Surface growth KW - Wetting KW - Phase transitions into absorbing states KW - Scaling KW - Fluctuations Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50122 ER - TY - THES A1 - Burkart, Thomas T1 - Der Einfluss des fundamentalen Massenverhältnisses auf die Teilchenbeschleunigung durch Plasmainstabilitäten T1 - The influence of the fundamental mass-ratio on particle acceleration by plasma instabilities N2 - Im Rahmen dieser Arbeit wurde ein dreidimensionaler vollrelativistischer und parallelisierter Particle-in-Cell Code geschrieben, ausführlich getestet und angewandt. Der Code ACRONYM ist variabel einsetzbar und von der Genauigkeit und Stabilität her State-of-the-Art und somit konkurrenzfähig zu den sonstigen in der Astrophysik eingesetzten Codes anderer Gruppen. Die Energie bleibt bis auf einen Fehler von < 0.03% erhalten, die Divergenz des Magnetfeldes bleibt immer unter einem Wert von 10^{-12} und die Skalierung wurde mittlerweile bis zu einem Clustergröße von einigen 10000 CPUs getestet. In dieser Arbeit wurde dann, nach der Entwicklung des Codes, der Einfluss des fundamentalen Massenverhältnisses m_p/m_e auf die Teilchenbeschleunigung durch Plasmainstabilitäten untersucht. Dies ist relevant und wichtig, da in PiC-Simulationen in den allermeisten Fällen nicht mit dem realen Massenverhältnis gerechnet wird, da sonst viel zu viel Rechenleistung benötigt würde, um zu sehen, was mit den Protonen geschieht und was ihr Einfluss auf die leichten Teilchen wie Elektronen und Positronen ist. Zu diesem Zweck wurden Simulationen mit Massenverhältnissen zwischen m_p/m_e = 1.0 und 200.0 durchgeführt. Diese haben alle gemeinsam, dass periodische Randbedingungen verwendet wurden und das zur Verfügung stehende Simulationsgebiet mit jeweils zwei gegeneinander strömenden Plasmapopulationen vollständig gefüllt wurde, um jegliche Art von auftretenden Schocks auszuschließen. Die Rohdaten der einzelnen Simulationen wurden auf vielfältige Art und Weise analysiert, es wurden z.B. Schnitte durch die Teilchenverteilung erstellt, sowie ein- oder zweidimensionale Histogramme und Energieverläufe betrachtet. Dabei haben sich folgende Kernpunkte ergeben: Für Massenverhältnisse bis etwa m_p/m_e = 20 bildet sich die gesamte Zweistrom-Instabilität in nur einer Phase aus, das heißt, es bilden sich von ringförmigen Magnetfeldern umgebene Flussschläuche aus, die dann verschmelzen, bis nur noch zwei übrig sind und alle Teilchen werden über den gesamten Verlauf der Instabilität beschleunigt. Es ist damit zu folgern, dass die unterschiedlich schweren Teilchenspezies Protonen und Elektronen/Positronen durch die relativ nahe beieinander liegenden Massen noch so stark gekoppelt sind, dass sich nur eine Instabilität entwickeln kann. Bei großen Massenverhältnissen (m_p/m_e > 20) ist eine deutliche Trennung in zwei Phasen der Instabilität zu erkennen. Zuerst bilden sich wiederum Flussschläuche aus, diese verschmelzen miteinander (zu zweien oder mehr), bevor der erste Teil der Instabilität abflaut. Anschließend entstehen wieder ringförmige Magnetfelder und Flussschläuche, von denen einer meist deutlich stärker ist als all die anderen, das bedeutet, dass dieser von stärkeren Magnetfeldern umgeben ist und eine höhere Teilchendichte aufweist. Im Rahmen dieser zweigeteilten Instabilität werden die Elektronen und Positronen nur in der ersten Phase signifikant beschleunigt, die deutlich schwereren Protonen gewinnen über den gesamten Zeitraum Energie. Die höchstenergetischen Teilchen erreichen im Ruhesystem der jeweiligen Plasmapopulation Werte um gamma = 250. Man kann daraus für zukünftige Untersuchungen mit Hilfe von Particle-in-Cell Codes den Schluss ziehen, dass Rückschlüsse auf das tatsächliche Verhalten beim realen Massenverhältnis von m_p/m_e = 1836.2 nur aus den Simulationen mit m_p/m_e >> 20 gezogen werden können, da die starke Kopplung der leichten und schweren Teilchen bei kleineren Massenverhältnissen die Ergebnisse sehr stark beeinflusst. Es wurde anhand der gemessenen Zeitpunkte der Instabilitätsmaxima eine Extrapolation durchgeführt, die zeigt, dass die Instabilität beim realen Massenverhältnis etwa bei t = 1400 omega_{pe}^{-1} auftreten würde. Um dies wirklich zu simulieren müsste allerdings mehr als die 1000-fache Anzahl an CPU-Stunden aufgewandt werden. Des weiteren wurde eine Maxwell-Jüttner-Verteilung an die Teilchenverteilungen der einzelnen Simulationen auf dem Höhepunkt der Instabilität gefittet, um sowohl die neue Temperatur des Plasmas als auch die Beschleunigungseffizienz des Prozesses zu berechnen. Die Temperatur erhöht sich demnach durch die Instabilität von etwa 10^8K auf 10^{10} bis 10^{11}K, der Anteil suprathermischer Teilchen beträgt 2 bis 4%. N2 - In this thesis a three-dimensional, fully relativistic and parallelised Particle-in-Cell Code was developed, tested and used for astrophysical purposes. The Code ACRONYM can be used for a variety of different scenarios, it is state-of-the-art in matters of stability and accuracy. After the development the code was used to investigate the influence of the fundamental mass ratio m_p/m_e on particle acceleration by plasma instabilities. This is important, because usually in PiC-simulations the mass ratio used isn't the real one m_p/m_e = 1836.2, because this would take too much CPU-time in order to see what happens to the protons and what is their influence on the lighter particles like electrons and positrons. For this purpose simulations with mass ratios between 1.0 and 200.0 have been performed. They all have in common that periodic boundary conditions were used and that the whole computational domain has been filled with particles that are counterstreaming along the z-direction with gamma approximately 10 each in order to exclude any development of shocks. The resulting main issues are the following: For mass ratios below m_p/m_e approximately 20 the whole instability develops in only one phase, i.e. current filaments surrounded by circular magnetic fields develop and merge together. All particles are accelerated over the whole run, so one can conclude that the different species are still strongly coupled because of the very similar masses of electrons/positrons and the protons and therefore only one instability can arise. For higher mass ratios a distinctive separation of the instability in two phases is observable. First some flux tubes develop and merge until the first phase is over. Afterwards new magnetic fields and flux tubes are arising, where one of them usually is particularly strong compared to the others, i.e. it is surrounded by stronger magnetic fields and holds a much higher particle density. In the context of this split instability, the electrons and positrons are getting accelerated significantly only in the first phase, the much heavier protons gain energy over the whole time. One can therefore conclude for future investigations with PiC codes that informations about the behaviour at the realistic mass ratio of m_p/m_e = 1836.2 can only be gained from the simulations with m_p/m_e >> 20 because of the strong coupling of the light and heavy particles at low mass ratios. An extrapolation to the real mass ratio shows that the peak of the instability would occur approximately seven times later than the runtime of the longest simulation at about t = 1400 omega_{pe}^{-1}, but in order to realize this, at least 1000 times the now used CPU-hours would be necessary. Furthermore the acceleration efficiency for this process was calculated by fitting a Maxwell-Jüttner-Distribution to the particle distribution from the simulations during the peak of the instabilities. The calculated fraction of superthermal particles is in the range of 2 to 4% and the temperatures of the plasma streams rise from 10^8 at the beginning of the simulations to values around 10^10 to 10^11K. KW - Astrophysik KW - Plasmaschwingung KW - Teilchenbeschleunigung KW - Numerisches Modell KW - Particle-in-Cell Code KW - Energiereiches Teilchen KW - Instabilität KW - Plasma KW - Plasmaaufheizung KW - Teilchenbewegung KW - Particle-in-Cell Code Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56636 ER - TY - THES A1 - Rüger, Michael T1 - Ein zeitabhängiges, selbstkonsistentes hadronisch-leptonisches Strahlungsmodell zur Modellierung der Multiwellenlängenemission von Blazaren T1 - A time-dependent, selfconsistent hadronic-leptonic emission modell for the multiwavelength emission of blazars N2 - Diese Arbeit beschäftigt sich mit Strahlungsprozessen in Blazaren. Bei den Blazaren handelt es sich um eine Unterkategorie der aktiven Galaxienkerne, bei denen die Jetachse in Richtung des Beobachters zeigt. Charakteristisch für die Blazare ist ein Multifrequenzspektrum der Photonen, welches sich vom Radiobereich bis hin zur Gamma-Strahlung mit TeV-Energien erstreckt. Insbesondere der Gamma-Bereich rückt aktuell in den Fokus der Betrachtung mit Experimenten wie zum Beispiel FERMI und MAGIC. Ziel dieser Arbeit ist die Modellierung der auftretenden Strahlungsprozesse und die Beschreibung der Multifrequenzspektren der Blazare mit Hilfe eines hadronisch-leptonischen Modells. Grundlage hierfür ist ein selbstkonsistentes Synchrotron-Selbst-Compton-Modell (SSC), welches zur Beschreibung des Spektrums der Quelle 1 ES 1218+30.4 verwendet wird. Dabei wird die Parameterwahl unterstützt durch eine Abschätzung der Masse des zentralen schwarzen Loches. Das hier behandelte SSC-Modell wird dahingehend untersucht, wie es sich unter Veränderung der Modellparameter verhält. Dabei werden Abhängigkeiten des Photonenspektrums von Änderungsfaktoren der Parameter abgeleitet. Außerdem werden diese Abhängigkeiten in Relation gesetzt und aus dieser Betrachtung ergibt sich die Schlussfolgerung, dass unter der Voraussetzung eines festen Spektralindex der Elektronenverteilung die Wahl eines Parametersatzes zur Modellierung eines Photonenspektrums eindeutig ist. Zur Einführung eines zeitabhängigen, hadronischen Modells wird das SSCModell um die Anwesenheit nichtthermischer Protonen erweitert. Dadurch kann Proton-Synchrotron-Strahlung einen Beitrag im Gamma-Bereich leisten. Außerdem werden durch Proton-Photon-Wechselwirkung Pionen erzeugt. Aus deren Zerfall werden zusammen mit der Paarbildung aus Photon-Photon-Absorption sekundäre Elektronen und Positronen produziert, die wiederum zum Hochenergiespektrum beitragen. Neben den Pionen werden bei der Proton-Photon- Wechselwirkung außerdem noch Neutrinos und Neutronen erzeugt, die einen direkten Einblick in die Emissionsregion erlauben. Das hier vorgestellte hadronische Modell wird auf die Quelle 3C 279 angewandt. Für diese Quelle reicht mit der Detektion im VHE-Bereich der SSCAnsatz nicht aus, um das Photonenspektrum zu beschreiben. Mit dem vorgelegten Modell gelingt die Beschreibung des Spektrums in den SSC-kritischen Bereichen sehr gut. Insbesondere können verschiedene Flusszustände modelliert und allein durch Veränderung der Maximalenergien von Protonen und Elektronen ineinander überführt werden. Diese einfache Möglichkeit der Modellierung der Variabilität der Quelle unterstreicht die Wahl des hadronischen Ansatzes. Somit wird hier ein sehr gutes Werkzeug zur Untersuchung der Emissionsprozesse in Blazaren geliefert. Darüber hinaus ist mit der Abschätzung des Neutrino-Flusses zwar die Detektion von 3C 279 als Punktquelle mit IceCube unwahrscheinlich, jedoch liefert das Modell generell die Möglichkeit im Kontext des Multimessenger-Ansatzes Antworten zu liefern. Im gleichen Kontext wird auch der Beitrag zur kosmischen Strahlung durch entweichende Neutronen untersucht. N2 - This doctoral thesis discusses the radiative processes of blazars. Blazars are a subcategory of active galactic nuclei, where the jet axis points towards the observer. The typical spectrum of blazars ranges from radio frequencies up to the gamma ray regime at TeV energy. Current experiments like FERMI or MAGIC focus on the observation of gamma rays. Aim of this thesis is the modelling of the radiative processes and the description of the photon spectra of blazars using a lepto-hadronic emission model. It is based on a synchrotron self Compton model (SSC), which is applied to the source 1 ES 1218+30.4. The choice of parameters is supported by an estimation of the mass of the central black hole. It is shown how the SSC model reacts on the variation of the model parameters. The dependencies of the spectrum on the changing factors of the parameters are derived. The examination of these factors leads to the conclusion, that for a fixed spectral index of the electron distribution a particular choice of parameters to model the photon spectrum is unique. To introduce a time-dependent hadronic model the SSC model is extended by the presence of non-thermal protons, which leads to proton synchrotron radiation and proton photon interaction producing pions. Pion decay cascades together with pair creation due to photon photon absorption produce secondary electrons and positrons, which contribute to the high energy spectrum. In addition to that proton photon interaction creates neutrons and neutrinos, which provide a direct insight into the emission region. The presented hadronic model is applied to the source 3C 279. This blazar cannot be modelled by the one-zone SSC approach. The hadronic model solves the problems of the SSC model regarding this source. Different flux states are described by only changing the maximum energies of protons and electrons. This simple approach stresses the choice of the hadronic model to consider 3C 279. With this results we have a powerful tool for the examination of emission processes in blazars. With the estimated neutrino flux no detection as point source by IceCube is expected. However, in general it is possible to deliver answers with this model to the multi-messenger approach. In the same context the contribution of outgoing neutrons to cosmic rays is considered. KW - Blazar KW - Strahlung KW - Mathematisches Modell KW - Aktive Galaxienkerne Blazare KW - Aktiver galaktischer Kern KW - AGN KW - blazar Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56955 ER - TY - THES A1 - Lang, Thomas C. T1 - Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures T1 - Quanten Monte Carlo Methoden und stark korrelierte Elektronen auf hexagonalen Strukturen N2 - In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases as correlations increase with decreasing N and determine whether the quantum spin liquid found in the SU(2) Hubbard model at intermediate coupling is a specific feature, or also exists in the unconstrained t-J model and higher symmetries. N2 - Wir untersuchen mit Hilfe von neu entwickelten sowie technisch ausgereiften Quanten-Monte-Carlo Methoden Modelle stark korrelierter Elektronen auf hexagonalen Gittern. Letztere zeichnen sich durch die einzigartigen Eigenschaften der auf ihnen simulierten Elektronen aus, wie zum Beispiel deren relativistische Dispersionsrelation, die starken Quantenfluktuationen und deren Beständigkeit gegenüber Instabilitäten. Diese Arbeit umfasst mehrere Projekte, einschließlich der Erweiterung des weak-coupling continuous time Quanten-Monte-Carlo Verfahrens und dessen Anwendung auf Phononen-Systeme und den Null-Temperatur Grundzustand, der Studie eines Quanten-Phasenübergangs in einem Kristall mit dominanter Valenzbindung in einem Spin-1/2 Heisenberg model mit vier-Spin Wechselwirkung, und der Untersuchung eines gekippten Antiferromagneten im Hubbard Model, induziert durch ein externes Magnetfeld. Die Schwerpunkte dieser Arbeit liegen bei zwei Studien der Phasendiagramme des SU(2) und SU(N)-symmetrischen Hubbard Models auf dem hexagonalen Gitter. Bei niedrigen Temperaturen haben Elektronen in Festkörpern die Tendenz, Ordnung zu entwickeln. Eine Ausnahme sind Quanten Spinflüssigkeiten, in denen Fluktuationen Ordnung selbst bei niedrigsten Temperaturen verhindern. Bislang war es nahezu unmöglich, diese in experimentell realistischen mikroskopischen Modellen zu finden und zu simulieren. In aufwändigen Quanten-Monte-Carlo Simulationen des SU(2) Hubbard Models konnten wir das Auftreten einer solchen Quanten Spinflüssigkeit zeigen, welche die Phasen der masselosen Dirac-Fermionen und eines antiferromagnetischem Isolators trennt. Dieser unerwartete, ungeordnete Quantenzustand weist kurzreichweitige Korrleationen ähnlich einer Resonanz-Valenzbond-Flüssigkeit auf, welche in Zusammenhang mit Hochtemperatur-Spuraleitung steht. Motiviert durch die reichhaltigen Phasendiagramme von SU(N)-symmetrischen Modellen, untersuchen wir mit Hilfe von Quanten-Monte Carlo-Simulationen den SU(N)-Hubbard-Heisenberg-Antiferromagneten auf dem hexagonalen Gitter in Bezug auf die Verlässlichkeit von 1/N Korrekturen von Molekularfeldnäherungen. Wir untersuchen das Schmelzen von Phasen als Funktion von abnehmendem N und bestimmen, ob die im SU(2)-Hubbard-Model gefundene Quanten-Spinflüssigkeit eine spezielle Eigenschaft dieses Modells ist, oder ob diese auch im erweiterten t-J Modell bei höheren Symmetrien gefunden werden kann. KW - Monte-Carlo-Simulation KW - Niederdimensionaler Festkörper KW - Hexagonaler Kristall KW - Elektronenstruktur KW - Starke Kopplung KW - Monte Carlo KW - Markov-Ketten-Monte-Carlo-Verfahren KW - Theoretische Physik KW - Niederdimensionaler Festkörper KW - Festkörpertheorie KW - Quantum Monte Carlo KW - Condensed matter theory Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53506 ER - TY - THES A1 - Höhne-Mönch, Daniel T1 - Steady-state emission of blazars at very high energies T1 - Der Stationäre Zustand von Blazaren bei sehr hohen Energien N2 - One key scientific program of the MAGIC telescope project is the discovery and detection of blazars. They constitute the most prominent extragalactic source class in the very high energy (VHE) Gamma-ray regime with 29 out of 34 known objects (as of April 2010). Therefore a major part of the available observation time was spent in the last years on high-frequency peaked blazars. The selection criteria were chosen to increase the detection probability. As the X-ray flux is believed to be correlated to the VHE Gamma-ray flux, only X-ray selected sources with a flux F(X) > 2 μJy at 1 keV were considered. To avoid strong attenuation of the Gamma-rays in the extragalactic infrared background, the redshift was restricted to values between z < 0.15 and z < 0.4, depending on the declination of the objects. The latter determines the zenith distance during culmination which should not exceed 30° (for z < 0.4) and 45° (for z < 0.15), respectively. Between August 2005 and April 2009, a sample of 24 X-ray selected high-frequency peaked blazars has been observed with the MAGIC telescope. Three of them were detected including 1ES 1218+304 being the first high-frequency peaked BL Lacertae object (HBL) to be discovered with MAGIC in VHE Gamma-rays. One previously detected object was not confirmed as VHE emitter in this campaign by MAGIC. A set of 20 blazars previously not detected will be treated more closely in this work. In this campaign, during almost four years ~ 450 hrs or ~ 22% of the available observation time for extragalactic objects were dedicated to investigate the baseline emission of blazars and their broadband spectral properties in this emission state. For the sample of 20 objects in a redshift range of 0.018 < z < 0.361 integral flux upper limits in the VHE range on the 99.7% confidence level (corresponding to 3 standard deviations) were calculated resulting in values between 2.9% and 14.7% of the integral flux of the Crab Nebula. As the distribution of significances of the individual objects shows a clear shift to positive values, a stacking method was applied to the sample. For the whole set of 20 objects, an excess of Gamma-rays was found with a significance of 4.5 standard deviations in 349.5 hours of effective exposure time. For the first time a signal stacking in the VHE regime turned out to be successful. The measured integral flux from the cumulative signal corresponds to 1.4% of the Crab Nebula flux above 150 GeV with a spectral index α = −3.15±0.57. None of the objects showed any significant variability during the observation time and therefore the detected signal can be interpreted as the baseline emission of these objects. For the individual objects lower limits on the broad-band spectral indices αX−Gamma between the X-ray range at 1 keV and the VHE Gamma-ray regime at 200 GeV were calculated. The majority of objects show a spectral behaviour as expected from the source class of HBLs: The energy output in the VHE regime is in general lower than in X-rays. For the stacked blazar sample the broad-band spectral index was calculated to αX−Gamma = 1.09, confirming the result found for the individual objects. Another evidence for the revelation of the baseline emission is the broad-band spectral energy distribution (SED) comprising archival as well as contemporaneous multi-wavelength data from the radio to the VHE band. The SEDs of known VHE Gamma-ray sources in low flux states matches well the SED of the stacked blazar sample. N2 - Eines der wissenschaftlichen Schlüsselprogramme des MAGIC Projektes ist die Entdeckung und Detektion von Blazaren. Diese stellen mit 29 von 34 bekannten Objekten die prominenteste extragalaktische Quellklasse im Bereich der sehr hochenergetischen (engl. very high energy, VHE) Gamma-Strahlung dar. Deshalb wurde in den letzten Jahren ein Großteil der verfügbaren Beobachtungszeit sogenannten Blazaren mit hochfrequenten Peaks (engl. high-frequency peaked) gewidmet. Die Auswahlkriterien dafür wurden entsprechend gewählt, um die Detektionswahrscheinlichkeit zu erhöhen. Da man glaubt, dass der Röntgenfluss mit dem VHE Gamma-Fluss korreliert, wurden nur röntgenselektierte Quellen mit einem Fluss F(X) > 2 μJy bei 1 keV betrachtet. Um eine starke Abschwächung der Gamma-Strahlung innerhalb des extragalaktischen Infrarot-Hintergrundes zu vermeiden, wurde die Rotverschiebung auf Werte zwischen z < 0,15 und z < 0,4 begrenzt, abhängig von der Deklination der Objekte. Diese bestimmt die Zenitdistanz während der Kulmination, der 30° (für z < 0,15) bzw. 45° (für z < 0,4) nicht übersteigen sollte. Zwischen August 2005 und April 2009 wurde ein Sample aus 24 röntgenselektierten high-frequency peaked Blazaren mit dem MAGIC Teleskop beobachtet. Drei davon wurden detektiert, einschließlich 1ES 1218+304, der erste HBL (engl. von high-frequency peaked BL Lacertae object), der mit MAGIC im VHE Gamma-Bereich entdeckt wurde. Ein früher entdecktes Objekt konnte in dieser Kampagne nicht von MAGIC als VHE Emitter bestätigt werden. Ein Set aus 20 im Vorfeld nicht detektierten Blazaren wird in dieser Arbeit genauer betrachtet. Während fast vier Jahren wurden in dieser Kampagne ~ 450 h oder ~ 22% der verfügbaren Beobachtungszeit für extragalaktische Objekte der Untersuchung der Grundzustandsemission von Blazaren und deren breitbandspektralen Eigenschaften in diesem Zustand gewidmet. Für das Sample aus 20 Objekten in einem Rotverschiebungsbereich 0.018 < z < 0.361 wurden integrale Flussobergrenzen im VHE Bereich auf Basis eines 99,7% Konfidenzlevels (entsprechend 3 Standardabweichungen) berechnet. Damit liegen die Obergrenzen zwischen 2,9% und 14,7% des integralen Flusses des Krebsnebels. Da die Verteilung der Signifikanzen der einzelnen Objekte eine klare positive Verschiebung aufweist, wurde eine Stacking-Methode auf das Sample angewandt. Für das gesamte Set aus 20 Objekten konnte ein Gamma-Strahlungsexzess mit einer Signifikanz von 4,5 Standardabweichungen bei einer effektiven Beobachtungszeit von 349,5 h gefunden werden. Zum ersten Mal war ein Signal-Stacking im VHE Bereich erfolgreich. Der gemessene integrale Fluss des kumulativen Signals entspricht 1,4% des Flusses des Krebsnebels oberhalb einer Energie von 150 GeV mit einem Spektralindex α = −3,15 ± 0,57. Keines der Objekte zeigte Anzeichen für Variabilität während der Beobachtungszeit und daher kann das detektierte Signal als die Grundzustandsemission dieser Objekte angesehen werden. Für die einzelnen Objekte wurden untere Grenzen für die Breitband-Spektralindizes X−Gamma zwischen dem Röntgenbereich bei 1 keV und dem VHE Gamma-Bereich bei 200GeV berechnet. Die Mehrheit der Objekte zeigt ein spektrales Verhalten, wie es für die Klasse der HBLs erwartet wird: Der Energieausstoß im VHE Gamma-Bereich is im allgemeinen niedriger als im Röntgenbereich. Für das mit dem Stacking betrachtete Blazar-Sample wurde der Breitband-Spektralindex zu αX−Gamma = 1,09 berechnet, was die Ergebnisse für die einzelnen Objekte bestätigt. Ein weiterer Hinweis für die Aufdeckung der Grundzustandsemission ist die breitband-spektrale Energieverteilung (engl. spectral energy distribution, SED), die Archiv- wie auch kontemporäre Multiwellenlängendaten vom Radio- bis in den VHE Gamma-Bereich enthält. Die SEDs bekannter VHE Gamma-Quellen in niedrigen Flusszuständen stimmt gut mit der SED aus dem Stacking des Blazar-Samples überein. KW - MAGIC-Teleskop KW - Blazar KW - Gammaastronomie KW - Astrophysik KW - astrophysics KW - MAGIC telescope KW - blazar Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53700 ER - TY - THES A1 - Staub, Florian T1 - Considerations on supersymmetric Dark Matter beyond the MSSM T1 - Supersymmetrische Dunkle Materie in Erweiterungen des MSSM N2 - The standard model (SM) of particle physics is for the last three decades a very successful description of the properties and interactions of all known elementary particles. Currently, it is again probed with the first collisions at the Large Hadron Collider (LHC). It is widely expected that new physics will be detected at the LHC and the SM has to be extended. The most exhaustive analyzed extension of the SM is supersymmetry (SUSY). SUSY can not only solve intrinsic problems of the SM like the hierarchy problem, but it also postulates new particles which might explain the nature of dark matter in the universe. The majority of all studies about dark matter in the framework of SUSY has focused on the minimal supersymmetric standard model (MSSM). The aim of this work is to consider scenarios beyond that scope. We consider two models which explain not only dark matter but also neutrino masses: the gravitino as dark matter in gauge mediated SUSY breaking (GMSB) with bilinear broken $R$-parity as well as different seesaw scenarios with the neutralino as dark matter candidate. Furthermore, we also study the next-to-minimal supersymmetric standard model (NMSSM) which solves the \(\mu\)-problem of the MSSM and discuss the properties of the neutralino as dark matter candidate. In case of $R$-parity violation, light gravitinos are often the only remaining candidate for dark matter in SUSY because of their very long life time. We reconsider the cosmological gravitino problem arising for this kind of models. It will be shown that the proposed solution for the overclosure of the universe by light gravitinos, namely the entropy production by decays of GMSB messenger, just works in a small subset of models and in fine-tuned regions of the parameter space. This is a consequence of two effects so far overlooked: the enhanced decay channels in massive vector bosons and the impact of charged messenger particles. Both aspects cause an interplay between different cosmological restrictions which lead to strong constraints on the parameters of GMSB models. Afterwards, a minimal supergravity (mSugra) scenario with additional chiral superfields at high energy scales is considered. These fields are arranged in complete $SU(5)$ multiplets in order to maintain gauge unification. The new fields generate a dimension 5 operator to explain neutrino data. Furthermore, they cause large differences in mass spectrum of MSSM fields because of the different evaluation of the renormalization group equations what changes also the properties of the lightest neutralino as dark matter candidate. We discuss the parameter space of all three possible seesaw scenarios with respect to dark matter and the impact on rare lepton flavor violating processes. As we will see, especially in seesaw type~III but also in type~II the mass spectrum and regions of parameter space consistent with dark matter differ significantly in comparison to a common mSugra scenario. Moreover, the experimental bounds, in particular of branching ratios like \(l_i \rightarrow l_j \gamma\), cause large constraints on the seesaw parameters. N2 - Das Standardmodell der Teilchenphysik ist seit drei Jahrzehnten eine überaus erfolgreiche \linebreak Beschreibung der Eigenschaften und Wechselwirkungen der bekannten Elementarteilchen. Derzeit wird es durch die ersten Kollisionen des Large Hadron Colliders (LHC) erneut auf die Probe gestellt. Es wird weitläufig erwartet, dass am LHC neue Physik entdeckt wird und somit das \linebreak Standardmodell erweitert werden muss. Die am meisten untersuchte Erweiterung des\linebreak Standardmodells ist Supersymmetrie (SUSY). In SUSY können nicht nur intrinsische Probleme des Standardmodells wie das Hierarchieproblem gelöst werden, sondern es werden auch Teilchen postuliert, welche die gemessene Dunkle Materie im Universum erklären können. Der Gro{\ss}teil der bisherigen Studien über Dunkle Materie in SUSY hat sich hierbei auf die minimale supersymmetrische Erweiterung des Standardmodells, das MSSM, beschränkt. Das Ziel dieser Arbeit ist es, Szenarien zu betrachten, die darüber hinaus gehen. Hierbei handelt es sich um zwei Modelle, mit denen auch Neutrinomassen erklärt werden können: Das Gravitino als Dunkle Materie im Rahmen von Gauge Mediated SUSY Breaking (GMSB) mit $R$-Paritätsverletzung sowie Seesaw-Modelle mit einem Neutralino als leichtestem SUSY Teilchen. Weiterhin betrachten wir das "Next-to-Minimal Supersymmetric Standard Model" (NMSSM), welches das \(\mu\)-Problem des MSSM löst, und diskutieren dort das leichteste Neutralino als Dunkle Materie Kandidaten. \\ Im Rahmen von leichten Gravitinos als Dunkle Materie wird das kosmologische Gravitino Problem betrachtet. Es wird gezeigt, dass die in der Literatur vorgeschlagene Lösung gegen die Überbevölkerung des Universums durch solche Gravitinos, nämlich die Entropieproduktion durch Zerfälle der GMSB-Messenger, nur in ausgewählten Modellen und kleinen Regionen des Parameterraums funktioniert. Die Ursache hierfür sind zwei Faktoren, die bislang außer Acht gelassen wurden: Mögliche Zerfälle der neutralen Messenger in massive Vektorbosonen sowie der Einfluss geladener Messenger. Beide Aspekte bewirken zusammen ein Wechselspiel von verschiedenen, kosmologischen Randbedingungen, welches zu starken Bedingungen an die zu Grunde liegenden Parameter führt.\\ Als nächstes werden Modelle im Rahmen minimaler Supergravitation (mSugra) untersucht, welche bei sehr hohen Energien über zusätzliche chirale Superfelder verfügen. Diese zusätzlichen Teilchen sind in kompletten $SU(5)$ Multiplets angeordnet, um Eichvereinheitlichung nicht zu gefährden. Die neuen Teilchen erzeugen durch den so genannten Seesaw-Mechanismus einen Dimension~5 Operator, welcher Neutrinodaten erklären kann. Darüber hinaus erzeugen sie aber durch das geänderte Laufen der Renormierungsgruppengleichungen Unterschiede im Massenspektrum der SUSY Teilchen, was natürlich auch die Eigenschaften des Neutralinos als Dunkle Materie Kandidaten verändert. Wir diskutieren den Parameterraum aller drei möglichen Seesaw-Szenarien im Hinblick auf Dunkle Materie sowie die Auswirkungen auf Leptonflavor verletzende Prozesse. Wir werden sehen, dass insbesondere in Typ~III aber auch in Typ~II sowohl große Unterschiede im Massenspektrum als auch in den Parameterbereichen, welche konsistent mit Dunkler Materie sind, im Vergleich zu einem gewöhnlichen mSugra-Szenario bestehen. Darüber hinaus führen vor allem die oberen, experimentellen Schranken der Verzweigungsverhältnisse von \(l_i \rightarrow l_j \gamma\) zu starken Bedingungen an die zu Grunde liegenden Seesaw-Parameter. \\ Abschließend wird das Neutralino im Rahmen des NMSSM untersucht. In dieser Erweiterung des MSSM ist zwar das Neutralino immer noch der beste Kandidat für Dunkle Materie, kann sich jedoch auf Grund der Anteile eines Eichsinglets sehr unterschiedlich im Vergleich zum MSSM verhalten. Wir zeigen nicht nur die Unterschiede zum MSSM auf, sondern berechnen auch die Dichte Dunkler Materie im NMSSM mit der gleichen Präzision wie im MSSM. Für diesen Zweck ist es notwendig, eine komplette Einschleifenrenormierung des elektroschwachen Sektors des NMSSM durchzuführen. Es wird sich zeigen, dass insbesondere die Strahlungskorrekturen zu den Massen der Staus große Auswirkung auf die Neutralinodichte in der Koannihilationsregion haben. Weiterhin ist der so genannte Higgs-Funnel, also Bereiche im Parameterraum, in denen die Masse eines Higgs Bosons in etwa der zweifachen Masse des leichtesten Neutralinos entspricht, sehr sensitiv auf die Ein- und Zweischleifenkorrekturen im pseudoskalaren Sektor. \\ Im Rahmen dieser Projekte wurde ein Mathematica Package namens SARAH entwickelt, um supersymmetrische Modelle schnell, effektiv und mit sehr hoher Präzision untersuchen zu können. SARAH berechnet für ein gegebenes Modell alle analytischen Ausdrücke für die Massen, Wechselwirkungen, Selbstenergien auf Einschleifenniveau sowie Renormierungsgruppengleichungen auf Ein- und Zweischleifenniveau. Eine große Bandbreite von SUSY Modellen kann analysiert und auch von dem Benutzer intuitiv verändert werden. Die berechneten Ausdrücke können dazu benutzt werden, um neue Modelle in Programme zum diagrammatischen Berechnen von Prozessen (FeynArts/FormCalc bzw. CalcHep/CompHep) zu implementieren oder das gesamte Spektrum und alle Parameter des neuen SUSY Modells mit Hilfe von \SPheno berechnen zu lassen. Die sich durch SARAH bietenden Möglichkeiten gehen hierbei über reine Studien zur Dunkle Materie weit hinaus. KW - Supersymmetrie KW - Dunkle Materie KW - Supersymmetry KW - Dark Matter Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55343 ER - TY - THES A1 - Martin, Lee C. T1 - The Kondo Lattice Model: a Dynamical Cluster Approximation Approach N2 - We apply an antiferromagnetic symmetry breaking implementation of the dynamical cluster approximation (DCA) to investigate the two-dimensional hole-doped Kondo lattice model (KLM) with hopping $t$ and coupling $J$. The DCA is an approximation at the level of the self-energy. Short range correlations on a small cluster, which is self-consistently embedded in the remaining bath electrons of the system, are handled exactly whereas longer ranged spacial correlations are incorporated on a mean-field level. The dynamics of the system, however, are retained in full. The strong temporal nature of correlations in the KLM make the model particularly suitable to investigation with the DCA. Our precise DCA calculations of single particle spectral functions compare well with exact lattice QMC results at the particle-hole symmetric point. However, our DCA version, combined with a QMC cluster solver, also allows simulations away from particle-hole symmetry and has enabled us to map out the magnetic phase diagram of the model as a function of doping and coupling $J/t$. At half-filling, our results show that the linear behaviour of the quasi-particle gap at small values of $J/t$ is a direct consequence of particle-hole symmetry, which leads to nesting of the Fermi surface. Breaking the symmetry, by inclusion of a diagonal hopping term, results in a greatly reduced gap which appears to follow a Kondo scale. Upon doping, the magnetic phase observed at half-filling survives and ultimately gives way to a paramagnetic phase. Across this magnetic order-disorder transition, we track the topology of the Fermi surface. The phase diagram is composed of three distinct regions: Paramagnetic with {\it large} Fermi surface, in which the magnetic moments are included in the Luttinger sum rule, lightly antiferromagnetic with large Fermi surface topology, and strongly antiferromagnetic with {\it small} Fermi surface, where the magnetic moments drop out of the Luttinger volume. We draw on a mean-field Hamiltonian with order parameters for both magnetisation and Kondo screening as a tool for interpretation of our DCA results. Initial results for fixed coupling and doping but varying temperature are also presented, where the aim is look for signals of the energy scales in the system: the Kondo temperature $T_{K}$ for initial Kondo screening of the magnetic moments, the Neel temperature $T_{N}$ for antiferromagnetic ordering, a possible $T^{*}$ at which a reordering of the Fermi surface is observed, and finally, the formation of the coherent heavy fermion state at $T_{coh}$. N2 - Wir setzen eine Implementierung der dynamischen Cluster Näherung (DCA) mit gebrochener Symmetrie ein um das zweidimensionale lochdotierte Kondo Gitter Model (KLM) mit dem Hüpfmatrixelement $t$ und der Kopplung $J$ zu untersuchen. Die DCA beruht auf einer Näherung der Selbstenergie. Kurzreichweitige Korrelationen auf einem kleinen Cluster, der selbstkonsistent in ein Bad der übrigen Systemelektronen eingebettet ist, werden exakt behandelt, während langreichweitige Korrelationen auf Mean-Field Basis berücksichtigt werden. Dabei wird jedoch die Dynamik des Systems voll beibehalten. Auf Grund starker dynamischer Korrelationen zeigt sich das KLM als besonders geeignet für Untersuchungen im Rahmen der DCA. Präzise Berechnungen der Einteilchen Spektralfunktion geben gute Übereinstimmung mit exakten Gitter-QMC Resultaten am Teilchen-Loch symmetrischen Punkt. Unsere DCA Version, kombiniert mit einem QMC Cluster Solver, erlaubt es, Simulationen fern vom Teilchen-Loch symmetrischen Punkt durchzuführen und hat es uns ermöglicht das magnetische Phasendiagram des Models als Funktion der Dotierung und der Kopplung $J/t$ abzutasten. Bei halber Füllung zeigen unsere Resultate, dass das lineare Verhalten der Quasiteilchenlücke bei kleinem $J/t$ direkt aus der vorliegenden Teilchen-Loch Symmetrie, die ihrerseits zu Nesting führt, hervorgeht. Brechung dieser Symmetrie durch das Einführen eines diagonalen Hüpfmatrixelements, hat eine an die Kondo Skala gekoppelte, stark reduzierte Quasiteilchenlücke zur Folge. Im dotiertem System setzt sich die bei Halbfüllung beobachtete magnetische Phase fort bis sie letztendlich der paramagnetischen Phase weicht. Wir verfolgen die Entwicklung der Topologie der Fermifläche beim Durchstoßen dieses magnetischen Übergangs vom Ordnungs- zum Unordnungregime. Das Phasendiagram unterteilt sich in drei verschiedenen Regionen: Den Paramagnetischen Bereich mit {\it großer} Fermifläche, in dem die magnetische Momente zum Luttinger Volumen beitragen, den schwachen Antiferromagneten, mit großer Fermiflächetopologie, und den starken Antiferromagneten mit {\it kleiner} Fermifläche, bei dem die magnetischen Momente nicht am Luttinger Volumen beteiligt sind. Wir beziehen uns zur weiteren Interpretation unserer DCA Resultate auf einen Mean-Field Hamiltonian mit Ordnungsparametern sowohl für die Magnetisierung als auch für die Kondo-Abschirmung. Erste Resultate bei fester Kopplung und Dotierung, jedoch bei unterschiedlichen Temperaturen, zwecks der Ermittlung der verschiedene Energieskalen des Systems, werden dargestellt. Wir suchen Signale der Kondo Temperatur $T_{K}$ bei der die Kondo-Abschirmung der magnetische Momente einsetzt, der Neel Temperatur $T_{N}$ der antiferromagnetischem Ordnung, das eventuelle Auftreten einer durch $T^{*}$ gekennzeichnete Änderung der Fermiflächen Topologie, und letztendlich die Ausbildung eines kohärenten schwerfermionischen Zustandes bei $T_{coh}$. KW - Gittermodell KW - Kondo-Modell KW - dynamische Cluster KW - Kondo Lattice Model KW - dynamical cluster approximation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49446 ER - TY - THES A1 - Tang, Jian T1 - Phenomenology of Neutrino Oscillations at the Neutrino Factory T1 - Phänomenologie von Neutrino Oszillationen an der Neutrinofabrik N2 - We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain $\mu^+\to\nu_e\to\nu_\mu\to\mu^-$ and the right-charge muons coming from the chain $\mu^+\to\bar{\nu}_\mu\to\bar{\nu}_\mu\to\mu^+$ (similar to $\mu^-$ chains), where $\nu_e\to\nu_\mu$ and $\bar{\nu}_\mu\to\bar{\nu}_\mu$ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of $\tau$ decays, generated by appearance channels $\nu_\mu \rightarrow \nu_\tau$ and $\nu_e \rightarrow \nu_\tau$, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero $\theta_{13}$, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the LSND-motivated $\Delta m_{41}^2$-range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting introduced by the sterile neutrino from the long baselines. N2 - Wir prüfen die Aussichten einer Neutrino Factory die Mischungswinkel, die CP-verletzende Phase und die Differenz der Massenquadrate mittels Detektion von Myonen mit falschem Vorzeichen, die bei $\mu^+\to\nu_e\to\nu_\mu\to\mu^-$ und $\mu^+\to\bar{\nu}_\mu\to\bar{\nu}_\mu\to\mu^+$ (vergleichbar mit $\mu^-$), durch $\nu_e\to\nu_\mu$ und $\bar{\nu}_\mu\to\bar{\nu}_\mu$ als Neutrinooszillationen entstehen, zu messen. Als Erstes untersuchen wir die Physik mit Nahdetektoren und überprüfen die Behandlung systematischer Fehler inklusive der Fehler auf dem Wechselwirkungsquerschnitt und auf dem Neutrinofluss sowie Unsicherheiten des experimentellen Signalhintergrundes. Wir erläutern für welche Messungen Nahdetektoren gebraucht werden, diskutieren wieviele dieser Detektoren benötigt werden und welche Rolle die Überwachung des Neutrinosflusses spielt. Wir demonstrieren, dass Nahdetektoren zwingend für Messungen der atmosphärischen Paramter notwendig sind, falls die Neutrino Factory nur eine sogenannte baseline'' besitzt, wohingegen sich die systematischen Fehler partiell aufheben wenn der Neutrino Factory Komplex die magic baseline'' enthält. Als Zweites führen wir die baseline- und Energieoptimierung für die Neutrino Factory inklusive der neusten Simulationsergebnisse für den Neutrinodetektor aus magnetisiertem Eisen (MIND) durch. Au{\ss}erdem betrachten wir den Einfluss von $\tau$-Zerfällen, die durch $\nu_\mu \to \nu_\tau$ oder $\nu_e \to \nu_\tau$ Übergänge erzeugt werden, auf die Massenhierachie, auf die CP-Verletzung und auf den Entdeckungsbereich von $\theta_{13}$, welchen wir im Falle des betrachteten Detektors für vernachlässigbar befinden. Als Drittes stellen wir einen Vergleich der Hochenergie Neutrino Factory mit der Niederenergie Neutrino Factory an und folgern, dass sie nur zwei Versionen des selben Experimentes sind, das jedoch für unterschiedliche Parameterbereiche optimiert wurde. Zusätzlich kommentieren wir kurz, ob es nützlich wäre die bi-magic baseline'' bei einer Niederenergie Neutrino Factory zu bauen. Schlie{\ss} werden die Effekte zusätzlichen sterilen'' Neutrinos im Kontext eines kombinierten Aufbaus mit kurzer und langer baseline diskutiert. Es zeigt sich, dass Nahdetektoren die benötigte Sensitivität in der LSND-motivierten $\Delta m^2_{41}$-Region liefern, während eine gewisse Sensitivität auch mittels der langen baseline im Bereich der atmosphärischen Massenaufspaltung erreicht werden kann, welche durch das sterile Neutrino induziert wurde. KW - Neutrinooszillation KW - Neutrino Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66765 ER - TY - THES A1 - Simon, Dennis T1 - Aspects in the fate of primordial vacuum bubbles N2 - At the present day the idea of cosmological inflation constitutes an important extension of Big Bang theory. Since its appearance in the early 1980’s many physical mechanisms have been worked out that put the inflationary expansion of space that proceeds the Hot Big Bang on a sound theoretical basis. Among the achievements of the theory of inflation are the explanaition of the almost Euclidean geometry of ‘visible’space, the homogeneity of the cosmic background radiation but, in particular, also the tiny inhomogeneity of a relative amplitude of 10−5. In many models of inflation the inflationary phase ends only locally. Hence, there exists the possibility that the inflationary process still goes on in regions beyond our visual horizon. This property is commonly termed ‘eternal inflation’. In the framework of a cosmological scalar fields, eternal inflation can manifest itself in a variety of ways. On the one hand fluctuations of the field, if sufficiently large, can work against the classical trajectory and therefore counteract the end of inflation. In regions where this is the case the accelerated expansion of space continues at a higher rate. In parts of this region the process may replicate itself again and in this way may continue throughout all of time. Space and field are said to reproduce themselves. On the other hand, a mechanism that can occur in addition or independent of the latter, is so called vacuum tunneling. If the potential of the scalar field has several local minima, a semi-classical calculation suggests that within a spherical region, a bubble, the field can tunnel to another state. The respective tunneling rates depend on the potential difference and the shape of the potential between the states. Generally, the tunneling rate is exponentially suppressed, which means that the inflation lasts for a long time before tunneling takes place. The ongoing inflationary process effectively reduces local curvature, anistotropy and inhomogeneity, so that this property is known as the ‘cosmic no-hair conjecture’. For this reason cosmological considerations of the evolution of bubbles thus far almost entirely involved vacuum (de Sitter) backgrounds. However, new insights in the framework of string theory suggest high tunneling rates which allow for the possibility of bubble nucleation in non-vacuum dominated backgrounds. In this case the evolution of the bubble depends on the properties of the background spacetime. A deeper introduction in chapter 4 is followed by the presentation of the Lemaître-Tolman spacetime in chapter 5 which constitutes the background spacetime in the study of the effect of matter and inhomogeneity on the evolution of vacuum bubbles. In chapter 6 we explicitly describe the application of the ‘thin-shell’ formalism and the resulting system of equations. This is succeeded in chapter 7 by the detailed analysis of bubble evolution in various limits of the Lemaître-Tolman spacetime and a Robertson-Walker spacetime with a rapid phase transition. The central observations are that the presence of dust, at a fixed surface energy density, goes along with a smaller nucleation volume and possibly leads to a a collapse of the bubble. In an expanding background, the radially inhomogeneous dust profile is efficiently diluted so that there is essentially no effect on the evolution of the domain wall. This changes in a radially inhomogeneous curvature profile, positive curvature decelerates the expansion of the bubble. Moreover, we point out that the adopted approach does not allow for a treatment of a, physically expected, matter transfer so that the results are to be understood as preliminary under this caveat. In the second part of this thesis we consider potential observable consequences of bubble collisions in the cosmic microwave background radiation. The topological nature of the signal suggests the use of statistics that are well suited to quantify the morphological properties of the temperature fluctuations. In chapter 10 we present Minkowski Functionals (MFs) that exactly provide such statistics. The presented error analysis allows for a higher precision of numerical MFs in comparison to earlier methods. In chapter 12 we present the application of our algorithm to a Gaussian and a collision map. We motivate the expected MFs and extract their numerical counterparts. We find that our least-squares fitting procedure accurately reproduces an underlying signal only when a large number of realizations of maps are averaged over, while for a single WMAP and PLANCK resolution map, only when a highly prominent disk, with |δT| = 2√σG and ϑd = 40◦, we are able to recover the result. This is unfortunate, as it means that MF are intrinsically too noisy to be able to distinguish cold and hot spots in the CMB for small sizes. N2 - Die Idee der kosmologischen Inflation stellt heute die wichtigste Erweiterung der klassischen Urknalltheorie dar. Seit ihrem Aufkommen in den frühen 80er Jahren sind zahlreiche physikalische Mechanismen bekannt und ausgearbeitet geworden, die die inflationäre Expansion des Raums vor der dem ‘heißen’ Urknall auf eine tragfähige, theoretische Basis stellen. Zu den Errungenschaften der Inflationstheorie zählen unter Anderem die Erklärung der nahezu Euklidischen Geometrie des sichtbaren Raums, die bemerkenswerte Homogenität der kosmischen Hintergrundstrahlung, im Besonderen aber auch die ihr innewohnenden winzigen Unregelmäßigkeiten mit einer relativen Amplitude der Größenordnung 10−5. In vielen Inflationsmodellen endet die Inflation allerdings nur lokal. Demzufolge besteht die Möglichkeit, dass es außerhalb des von uns sichtbaren Raums Gebiete geben kann, in denen der inflationäre Prozess weiterhin stattfindet. Dieser Eigenschaft wird durch den Begriff ‘Ewige Inflation’ Rechnung getragen. Ewige Inflation kann sich im Rahmen der Skalarfeld-Inflation in verschiedenen Formen manifestieren. Zum Einen können die Fluktuationen des Feldes so groß sein, dass sie der klassischen Trajektorie, und damit dem Ende der Inflation, entgegenwirken wirken. In Regionen, in denen das geschieht, setzt sich die beschleunigte Expansion des Raums mit einer höheren Rate weiter fort. In Teilen solcher Regionen mag sich dies wiederholen und der Vorgang auf diese Weise theoretisch bis ins Unendliche andauern. Raum und Feld reproduzieren sich selbst. Eine weitere Möglichkeit, die sowohl unabhängig als auch zusätzlich zur zuvor beschriebenen auftreten kann, ist die des sogenannten Vakuumtunnelns. Wenn das Potential des Skalarfelds mehrere lokale Minima aufweist, so legt eine semi-klassische Rechnung, dass das Feld innerhalb eines sphärischen Gebiets, einer Blase, in einen anderen Zustand tunneln kann. Fortwährende Inflation beseitigt großräumig, effektiv, jegliche Form der Unregelmäßigkeit, d. h. Raumkrümmung, Anisotropie und Inhomogenität, sodass dieser Sachverhalt unter dem Ausdruck ‘cosmic no-hair conjecture’ bekannt ist. Aus diesem Grund waren bisherige Betrachtungen fast aussschließlich der Entwicklung von Blasen in einem Vakuumhintergrund gewidmet. Neue Überlegungen im Rahmen der Stringtheorie erlauben allerdings auch hohe Tunnelraten, sodass die Möglichkeit der Nukleation von Blasen in nicht-vakuumdominierten Hintergründen besteht. Die weitere Entwicklung hängt in diesem Fall von den Eigenschaften des Hintergrunds ab. Nach der Ableitung der Vakuumlösung wird sukzessive auf die Blasenentwicklung in einem statischen Hintergrund, in einem dynamischen, aber homogenen Hintergrund, in einem flachen, inhomogenen Hintergrund, in einem gekrümmten, inhomogenen Hintergrund und in einem homogenen Hintergrund mit Phasenübergang eingegangen. Zu den zentralen Beobachtungen gehört, dass die Präsenz des Staubs, bei fixierter Oberflächendichte, eine Verringerung des Nukleationsvolumens mit sich bringt und dazu führen kann, dass die Blase einen Kollaps beginnt. Das ändert sich in einem radial inhomogenen Krümmungsprofil, positive Raumkrümmung hat einen abbremsenden Effekt auf die Expansion der Blase. Es wird herausgestellt, dass der verwendete Ansatz keine Möglichkeit zur Behandlung eines, physikalisch zu erwartenden, Materietransfers bietet und die damit erzielten Ergebnisse unter diesem Vorbehalt zu verstehen sind. Im zweiten Teil der vorliegenden Arbeit wird potentiell beobachtbaren Konsequenzen der Kollision zweier Blasen in der kosmischen Hintergrundstrahlung nachgegangen. Die topologische Natur des Signals in der letzten Streufläche legt die Verwendung von Statistiken nahe, die es erlauben, die morphologischen Eigenschaften der Temperaturfluktuationen zu quantifizieren. Diese Statistiken bieten die Minkowski Funktionale (MF), die in Kapitel 10 vorgestellt werden. Dieses wird benutzt um Karten eines Gaussschen Zufallsfeldes zu erzeugen und die entsprechenden MF zu berechnen. Die vorgestellte Fehleranalyse erlaubt eine höhere Präzision der numerischen MF im Vergleich zu bisherigen Methoden. Ein Fit der geringsten quadratischen Abweichung reproduziert die tatsächlichen Parameter nur dann, wenn über eine hohe Anzahl von Realisierungen gemittelt wird, wohingegen die Betrachtung einer einzigen Karte in WMAP bzw. Planck Auflösung nur für “auffällige” Scheiben mit Temperaturunterschied δT = 2√σG und Öffnungswinkel ϑd = 40◦ Übereinstimmung erreicht wird. Dies bedeutet, das MF ein schlechtes ‘Signal zu Rausch’Verhältnis besitzen um heiße oder kalte Scheiben in der kosmischen Hintergrundstrahlung zu erfassen. KW - Kosmologie KW - Kosmische Hintergrundstrahlung KW - Inflationäres Weltall KW - Bubble Universes KW - Israel Junction Conditions KW - Inhomogeneous Cosmological Models KW - Minkowski Functionals KW - HEALPix Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67019 ER - TY - THES A1 - Liebler, Stefan T1 - LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity T1 - LHC Phänomenologie und elektroschwache Korrekturen in SUSY Modellen mit und ohne R-Parität N2 - During the last decades the standard model of particle physics has evolved to one of the most precise theories in physics, describing the properties and interactions of fundamental particles in various experiments with a high accuracy. However it lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. R-parity is a discrete symmetry introduced to guarantee the stability of the proton. Using lepton number violating terms in the context of bilinear R-parity violation and the munuSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. Since 2009 the Large Hadron Collider (LHC) at CERN explores the new energy regime of Tera-electronvolt, allowing the production of potentially existing heavy particles by the collision of protons. Thus the near future might provide answers to the open questions of mass generation in the standard model and show hints towards physics beyond the standard model. Therefore this thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in case of the R-parity violating models at one-loop level. The discussion shows the similarities and differences to existing calculations in another renormalization scheme, namely the DRbar scheme. Moreover we consider two-body decays of the form chi_j^0 -> chi_l^\pm W^\mp involving a heavy gauge boson in the final state at one-loop level. Corrections are found to be large in case of small or vanishing tree-level decay widths and also for the R-parity violating decay of the lightest neutralino chi_1^0 -> l^\pm W^\mp. An interesting feature of the models based on bilinear R-parity violation is the correlation between the branching ratios of the lightest neutralino decays and the neutrino mixing angles. We discuss these relations at tree-level and for two-body decays chi_1^0 -> l^\pm W^\mp also at one-loop level, since only the full one-loop corrections result in the tree-level expected behavior. The appendix describes the two programs MaCoR and CNNDecays being developed for the analysis carried out in this thesis. MaCoR allows for the calculation of mass matrices and couplings in the models under consideration and CNNDecays is used for the one-loop calculations of neutralino and chargino mass matrices and the two-body decay widths. N2 - Das heutige Standardmodell der Teilchenphysik ist eine der präzisesten Theorien der Physik, welche die Eigenschaften der bekannten Elementarteilchen und deren Wechselwirkungen in zahlreichen Experimenten mit hoher Genauigkeit beschreibt. Gleichwohl zeigt es Schwachpunkte auf experimenteller wie theoretischer Seite: Zwar gibt es mit dem Higgs-Mechanismus einen theoretischen Ansatz für die Erzeugung von Massen der Elementarteilchen im Standardmodell, jedoch ist dieser experimentell (noch) nicht nachgewiesen. Insbesondere benötigt das Standardmodell für die Erklärung der leichten Massen der Neutrinos noch eine Erweiterung. Darüber hinaus liefert das Standardmodell keinen Kandidaten für dunkle Materie, welche den dominanten Anteil der Materie im Universum ausmacht. Antworten auf viele dieser Fragestellungen liefern supersymmetrische Modelle, auf denen auch diese Arbeit fußt. Statt der einfachsten supersymmetrischen Realisierung des Standardmodells beschäftigen wir uns mit Erweiterungen, darunter das nächstminimale supersymmetrischen Standardmodell (NMSSM), welches ein zusätzliches Singletfeld enthält, sowie R-Paritätsverletzende Modelle. R-Parität ist eine diskrete Symmetrie, die die Stabilität des Protons in supersymmetrischen Erweiterungen garantiert. Die Nutzung von leptonzahlverletzenden Termen im Kontext von bilinearer R-Paritätsverletzung und dem munuSSM erlaubt die Erklärung von Neutrinodaten, da besagte Terme eine Mischung der Neutralinos mit den Neutrinos bewirken. Seit 2009 stößt der Large Hadron Collider'' (Großer Hardonenbeschleuniger, LHC) am CERN in Genf in den Energiebereich von Teraelektronenvolt vor und erlaubt so die Produktion von schweren, noch unbekannten Teilchen. Somit könnte die nahe Zukunft die Frage nach der Massenerzeugung im Standardmodell beantworten und Hinweise auf neue Physik liefern. Daher arbeiten wir die Phänomenologie der oben erwähnten supersymmetrischen Modelle an Beschleunigerexperimenten heraus und diskutieren die Unterschiede zur einfachsten supersymmetrischen Realisierung des Standardmodells. Im Falle von R-Paritätsverletzung können die Zerfälle des leichtesten Neutralinos Vertices mit Abstand zum Wechselwirkungspunkt erzeugen. In Kombination mit leichten singletartigen Teilchen können diese Zerfälle eine reiche Phänomenologie bereithalten wie beispielsweise Higgszerfälle in leichte singletartige Neutralinos, welche vor ihrem Zerfall eine messbare Strecke im Detektor zurücklegen. In dieser Arbeit präsentieren wir auch Rechnungen in der nächsthöheren Ordnung Störungs-theorie, da Einschleifenbeiträge große Korrekturen zu den Massen und Zerfallsbreiten auf Baumgraphenniveau liefern können. Wir berechnen die Massen von Neutralinos und Charginos, welche im Falle der R-Paritätsverletzung Neutrinos und Leptonen beinhalten, in nächsthöherer Ordnung und heben die Gemeinsamkeiten und Unterschiede zu exisitierenden Rechnungen in anderen Renormierungsschemata hervor. Darüberhinaus betrachten wir Zweikörperzerfälle der Form chi_j^0 -> chi_l^\pm W^\mp auf Einschleifenniveau. Im Falle von verschwindenden Zerfallsbreiten auf Baumgraphenniveau können die Korrekturen groß werden, genauso auch für die $R$-Paritäts-verletzenden Zerfälle des leichtesten Neutralinos chi_1^0 -> l^\pm W^\mp. Ein Charakteristikum von Modellen basierend auf bilinearer R-Paritätsverletzung ist die Korrelation zwischen den Verzweigungsverhältnissen der leichtesten Neutralinozerfälle und den Neutrinomischungswinkeln. Wir zeigen diese Beziehungen auf Baumgraphenniveau und für die Zweikörperzerfälle chi_1^0 -> l^\pm W^\mp auch in nächsthöherer Ordnung, da nur die volle Einschleifenkorrektur das erwartete Ergebnis liefert. Im Anhang werden die zwei für diese Arbeit erzeugten Programme MaCoR und CNNDecays vorgestellt. Während MaCoR die Berechnung von Massenmatrizen und Kopplungen in den besagten Modellen erlaubt, wurde mit CNNDecays die numerische Auswertung der Einschleifenrechnungen vorgenommen. KW - Supersymmetrie KW - LHC KW - Neutrino KW - Elementarteilchenphysik KW - R-Paritaet KW - Schleifendiagramm KW - Renormierung KW - supersymmetry KW - LHC phenomenology KW - R-parity KW - electroweak corrections KW - on-shell renormalization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69367 ER - TY - THES A1 - Elsässer, Dominik Martin T1 - Indirect Search for Dark Matter in the Universe - the Multiwavelength and Multiobject Approach T1 - Indirekte Suche nach Dunkler Materie im Universum - die Multiwellenlängen und Multiobjekt Strategie N2 - Dunkle Materie ist ein zentraler Bestandteil der modernen Kosmologie, und damit von entscheidender Bedeutung für unser Verständnis der Strukturbildung im Universum. Das offensichtliche Fehlen von elektromagnetischer Wechselwirkung in Kombination mit unabhängigen Messungen der Energiedichte der baryonischen Materie über die Häufigkeit der primordialen leichten Elemente weisen auf eine nicht-baryonische Natur der Dunklen Materie hin. Die Wirkung der Dunklen Materie bei der Strukturbildung zeigt weiterhin dass ihre Konstituenten kalt sind, also zum Zeitpunkt des Gleichgewichts zwischen Strahlung und Materie eine Temperatur kleine als ihre Ruhemasse aufwiesen. Generische Kandidaten für das Dunkelmaterie-Teilchen sind stabile, schwach wechselwirkende Teilchen mit Ruhemassen von der Größenordnung der Skala der elektroschwachen Symmetriebrechung, wie sie zum Beispiel in der Supersymmetrie bei erhaltener R-Parität vorkommen. Derartige Teilchen frieren auf natürliche Weise im frühen Universum mit kosmologisch relevanten Reliktdichten aus. Die fortschreitende Strukturbildung im Universum führt dann zur Bildung von überdichten Regionen, in denen die Dunkelmaterie-Teilchen wiederum in signifikantem Ausmaß annihilieren können. Dadurch würde ein potentiell detektierbarer Fluß von Hochenergie-Teilchen einschließlich Photonen aus den instabilen Zwischenprodukten der Annihilationsereignisse erzeugt. Die Spektren dieser Teilchen würden Rückschlüsse auf die Masse und den Annihilations-Querschnitt als wichtige Größen zur mikrophysikalischen Identifikation der Dunkelmaterie-Teilchen erlauben. Darin liegt die zentrale Motivation für indirekte Suchen nach der Dunklen Materie. Zum gegenwärtigen Zeitpunkt jedoch haben weder diese indirekten Suchen, noch direkte Methoden zur Suche nach elastischen Streuereignissen zwischen Dunkelmaterie-Teilchen und Atomkernen sowie Beschleunigerexperimente einen eindeutigen Nachweis von Dunkelmaterie-Teilchen erbracht. Das an sich stellt keine Überraschung dar, denn die zu erwartenden Signale sind aufgrund der schwachen Wechselwirkung der Teilchen nur von geringer Intensität. Im Falle der indirekten Suchen steht zu erwarten, dass selbst für die größten Massekonzentrationen im Universum die Stärke des Annihilationssignals der Dunklen Materie den durch astrophysikalische Quellen verursachten Untergrund nicht überschreitet. Die Möglichkeit der sicheren Unterscheidung zwischen einem möglichen Signal aus der Annihilation der Dunklen Materie und eben diesem Untergrund ist daher entscheidend für die Erfolgsaussichten der indirekten Suchen. In der vorliegenden Arbeit wird eine neuartige Suchstrategie ausgearbeitet und vorgestellt, deren zentrale Komponente die Auswahl von Beobachtungszielen aus einem breiten Massebereich, die Kontrolle der astrophysikalischen Untergründe, und die Einbeziehung von Daten aus mehreren Wellenlängenbereichen ist. Die durchgeführten Beobachtungen werden vorgestellt und interpretiert. Ein Ergebnis ist, dass die Unsicherheiten in Bezug auf die Verteilung der Dunklen Materie in Halos und deren individuelle Dichtestruktur, sowie in Bezug auf die mögliche Verstärkung des Annihilationssignales durch Substruktur, im Falle der massearmen Halos (wie zum Beispiel bei den Zwerggalaxien) größer ist als bei massereichen Halos, wie denen der Galaxienhaufen. Andererseits weisen die massereichen Halos größere Unsicherheiten in Hinblick auf die zu erwartenden rein astrophysikalischen Untergründe auf. Die Unsicherheiten in Bezug auf die bisher unbekannte Teilchenphysik jenseits des Standardmodells schließlich sind unabhängig von der Masse der beobachteten Halos. Im Zusammenspiel ermöglichen es diese unterschiedlichen Skalierungsverhalten, die globale Unsicherheit durch eine kombinierte Analyse der Beobachtungen von Halos mit verschiedenen Massen, die einen bedeutenden Teil der Masseskala abdecken, nennenswert zu reduzieren. Diese Strategie wurde im Rahmen des wissenschaftlichen Beobachtungsprogrammes des MAGIC Teleskopsystems implementiert. Es wurden Beobachtungen von Zwerggalaxien sowie des Virgo- und des Perseus-Galaxienhaufens durchgeführt. Die resultierenden Grenzen auf Gammastrahlung aus der Annihilation von schwach wechselwirkenden, massereichen Teilchen gehören zum Zeitpunkt dieser Niederschrift zu den stärksten Grenzen aus indirekten Suchen nach der Dunklen Materie. Die so gewonnenen Grenzen auf die Annihilations-Flüsse schränken einige in der Literatur diskutierte und durch aussergewöhnlich große Annihilations-Flüsse gekennzeichnete Szenarien stark ein. N2 - Cold dark matter constitutes a basic tenet of modern cosmology, essential for our understanding of structure formation in the Universe. Since its first discovery by means of spectroscopic observations of the dynamics of the Coma cluster some 80 years ago, mounting evidence of its gravitational pull and its impact on the geometry of space-time has build up across a wide range of scales, from galaxies to the entire Hubble flow. The apparent lack of electromagnetic coupling and independent measurements of the energy density of baryonic matter from the primordial abundances of light elements show the non-baryonic nature of dark matter, and its clustering properties prove that it is cold, i.e. that it has a temperature lower than its mass during the time of radiation-matter equality. A generic particle candidate for cold dark matter are weakly interacting massive particles at the electroweak symmetry-breaking scale, such as the neutralinos in R-parity conserving supersymmetry. Such particles would naturally freeze-out with a cosmologically relevant relic density at early times in the expanding Universe. Subsequent clustering of matter would recover annihilation interactions between the dark matter particles to some extent and thus lead to potentially observable high-energy emission from the decaying unstable secondaries produced in annihilation events. The spectra of the secondaries would permit a determination of the mass and annihilation cross section, which are crucial for the microphysical identification of the dark matter. This the central motivation for indirect dark matter searches. However, presently neither the indirect searches, nor the complementary direct searches based on the detection of elastic scattering events, nor the production of candidate particles in collider experiments, has yet provided unequivocal evidence for dark matter. This does not come as a surprise, since the dark matter particles interact only through weak interactions and therefore the corresponding secondary emission must be extremely faint. It turns out that even for the strongest mass concentrations in the Universe, the dark matter annihilation signal is expected to not exceed the level of competing astrophysical sources. Thus, the discrimination of the putative dark matter annihilation signal from the signals of the astrophysical inventory has become crucial for indirect search strategies. In this thesis, a novel search strategy will be developed and exemplified in which target selection across a wide range of masses, astrophysical background estimation, and multiwavelength signatures play the key role. It turns out that the uncertainties regarding the halo profile and the boost due to surviving substructure are bigger for halos at the lower end of the observed mass scales, i.e. in the regime of dwarf galaxies and below, while astrophysical backgrounds tend to become more severe for massive dark matter halos such as clusters of galaxies. By contrast, the uncertainties due to unknown details of particle physics are invariant under changes of the halo mass. Therefore, the different scaling behaviors can be employed to significantly cut down on the uncertainties in observations of different targets covering a major part of the involved mass scales. This strategical approach was implemented in the scientific program carried out with the MAGIC telescope system. Observations of dwarf galaxies and the Virgo- and Perseus clusters of galaxies have been carried out and, at the time of writing, result in some of the most stringent constraints on weakly interacting massive particles from indirect searches. Here, the low-threshold design of the MAGIC telescope system plays a crucial role, since the bulk of the high-energy photons, produced with a high multiplicity during the fragmentation of unstable dark matter annihilation products, are emitted at energies well below the dark matter mass scale. The upper limits severely constrain less generic, but more prolific scenarios characterized by extraordinarily high annihilation efficiencies. KW - Gammastrahlung KW - MAGIC-Teleskop KW - Dunkle Materie KW - Kosmologie KW - Gamma Rays KW - Cosmology KW - Dark Matter Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69464 ER - TY - JOUR A1 - Pinkert, Stefan A1 - Schultz, Joerg A1 - Reichardt, Joerg T1 - Protein Interaction Networks-More Than Mere Modules N2 - It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a ‘‘module’’ in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative approach independent of any prior definition of what actually constitutes a ‘‘module’’. In a self-consistent manner, proteins are grouped into ‘‘functional roles’’ if they interact in similar ways with other proteins according to their functional roles. Such grouping may well result in cohesive modules again, but only if the network structure actually supports this. We applied our method to the PIN from the Human Protein Reference Database (HPRD) and found that a representation of the network in terms of cohesive modules, at least on a global scale, does not optimally represent the network’s structure because it focuses on finding independent groups of proteins. In contrast, a decomposition into functional roles is able to depict the structure much better as it also takes into account the interdependencies between roles and even allows groupings based on the absence of interactions between proteins in the same functional role. This, for example, is the case for transmembrane proteins, which could never be recognized as a cohesive group of nodes in a PIN. When mapping experimental methods onto the groups, we identified profound differences in the coverage suggesting that our method is able to capture experimental bias in the data, too. For example yeast-two-hybrid data were highly overrepresented in one particular group. Thus, there is more structure in protein-interaction networks than cohesive modules alone and we believe this finding can significantly improve automated function prediction algorithms. KW - Netzwerk KW - protein-interaction networks Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68426 ER - TY - THES A1 - Laubach, Manuel T1 - Nichtmagnetische Isolatoren in Hexagonalen Gittermodellen T1 - Nonmagnetic insolatores in hexagonal lattice models N2 - Wir untersuchen zunächst das Hubbard-Modell des anisotropen Dreiecksgitters als effektive Beschreibung der Mott-Phase in verschiedenen organischen Verbindungen mit dreieckiger Gitterstruktur. Um die Eigenschaften am absoluten Nullpunkt zu bestimmen benutzen wir die variationelle Cluster Näherung (engl. variational cluster approximation VCA) und erhalten das Phasendiagramm als Funktion der Anisotropie und der Wechselwirkungsstärke. Wir finden für schwache Wechselwirkung ein Metall. Für starke Wechselwirkung finden wir je nach Stärke der Anisotropie eine Néel oder eine 120◦-Néel antiferromagnetische Ordnung. In einem Bereich mittlerer Wechselwirkung entsteht in der Nähe des isotropen Dreiecksgitters ein nichtmagnetischer Isolator. Der Metall-Isolator-Übergang hängt maßgeblich von der Anisotropie ab, genauso wie die Art der magnetischen Ordnung und das Erscheinen und die Ausdehnung der nichtmagnetischen Isolatorphase. Spin-Bahn Kopplung ist der ausschlaggebende Parameter, der elektronische Bandmodelle in topologische Isolatoren wandelt. Spin-Bahn Kopplung im Allgemeinen beinhaltet auch den Rashba Term, der die SU(2) Symmetrie vollständig bricht. Sobald man auch Wechselwirkungen berücksichtigt, müssen sich viele theoretische Methoden auf die Analyse vereinfachter Modelle beschränken, die nur Spin-Bahn Kopplungen enthalten, welche die U(1) Symmetrie erhalten und damit eine Rashba Kopplung ausschließen. Wir versuchen diese bisher bestehende Lücke zu schließen und untersuchen das Kane-Mele Hubbard (KMH) Modell mit Rashba Spin-Bahn Kopplung und präsentieren eine systematische Analyse des Effekts der Rashba Spin-Bahn Kopplung in einem korrelierten zweidimensionalen topologischen Isolator. Wir wenden die VCA auf dieses Problem an und bestimmen das Phasendiagramm mit Wechselwirkung durch die Berechnung der lokalen Zustandsdichte, der Magnetisierung, der Einteilchenspektralfunktion und der Randzustände. Nach einer ausführlichen Auswertung des KMH-Modells, bei erhaltener U(1) Symmetrie, finden wir auch für endliche Wechselwirkung, dass eine zusätzliche Rashba Kopplung zu neuen elektronischen Phasen führt, wie eine metallische Phase und eine topologische Isolatorphase ohne Bandlücke in der lokalen Zustandsdichte, die aber eine direkte Bandlücke für jeden Wellenvektor besitzt. Für eine Klasse von 5d Übergangsmetallen untersuchen wir ein KMH ähnliches Modell mit multidirektionaler Spin-Bahn Kopplung, das wegen seiner Relevanz für die Natrium-Iridate (engl. sodium iridate) als SI Modell bezeichnet wird. Diese intrinsische Kopplung bricht die SU(2) Symmetrie bereits vollständig und dennoch erhält man wegen der speziellen Form für starke Wechselwirkung wieder einen rotationssymmetrischen Néel-AFM Isolator. Der topologische Isolator des SIH-Modells ist adiabatisch mit dem des KMH-Modells verbunden, jedoch sind die Randströme hier nicht mehr spinpolarisiert. Wir verallgemeinern das Konzept der Klein-Transformation, das bereits erfolgreich auf Spin-Hamiltonians angewandt wurde, und wenden es auf ein Hubbard-Modell mit rein imaginären spinabhängigen Hüpfen an, das im Grenzfall unendlicher Wechselwirkung in das Kitaev-Heisenberg Modell übergeht. Dadurch erhält man ein Modell des Dreiecksgitters mit reellen spinunabhängigen Hüpfen, das aber eine mehratomige Einheitszelle besitzt. Für schwache Wechselwirkung ist das System ein Dirac Halbmetall und für starke Wechselwirkung erhält man eine 120◦-Néel antiferromagnetische Ordnung. Für mittlere Wechselwirkung findet man aber einen relativ großen Bereich in dem eine nichtmagnetische Isolatorphase stabil ist. Unsere Ergebnisse deuten auf die mögliche Existenz einer Quanten Spinflüssigkeit hin. N2 - We investigate the anisotropic triangular Hubbard model as a suggested effective description of the Mott phase in various triangular organic compounds. Employing the variational cluster approximation (VCA) to treat the zero temperature phasediagram as a function of anisotropy and interaction strength. The metal-insulator transition substantially depends on the anisotropy, so does the nature of magnetism and the emergence of a nonmagnetic insulating phase establishing a spin liquid candidate regime. For weak interactions we find a metal for all anisotropies. Depending on the strength of anisotropy we find a Néel- or a 120◦-Néel-AFM order in the limit of square and triangular lattice. The non-magnetic insulating phase is located around the isotropic triangular lattice for intermediate interaction strength and is bounded by the metallic phase to weaker interactions, the Néel-AFM insulator for less anisotropy and the 120◦-Néel-AFM insulator for stronger interaction strength [1]. Spin-orbit (SO) coupling is the crucial parameter to drive topological insulating phases in electronic band models. In particular, the generic emergence of SO coupling involves the Rashba term which fully breaks the SU(2) spin symmetry. As soon as interactions are taken into account, however, many theoretical studies have to content themselves with the analysis of a simplified U(1) conserving SO term without Rashba coupling. We intend to fill this gap by studying the Kane-Mele-Hubbard (KMH) model in the presence of Rashba SO coupling and present the first systematic analysis of the effect of Rashba SO coupling in a correlated two-dimensional topological insulator. We apply the VCAto determine the interacting phase diagram by computing local density of states, magnetization, single particle spectral function, and edge states. Preceded by a detailed VCAanalysis of the KMH model in the presence of U(1) conserving SO coupling, we find that the additional Rashba SO coupling drives new electronic phases such as a metallic regime and a direct-gap only topological insulating phase which persist in the presence of interactions [2]. In 5d transition-metal oxides, both the spin-orbit interaction and the electron correlation emerge at comparable orders of magnitude. In these systems, a variety of specifically tailored crystal structures are available, enabling the design of robust topological insulators. We study theoretically a monolayer of the 5d-compound Na2IrO3, modeled by a Hubbard-type of Hamiltonian on a honeycomb lattice where the spin symmetry is not conserved. Based on a VCAcalculation, the zero temperature phase diagram is obtained. We generalize the concept of Klein-dualities, successfully applied to spin Hamiltonians in the past, for tight-binding models and, as such, for Hubbard models. Specifically, we consider an imaginary spin-dependent hopping problem supplemented with an on-site Coulomb interaction which corresponds in the strong coupling limit to the Kitaev-Heisenberg model on the triangular lattice. After applying the Klein-transformation, we obtain a real and spin-independent model which we study in detail using the VCA. For weak interactions, the system is a Dirac semi-metal; for strong interactions, it acquires magnetic order being of 120◦-Néel type. For intermediate interactions, there is a large non-magnetic insulator phase. Our results point towards the possibility of a quantum spin liquid phase. KW - Hexagonaler Kristall KW - Topologischer Isolator KW - Dreiecksgitter KW - Honigwabengitter KW - Frustrierter Magnetismus KW - topologische Isolatoren KW - Antiferromagnetismus KW - Frustration KW - Sechsecknetz Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106987 ER - TY - THES A1 - Janotta, Peter T1 - Nonlocality and entanglement in Generalized Probabilistic Theories and beyond T1 - Nicht-Lokalität und Verschränkung in verallgemeinerten Wahrscheinlichkeitstheorien N2 - Quantum theory is considered to be the most fundamental and most accurate physical theory of today. Although quantum theory is conceptually difficult to understand, its mathematical structure is quite simple. What determines this particularly simple and elegant mathematical structure? In short: Why is quantum theory as it is? Addressing such questions is the aim of investigating the foundations of quantum theory. In the past this field of research was sometimes considered as an academic subject without much practical impact. However, with the emergence of quantum information theory this perception has changed significantly and both fields started to fruitfully influence each other. Today fundamental aspects of quantum theory attract increasing attention and the field belongs to the most exciting subjects of theoretical physics. This thesis is concerned with a particular branch in this field, namely, with so-called Generalized Probabilistic Theories (GPTs), which provide a unified theoretical framework in which classical and quantum theory emerge as special cases. This is used to examine nonlocal features that help to distinguish quantum theory from alternative toy theories. In order to extend the scope of theories that can be examined with the framework, we also introduce several generalizations to the framework itself. We start in Chapter 1 with introducing the standard GPT framework and summarize previous results, based on a review paper of the author [New J. Phys. 13, 063024 (2011)]. To keep the introduction accessible to a broad readership, we follow a constructive approach. Starting from few basic physically motivated assumptions we show how a given set of observations can be manifested in an operational theory. Furthermore, we characterize consistency conditions limiting the range of possible extensions. We point out that non-classical features of single systems can equivalently result from higher dimensional classical theories that have been restricted. Entanglement and non-locality, however, are shown to be genuine non-classical features. We review features that have been found to be specific for quantum theory separably or single and joint systems. Chapter 2 incorporates results published in [J. Phys. A 47(32), pp. 1-32 (2014)] and [Proc. QPL 2011 via EPTCS vol. 95, pp. 183–192 (2012)]. The GPT framework is applied to show how the structure of local state spaces indirectly affects possible nonlocal correlations, which are global properties of a theory. These correlations are stronger than those possible in a classical theory, but happen to show different restrictions that can be linked to the structure of subsystems. We first illustrate the phenomenon with toy theories with particular local state spaces. We than show that a particular class of joint states (inner product states), whose existence depends on geometrical properties of the local subsystems, can only have correlations for a known limited set called Q1. All bipartite correlations of both, quantum and classical correlations, can be mapped to measurement statistics from such joint states. Chapter 3 shows unpublished results on entanglement swapping in GPTs. This protocol, which is well known in quantum information theory, allows to nonlocally transfer entanglement to initially unentangled parties with the help of a third party that shares entanglement with each. We review our approach published in [Proc. QPL 2011 via EPTCS vol. 95, pp. 183–192 (2012)], which mimics the joint systems' structure of quantum theory by modifying a popular toy theory known as boxworld. However, it is illustrated that this approach fails for bigger multipartite systems due to inconsistencies evoked by entanglement swapping. It turns out that the GPT framework does not allow entanglement swapping for general subsystems with two-dimensional state spaces with transitive pure states. Altering the GPT framework to allow completely globally degrees of freedom, however, enables us to construct consistent entanglement swapping for these subsystems. This construction resembles the situation in quantum theory on a real Hilbert space. A questionable assumption usually taken in the standard GPT framework is the so-called no-restriction hypothesis. It states that the measurement that are possible in a theory can be derived from the state space. In fact, this assumption seems to exist for reasons of mathematical convenience, but it seems to lack physical motivation. We generalize the GPT framework to also account for systems that do not obey the no-restriction hypothesis in Chapter 4, which presents results published in [Phys. Rev. A 87, 052131 (2013)] and [Proc. QPL 2013, to be published in EPTCS]. The extended framework includes new classes of probabilistic theories. As an example, we show how to construct theories that include intrinsic noise. We also provide a "self-dualization" procedure that requires the violation of the no-restriction hypothesis. This procedure restricts the measurement of arbitrary theories such that the theories act as if they were self-dual. Self-duality has recently gathered lots of interest, since such theories share many features of quantum theory. For example Tsirelson’s bound holds for correlations on the maximally entangled state in these theories. Finally, we characterize the maximal set of joint states that can be consistently defined for given subsystems. This generalizes the maximal tensor product of the standard GPT framework. N2 - Die Quantentheorie wird als eine der grundlegensten und präzisesten physikalischen Theorien unserer Zeit angesehen. Auch wenn die Theorie konzeptionell schwierig zu verstehen ist, so ist die eigentliche mathematische Struktur überraschend einfach. Auf welcher physikalischen Grundlage basiert diese besonders einfache und elegante mathematische Struktur? Oder anders ausgedrückt: Warum ist die Quantentheorie so wie sie ist? Das Gebiet der "Grundlagen der Quantentheorie" versucht, auf diese Fragen Antworten zu finden. In der Vergangenheit wurde dieses Forschungsgebiet als überwiegend akademisch mit wenig praktischen Nutzen angesehen. Mit dem Fortschritt der Quanteninformationstheorie hat sich diese Sicht aber grundsätzlich gewandelt, da beide Gebiete einander stetig fruchtbar beeinflussen . Dadurch stößt die Grundlagenforschung zur Quantentheorie derzeit auf wachsendes Interesse, so dass das Gebiet nun wohl zu den spannensten Themenbereichen der theoretischen Physik gezählt werden darf. Diese Arbeit beschäftigt sich mit einer bestimmten Richtung in diesem Feld - den sogenannten "Verallgemeinerten Wahrscheinlichkeitstheorien" (GPTs). Diese bilden einen umfassenden theoretischen Rahmen zur Beschreibung physikalischer Theorien, wobei die klassische Wahrscheinlichkeitstheorie und die Quantentheorie als Spezialfälle enthalten sind. Wir nutzen diesen Ansatz in dieser Arbeit, um nicht-lokale Eigenschaften zu untersuchen, die helfen die Sonderrolle der Quantentheorie gegenüber nicht realisierter Alternativen zu verstehen. Um die Anwendungsbereich dieses Ansatzes zu vergrößern, führen wir verschiedene Verallgemeinerungen ein. Dadurch wird es möglich die Auswirkungen von Annahmen zu untersuchen, die typischerweise beim GPT-Ansatz gemacht werden. Basierend auf einem Übersichtsartikel des Autors [New J. Phys. 13, 063024 (2011)], beginnen wir in Kapitel 1 zunächst mit einer Einführung des üblichen GPT-Ansatzes und fassen bisherige Ergebnisse zusammen. Um die Einführung möglichst verständlich zu halten, verfolgen wir dabei einen konstruktiven Ansatz. Beginnend mit wenigen, physikalisch wohlmotivierten Annahmen, zeigen wir wie beliebige experimentelle Beobachtungen in einer operationalen Theorie festgehalten werden können. Desweiteren, charakterisieren wir die Konsistenzbedingungen, die bei darauf aufbauenden Erweiterungen der Theorie beachtet werden müssen. Wir zeigen auf, dass nicht-klassische Eigenschaften eines Einzelsystems in gleicher Weise auch in einem höherdimensionalen klassischen System auftreten können, wenn man die Menge möglicher Messungen beschränkt. Hingegen wird gezeigt, dass Verschränkung und Nicht-Lokalität echt nicht-klassische Eigenschaften darstellen. Besondere Eigenschaften, die spezifisch für die Quantentheorie sind, werden separat für Einzelsysteme und zusammengesetzte Systeme besprochen. Kapitel 2 enthält Ergebnisse, die wir in [J. Phys. A 47(32), pp. 1-32 (2014)] und [Proc. QPL 2011 via EPTCS vol. 95, pp. 183–192 (2012)] veröffentlicht haben. Der GPT-Ansatz wird dort dazu benutzt, um zu zeigen, wie die Struktur lokaler Zustandsräume indirekt die möglichen nicht-lokalen Korrelationen beeinflusst, die selbst eigentlich globale Eigenschaften darstellen. Solche Korrelationen sind stärker als jene, die in der klassischen Wahrscheinlichkeitstheorie möglich sind, zeigen jedoch andere Beschränkungen, die wir auf die Struktur der Subsysteme zurück führen können. Zunächst illustrieren wir dieses Phänomen mit Spieltheorien mit bestimmten lokalen Zustandsräumen. Danach zeigen wir, dass für eine besondere Klasse von zusammengesetzten Zuständen (inner product states), deren Existenz von geometrischen Eigenschaften der lokalen Subsysteme abhängt, Korrelationen im Allgemeinen auf eine Menge beschränkt sind, die als Q1 bekannt ist. Alle bipartiten Korrelationen von Quantentheorie und klassischer Wahrscheinlichkeitstheorie können auf die Messstatistiken dieser Zustände zurückgeführt werden. Kapitel 3 beinhaltet größtenteils unpublizierte Ergebnisse zu Verschränkungstausch (entanglement swapping) in GPTs. Diese Protokoll, das aus der Quanteninformationstheorie bekannt ist, erlaubt den nicht-lokalen Transfer von Verschränkung zu anfangs unverschränkten Parteien mit Hilfe eines Dritten, der verschränkte Zustände mit Beiden teilt. Wir stellen zunächst unseren in [Proc. QPL 2011 via EPTCS vol. 95, pp. 183–192 (2012)] eingeführten Ansatz vor, der die Struktur zusammengesetzter Systeme in der Quantentheorie nachahmt. Dafür modifizieren wir eine populäre Spieltheorie, die unter dem Namen boxworld bekannt ist. Es stellt sich jedoch heraus, dass dieser Ansatz für größere multipartite Systeme fehlschlägt, da die Anwendung des Verschränkungstausch-Protokolls zu Inkonsistenzen führt. Wir zeigen dann, dass der GPT-Ansatz generell konsistenten Verschränkungstausch für solche Systeme verbietet, die Subsysteme mit zwei-dimensionalen Zustandsräumen haben, wo die reinen Zustände reversibel in einander überführbar sind. Ändern wir den GPT-Ansatz jedoch insofern, dass rein globale Freiheitsgrade zugelassen sind, zeigt sich das Verschränkungstausch auch für diese Systeme möglich wird. Dabei kommt eine Konstruktion zum Einsatz, die die Situation nachahmt, wie sie in der Quantentheorie auf einem reellen Hilbertraum herrscht. Normalerweise geht der GPT-Ansatz von der sogenannten No-restriction-Hypothese aus, bei der der Zustandsraum einer physikalischen Theorie auch die Menge möglicher Messungen bestimmt. Allerdings scheint diese Annahme nicht physikalisch motiviert. Wir verallgemeinern daher in Kapitel 4 den Ansatz auf Systeme, die nicht der No-restriction-Hypothese gehorchen unter Verwendung von Resultaten aus [Phys. Rev. A 87, 052131 (2013)] und [Proc. QPL 2013, wird veröffentlicht in EPTCS]. Wir zeigen, wie unser so erweiterte Ansatz dazu genutzt werden kann, neue Klassen von Wahrscheinlichkeitstheorien zu beschreiben. Dadurch lässt sich beispielsweise in eine Theorie intrinsisches Rauschen fest einbauen. Das Aufheben der no-restriction-Hypothese erlaubt es uns außerdem eine Selbstualisierungsprozedur einzuführen. Dadurch lassen sich eine neue Klasse von Theorien definieren, die der Quantentheorie ähnelnde Eigenschaften aufweisen. Beispielsweise sind die Korrelationen durch Messungen auf den maximal verschränkten Zustands durch die Tsirelson-Schranke beschränkt. Schließlich charakterisieren wir die maximale Menge zusammengesetzter Zustände, die sich allgemein konsistent für gegebene Subsysteme definieren lassen. Dies verallgemeinert das aus dem normalen GPT-Ansatz bekannte, sogenannte maximale Tensorprodukt. KW - Quantentheorie KW - Quantum Foundations KW - Nonlocal Correlations KW - Generalized Probabilistic Theories KW - Grundlagen der Quantentheorie KW - Nicht-lokale Korrelationen KW - Grundlage KW - Wahrscheinlichkeitstheorie KW - Theoretische Physik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105612 ER - TY - JOUR A1 - Vainio, Rami A1 - Valtonen, Eino A1 - Heber, Bernd A1 - Malandraki, Olga E. A1 - Papaioannou, Athanasios A1 - Klein, Karl-Ludwig A1 - Afanasiev, Alexander A1 - Agueda, Neus A1 - Aurass, Henry A1 - Battarbee, Markus A1 - Braune, Stephan A1 - Dröge, Wolfgang A1 - Ganse, Urs A1 - Hamadache, Clarisse A1 - Heynderickx, Daniel A1 - Huttunen-Heikinmaa, Kalle A1 - Kiener, Jürgen A1 - Kilian, Patrick A1 - Kopp, Andreas A1 - Kouloumvakos, Athanasios A1 - Maisala, Sami A1 - Mishev, Alexander A1 - Miteva, Rosita A1 - Nindos, Alexander A1 - Oittinen, Tero A1 - Raukunen, Osku A1 - Riihonen, Esa A1 - Rodriguez-Gasen, Rosa A1 - Saloniemi, Oskari A1 - Sanahuja, Blai A1 - Scherer, Renate A1 - Spanier, Felix A1 - Tatischeff, Vincent A1 - Tziotziou, Kostas A1 - Usoskin, Ilya G. A1 - Vilmer, Nicole T1 - The first SEPServer event catalogue similar to ~68-MeV solar proton events observed at 1 AU in 1996-2010 JF - Journal of Space Weather and Space Climate N2 - SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (similar to 68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s less than or similar to 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line. KW - radio emissions (dynamic) KW - projects KW - advanced composition explorer KW - wind spacecraft KW - stereo mission KW - alpha monitor KW - electron KW - plasma KW - radio KW - spectrometer KW - heliosphere KW - instrument KW - radiation KW - flares Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122847 SN - 2115-7251 VL - 3 IS - A12 ER - TY - JOUR A1 - Camargo-Molina, J. E. A1 - Garbrecht, B. A1 - O'Leary, B. A1 - Porod, W. A1 - Staub, F. T1 - Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature JF - Physics Letters B N2 - We re-evaluate the constraints on the parameter space of the minimal supersymmetric standard model from tunneling to charge- and/or color-breaking minima, taking into account thermal corrections. We pay particular attention to the region known as the Natural MSSM, where the masses of the scalar partners of the top quarks are within an order of magnitude or so of the electroweak scale. These constraints arise from the interaction between these scalar tops and the Higgs fields, which allows the possibility of parameter points having deep charge- and color-breaking true vacua. In addition to requiring that our electroweak-symmetry-breaking, yet QCD- and electromagnetism-preserving vacuum has a sufficiently long lifetime at zero temperature, also demanding stability against thermal tunneling further restricts the allowed parameter space. KW - Supersymmetry KW - Vacuum stability Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118458 VL - 737 ER - TY - THES A1 - Lewandowska, Natalia Ewelina T1 - A Correlation Study of Radio Giant Pulses and Very High Energy Photons from the Crab Pulsar T1 - Eine Korrelationsstudie zwischen Riesenpulsen im Radiobereich und Photonen im Gammabereich vom Pulsar im Krebsnebel N2 - Pulsars (in short for Pulsating Stars) are magnetized, fast rotating neutron stars. The basic picture of a pulsar describes it as a neutron star which has a rotation axis that is not aligned with its magnetic field axis. The emission is assumed to be generated near the magnetic poles of the neutron star and emitted along the open magnetic field lines. Consequently, the corresponding beam of photons is emitted along the magnetic field line axis. The non-alignment of both, the rotation and the magnetic field axis, results in the effect that the emission of the pulsar is only seen if its beam points towards the observer. The emission from a pulsar is therefore perceived as being pulsed although its generation is not. This rather simple geometrical model is commonly referred to as Lighthouse Model and has been widely accepted. However, it does not deliver an explanation of the precise mechanisms behind the emission from pulsars (see below for more details). Nowadays more than 2000 pulsars are known. They are observed at various wavelengths. Multiwavelength studies have shown that some pulsars are visible only at certain wavelengths while the emission from others can be observed throughout large parts of the electromagnetic spectrum. An example of the latter case is the Crab pulsar which is also the main object of interest in this thesis. Originating from a supernova explosion observed in 1054 A.D. and discovered in 1968, the Crab pulsar has been the central subject of numerous studies. Its pulsed emission is visible throughout the whole electromagnetic spectrum which makes it a key figure in understanding the possible mechanisms of multiwavelength emission from pulsars. The Crab pulsar is also well known for its radio emission strongly varying on long as well as on short time scales. While long time scale behaviour from a pulsar is usually examined through the use of its average profile (a profile resulting from averaging of a large number of individual pulses resulting from single rotations), short time scale behaviour is examined via its single pulses. The short time scale anomalous behaviour of its radio emission is commonly referred to as Giant Pulses and represents the central topic of this thesis. While current theoretical approaches place the origin of the radio emission from a pulsar like the Crab near its magnetic poles (Polar Cap Model) as already indicated by the Lighthouse model, its emission at higher frequencies, especially its gamma-ray emission, is assumed to originate further away in the geometrical region surrounding a pulsar which is commonly referred to as a pulsar magnetosphere (Outer Gap Model). Consequently, the respective emission regions are usually assumed not to be connected. However, past observational results from the Crab pulsar represent a contradiction to this assumption. Radio giant pulses from the Crab pulsar have been observed to emit large amounts of energy on very short time scales implying small emission regions on the surface of the pulsar. Such energetic events might also leave a trace in the gamma-ray emission of the Crab pulsar. The aim of this thesis is to search for this connection in the form of a correlation study between radio giant pulses and gamma-photons from the Crab pulsar. To make such a study possible, a multiwavelength observational campaign was organized for which radio observations were independently applied for, coordinated and carried out with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope and gamma-ray observations with the Major Atmospheric Imaging Cherenkov telescopes. The corresponding radio and gamma-ray data sets were reduced and the correlation analysis thereafter consisted of three different approaches: 1) The search for a clustering in the differences of the times of arrival of radio giant pulses and gamma-photons; 2) The search for a linear correlation between radio giant pulses and gamma-photons using the Pearson correlation approach; 3) A search for an increase of the gamma-ray flux around occurring radio giant pulses. In the last part of the correlation study an increase of the number of gamma-photons centered on a radio giant pulse by about 17% (in contrast with the number of gamma-photons when no radio giant pulse occurs in the same time window) was discovered. This finding suggests that a new theoretical approach for the emission of young pulsars like the Crab pulsar, is necessary. N2 - Pulsare (Kurzform von Pulsating Stars) sind stark magnetisierte, rotierende Neutronensterne. Nach dem Standardmodell ist ein Pulsar ein Neutronenstern mit einer Rotationsachse, die nicht entlang der Achse seines Magnetfelds ausgerichtet ist. Es wird angenommen, dass die Pulsarstrahlung in der Nähe der Pole des Neutronensterns an offenen Magnetfeldlinien entsteht. Der dadurch entstehende Photonenstrahl wird entlang der Magnetfeldachse emittiert. Die unterschiedlichen Ausrichtungen der Rotations- und Magnetfeldachse führen dazu, dass die Strahlung des Pulsars von einem Beobachter nur wahrgenommen wird, wenn der Photonenstrahl die Sichtlinie des Beobachters überstreicht. Durch diesen Effekt wird beim Beobachter der Anschein erweckt die Pulsarstrahlung sei gepulst, obwohl sie kontinuerlich produziert wird. Dieses vereinfachte geometrische Model, in der Literatur oftmals als Leuchtturm Modell bezeichnet, ist heutzutage weitestgehend akzeptiert. Es liefert dennoch keine Erklärung für die genaue Entstehung der Pulsarstrahlung (siehe weiter unten). Heutzutage sind mehr als 2000 Pulsare bekannt und werden mittlerweile nicht nur bei Radiowellenlängen untersucht. Multiwellenlängenstudien haben zu der Entdeckung geführt, dass einige Pulsar nur in bestimmten Wellenlängenbereichen sichtbar sind, während die Strahlung von anderen Pulsaren in weiten Teilen des elektromagnetischen Spektrums nachgewiesen werden kann. Ein Beispiel für letzteren Fall ist der Crab Pulsar, das Objekt das die vorliegende Arbeit hauptsächlich betrachtet. Entstanden in einer Supernova, die im Jahre 1054 n.Chr. beobachtet wurde, wurde er 1968 als stellarer Überrest dieser Explosion entdeckt und seitdem im Rahmen zahlreicher Studien untersucht. Seine gepulste Strahlung kann im gesamten elektromagnetischen Spektrum nachgewiesen werden. Diese Eigenschaft macht ihn zu einem Schlüsselobjekt für die Erforschung möglicher Emissionsmechanismen der Strahlung von Pulsaren. Eine weitere Besonderheit des Crab Pulsars liegt auch in dem anomalen Verhalten seiner Radiostrahlung auf kurzen Zeitskalen. Während das Langzeitverhalten eines Pulsars mittels seines mittleren Pulsprofiles (eines Profils resultierend aus der Mittelung vieler Einzelpulse aus einzelnen Rotationen) untersucht wird, wird das Kurzzeitverhalten mittels einzelner Pulse untersucht. Als anomales Verhalten der Radiostrahlung des Crab Pulsars auf diesen kurzen Zeitskalen sind die sogenannten Riesenpulse (Giant Pulses) von Interesse. Einzelpulse dieser Art sind der zentrale zu untersuchende Aspekt der vorliegenden Arbeit. Gängige theoretische Modelle gehen davon aus, dass die Radiostrahlung eines Pulsars in der Nähe der Pole entsteht (Polar Cap Model), wie zuvor vom Leuchtturm Model impliziert wurde, während die hochfrequente Strahlung, wie z.B. die gamma-Strahlung, weiter außen in der Magnetosphäre, die den Pulsar umgibt, entsteht (Outer Gap Model). Ausgehend von diesen beiden theoretischen Ansätzen, wird angenommen, dass die entsprechenden Entstehungsregionen nicht miteinander verbunden sind. Die bisherigen Beobachtungen des Crab Pulsars widersprechen jedoch dieser Annahme. Untersuchungen der Riesenpulse des Crab Pulsars im Radiobereich haben ergeben, dass diese Einzelpulse große Energiemengen binnen sehr kurzen Zeitskalen freisetzen. Dieses Phänomen deutet auf sehr kleine Emissionsregionen auf der Oberfläche des Pulsars hin. Eine Freisetzung dieser Energiemengen könnte auch Spuren im Bereich der hochenergetischen gamma-Strahlung hinterlassen. Das Ziel der vorliegenden Arbeit ist daher eine Untersuchung einer möglichen Verbindung zwischen den Radiopulsen des Crab Pulsars im Radiobereich und seiner gamma-Strahlung in der Form einer Korrelationsstudie. Um eine solche Studie zu ermöglichen, wurde eine Multiwellenlängen Beobachtungskampagne organisiert. Im Rahmen dieser Kampagne wurden selbstständig Radiobeobachtungen am Effelsberger Radioteleskop und am Westerbork Synthesis Radio Telescope und gamma-Beobachtungen an den Major Atmospheric Imaging Cherenkov Teleskopen erfolgreich beantragt, koordiniert und (teilweise selbstständig vor Ort) ausgeführt. Die daraus entstehenden Datensätze wurden entsprechend bearbeitet und in der resultierenden Korrelationsanalyse wurden die folgenden Aspekte untersucht: 1) Eine Anhäufung in den Ankunftszeiten von Riesenpulsen und gamma-Photonen; 2) Eine Suche nach einer linearen Korrelation zwischen Riesenpulsen und gamma-Photonen mittels der Pearson Korrelation; 3) Eine Suche nach einer Erhöhung des Flusses von gamma-Photonen in der zeitlichen Umgebung eines Riesenpulses im Radiobereich. Im letzten Teil der Analyse konnte eine Erhöhung der Anzahl von gamma-Photonen, die zeitlich auf einem Riesenpuls zentriert sind, von ungefähr 17% (im Vergleich zu der entsprechenden Anzahl im gleichen Zeitfenster, wenn kein Riesenpuls vorhanden ist) nachgewiesen werden. Dieses Ergebnis gibt einen wichtigen Impuls für die Überarbeitung der bereits vorhandenen Emissionsmodelle von jungen Pulsaren wie dem Crab Pulsar. KW - Pulsar KW - Crab-Nebel KW - Gammaastronomie KW - Radioastronomie KW - crab pulsar KW - giant pulses KW - neutron star KW - correlation KW - radio astronomy KW - gamma astronomy KW - Radiofrequenzstrahlung KW - Gammastrahlenastronomie KW - Korrelation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123533 ER - TY - THES A1 - Krauß, Manuel Ernst T1 - Non-minimal supersymmetric models: LHC phenomenology and model discrimination T1 - Nichtminimale supersymmetrische Modelle: LHC-Phänomenologie und Modellunterscheidung N2 - It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar \(SU(2)_R\) triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new physics signals or just background fluctuations. In a careful evaluation of the loop-corrected scalar potential we then identify parameter regions in which the vacuum with the phenomenologically correct symmetry-breaking properties is stable. Conveniently, those regions favour low left-right symmetry breaking scales which are accessible at the LHC. In a slightly modified version of this model where a \(U(1)_R × U(1)_{B−L}\) gauge symmetry survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry breaking mechanism for which we calculate the boundary conditions in the presence of gauge kinetic mixing. We show how the presence of the extended gauge group raises the tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is relaxed. Taking the constraints from the Higgs sector into account, we then explore the LHC phenomenology of this model and point out where the expected collider signatures can be distinguished from standard scenarios. In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done throughout this work, there are potentially spectacular signals at low-energy experiments which search for charged lepton flavour violation. The last part of this thesis is dedicated to the detailed exploration of processes like μ → e γ, μ → 3 e or μ−e conversion in nuclei in a supersymmetric framework with an inverse seesaw mechanism. In particular, we disprove claims about a non-decoupling effect in Z-mediated three-body decays and study the prospects for discovering and distinguishing signals at near-future experiments. In this context we identify the possibility to deduce from ratios like BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) whether the contributions from ν − W loops dominate over supersymmetric contributions or vice versa. N2 - Man ist sich einig darüber, dass das Standardmodell der Teilchenphysik in seiner aktuellen Form nicht der Weisheit letzter Schluss ist – zu viele grundlegende Fragen lässt es offen. Lediglich die genaue Form der nötigen Erweiterung wird heiß debattiert. Supersymmetrische Modelle gehören zu den vielversprechendsten Ansätzen zu Physik jenseits des Standardmodells, da sie gleichzeiting das Hierarchieproblem lösen und die Dichte der beobachteten dunklen Materie im Universum erklären können. Obwohl das minimale supersymmetrische Modell weitere Vorzüge vorzuweisen hat – hierzu gehört die Vereinheitlichung der Eichkopplungen an großen Skalen sowie radiative elektroschwache Symmetriebrechung – sprechen die aktuellen Messungen am LHC eine andere Sprache. Zudem sind auch in diesem Modell die Neutrinos masselos, sodass es nicht die endgültige Theorie darstellen kann. Dies mindert jedoch nicht die Schönheit des Konzepts der Supersymmetrie, weshalb es an der Zeit ist, nichtminimale supersymmetrische Modelle zu untersuchen, welche die o. g. Probleme nicht aufweisen. Diese Modelle müssen auf Herz und Nieren geprüft werden, bevor man sie mit experimentellen Daten vergleichen und Vorhersagen für zukünftige Experimente treffen kann. Das Ziel dieser Arbeit ist es, zu diesem wichtigen Prozess beizutragen. Hierzu soll die besonders aussichtsreiche Klasse von supersymmetrischen Modellen, welche auf einer links-rechts-Eichsymmetrie basieren, genau untersucht werden. Diese Modelle sind deutlich weniger von LHC-Ausschlussgrenzen betroffen und sagen zudem rechtshändige Neutrinos voraus, mit welchen die leichten Neutrinomassen erklärt werden können. Zu Beginn wenden wir uns einem links-rechts-supersymmetrischen Modell an der TeV-Skala zu, in welchem \(SU(2)_R\) -Tripletts sowohl für die Brechung der Links-Rechts-Symmetrie als auch für die Generation von Neutrinomassen verantwortlich sind. Zur führenden Ordnung in der Störungstheorie beinhaltet diese Art von Modellen ein tachyonisches doppelt geladenes Skalarfeld. Wir wenden uns der Ermittlung der zugehörigen Masse auf dem Einschleifenniveau zu und zeigen erstmals in einer konsistenten, vollständigen Berechnung derselben, dass die Masse im Allgemeinen reell ist. Anschließend werden die Beschränkungen an die Links-Rechts-Brechungsskala aus aktuellen LHC-Daten ermittelt. Wir zeigen, dass unser Modell gewisse Signal- Uberschüsse in jenen Daten erklären kann – der aktuelle LHC-Lauf wird klären, ob diese tatsächlich neuer Physik oder doch nur statistischen Fluktuationen entsprechen. Schließlich bestimmen wir in einer Untersuchung der Vakuumstruktur auf dem Einschleifenniveau diejenigen Parameterregionen, in welchen die phänomenologisch korrekte elektroschwache Symmetriebrechung angenommen wird. Passenderweise werden Regionen bevorzugt, welche messbare Signale am LHC vorhersagen. In einem leicht unterschiedlichen Modell, in dem eine \(U(1)_R × U(1)_{B−L}\) bis herunter an die TeV-Skala überleben kann, implementieren wir einen über Eichwechselwirkungen vermittelten Supersymmetrie-Brechungsmechanismus, mit besonderem Augenmerk auf die eichkinetische Mischung in den Randbedingungen. Durch die erweiterte Eichgruppe wird die Higgsmasse bereits auf führender Ordnung erhöht. Wir ermitteln die Konsequenzen für die Skala der Supersymmetrie-Brechungsskala. Anschließend untersuchen wir die am LHC zu erwartende Phänomenologie und zeigen auf, in welchen Prozessen sich dieses Modell von Standard-Szenarien unterscheidet. Durch diese Arbeit hinweg nehmen wir an, dass die leichten Neutrinomassen duch einen Seesaw-Mechanismus an der TeV-Skala erklärt werden. Dass dies zu potentiell höchst interessanten Signalen in Niederenergieexperimenten führt, wird im letzten Teil dieser Arbeit thematisiert. Der Fokus liegt hierbei auf Lepton-Flavour-verletzenden Prozessen wie μ → e γ, μ → 3 e oder die μ−e-Umwandlung in Atomkernen, welche wir im Rahmen eines supersymmetrischen Modells mit inversem Seesaw-Mechanismus genauer untersuchen. Insbesondere widerlegen wir Behauptungen von nichtentkoppelnden Z-Pinguin-Diagrammen und untersuchen die Aussichten, Signale an zukünftigen Experimenten zu messen sowie Rückschlüsse auf das zugrundeliegende Modell ziehen zu können. In diesem Zusammenhang demonstrieren wir die Möglichkeit, durch die relativen Verhältnisse von Verzweigungsverhältnissen wie BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^−\)) unterscheiden zu können, ob die zugehörigen Prozesse hauptsächlich durch supersymmetrische oder durch W − ν-Diagramme herbeigeführt wurden. KW - Supersymmetrie KW - Standardmodell KW - beyond Standard Model KW - Physik jenseits des Standardmodells KW - lepton flavour violation KW - extra gauge bosons KW - extended gauge symmetry KW - Lepton-Flavour-Verletzung KW - extra Eichbosonen KW - erweiterte Eichsymmetrie KW - LHC KW - Vektorboson KW - Higgs-Teilchen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123555 ER - TY - THES A1 - Kilian, Patrick T1 - Teilchenbeschleunigung an kollisionsfreien Schockfronten T1 - Partical acceleration at collisionless shock fronts N2 - Das Magnetfeld der Sonne ist kein einfaches statisches Dipolfeld, sondern weist wesentlich kompliziertere Strukturen auf. Wenn Rekonnexion die Topologie eines Feldlinienbündels verändert, wird viel Energie frei, die zuvor im Magnetfeld gespeichert war. Das abgetrennte Bündel wird mit dem damit verbundenen Plasma mit großer Geschwindigkeit durch die Korona von der Sonne weg bewegen. Dieser Vorgang wird als koronaler Massenauswurf bezeichnet. Da diese Bewegung mit Geschwindigkeiten deutlich über der Alfv\'en-Geschwindigkeit, der kritischen Geschwindigkeit im Sonnenwind, erfolgen kann, bildet sich eine Schockfront, die durch den Sonnenwind propagiert. Satelliten, die die Bedingungen im Sonnenwind beobachten, detektieren beim Auftreten solcher Schockfronten einen erhöhten Fluss von hochenergetischen Teilchen. Mit Radioinstrumenten empfängt man zeitgleich elektromagnetische Phänomene, die als Radiobursts bezeichnet werden, und ebenfalls für die Anwesenheit energiereicher Teilchen sprechen. Daher, und aufgrund von theoretischen Überlegungen liegt es nahe, anzunehmen, daß Teilchen an der Schockfront beschleunigt werden können. Die Untersuchung der Teilchenbeschleunigung an kollisionsfreien Schockfronten ist aber noch aus einem zweiten Grund interessant. Die Erde wird kontinuierlich von hochenergetischen Teilchen, die aus historischen Gründen als kosmische Strahlung bezeichnet werden, erreicht. Die gängige Theorie für deren Herkunft besagt, daß zumindest der galaktische Anteil durch die Beschleunigung an Schockfronten, die durch Supernovae ausgelöst wurden, bis zu den beobachteten hohen Energien gelangt sind. Das Problem bei der Untersuchung der Herkunft der kosmischen Strahlung ist jedoch, daß die Schockfronten um Supernovaüberreste aufgrund der großen Entfernung nicht direkt beobachtbar sind. Es liegt dementsprechend nahe, die Schockbeschleunigung an den wesentlich näheren und besser zu beobachtenden Schocks im Sonnensystem zu studieren, um so Modelle und Simulationen entwickeln und testen zu können. Die vorliegende Arbeit beschäftigt sich daher mit Simulationen von Schockfronten mit Parametern, die etwa denen von CME getriebenen Schocks entsprechen. Um die Entwicklung der Energieverteilung der Teilchen zu studieren, ist ein kinetischer Ansatz nötig. Dementsprechend wurden die Simulationen mit einem Particle-in-Cell Code durchgeführt. Die Herausforderung ist dabei die große Spanne zwischen den mikrophysikalischen Zeit- und Längenskalen, die aus Gründen der Genauigkeit und numerischen Stabilität aufgelöst werden müssen und den wesentlich größeren Skalen, die die Schockfront umfasst und auf der Teilchenbeschleunigung stattfindet. Um die Stabilität und physikalische Aussagekraft der Simulationen sicherzustellen, werden die numerischen Bausteine mittels Testfällen, deren Verhalten bekannt ist, gründlich auf ihre Tauglichkeit und korrekte Implementierung geprüft. Bei den resultierenden Simulationen wird das Zutreffen von analytischen Vorhersagen (etwa die Einhaltung der Sprungbedingungen) überprüft. Auch die Vorhersagen einfacherer Plasmamodelle, etwa für das elektrostatischen Potential an der Schockfront, das man auch aus einer Zwei-Fluid-Beschreibung erhalten kann, folgen automatisch aus der selbstkonsistenten, kinetischen Beschreibung. Zusätzlich erhält man Aussagen über das Spektrum und die Bahnen der beschleunigten Teilchen. N2 - The magnetic field of the sun is not a simple static dipole field but comprises much more complicated structures. When magnetic reconnection changes the topology of a structure the large amount of energy that was stored in the magnetic field is released and can eject the remainder of the magnetic structure and the plasma that is frozen to the magnetic field lines from the solar corona at large velocities. This event is called a coronal mass ejection (CME). Given that the upward motion happens at velocities larger than the local Alfv\'en speed, the critical speed in the solar wind, the CME will act as a piston that drives a shock front through the solar wind ahead of itself. Satellites that monitor solar wind conditions detect an enhanced flux of high energy particles associated with the shock front. Radio instruments typically pick up bursts of electromagnetic emission, termed radio bursts, that are also consistent with processes driven by energetic particles. Thus, and due to theoretical considerations, it is safe to assume that particles can be accelerated at the shock front. Particle acceleration at collisionless shock fronts is an interesting topic for another reason. Earth is constantly bombarded by very energetic particles called (due to historical reasons) cosmic rays. The leading theory for the production of at least the fraction of cosmic rays that originate in our galaxy is acceleration at shock fronts, e.g. in super nova remnants. The large distance and consequently limited observation of these shock fronts restrict more detailed investigations. It is therefore useful to study the process of shock acceleration at shocks in the solar system that are much closer and more approachable to develop and test models and simulation methods that can be applied in different regimes. This dissertation aims at simulations of shock fronts with parameters that are close to the ones occurring in CME driven shocks. Since the goal is the investigation of the changing particle spectrum fully kinetic methods are necessary and consequently a particle in cell code was developed and used. The main challenge there is the large span of time and length scales that range from the microscopic regime that has to be resolved to guarantee stability and accuracy to the much larger scales of the entire shock fronts at which the particle acceleration takes place. To prove the numerical stability and suitability of the simulations to provide physical results all numerical building blocks are tested on problems where the correct behavior is known to verify the correct implementation. For validation purposes the results of the final shock simulations are compared with analytic predictions (such as the jump conditions from magneto hydrodynamics) and predictions of simpler plasma models (such as the cross shock potential that can be derived from two fluid theory). Finally results that can only be obtained from a self consistent, fully kinetic model, such as particle spectra and trajectories, are discussed. KW - Stoßfreies Plasma KW - Sonnenwind KW - Teilchenbeschleunigung KW - Computersimulation KW - kinetische Plasmaphysik KW - Stoßwelle KW - Schockfront Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119023 ER - TY - THES A1 - Boyer, Sonja T1 - Morphologische und spektroskopische Untersuchungen von Supernova-Überresten T1 - Morphological and spectroscopical investigations of supernova remnants N2 - Bis heute ist nicht bekannt, in welcher Umgebung die schwersten Elemente durch Neutroneneinfangprozesse entstehen. Es gibt zwei mögliche Szenarien, die in der Literatur diskutiert werden: Supernova-Explosionen und Neutronensternverschmelzungen. Beide tragen zur Elementproduktion bei. Welches Szenario aber die dominierende Umgebung ist, bleibt umstritten. Mehrere Fakten sprechen für Supernova-Explosionen als Entstehungsorte: Wenn ein massereicher Stern kollabiert und anschließend explodiert, sind die Temperatur und die Dichte so hoch, dass Neutronen von den bereits bestehenden Elementen eingefangen und angelagert werden können. Obwohl in Simulationen mit kugelsymmetrischen Modellen nur protonen- reiche Auswürfe entstehen, kann es in asymmetrischen Explosionen aufgrund der Rotation und der Magnetfelder vermutlich zu einem neutronenreichen Auswurf kommen. Dieser ist hoch genug, dass der schnelle Neutroneneinfang auftreten kann. In dieser Arbeit habe ich daher die Überreste solcher Explosionen untersucht, um nach Asymmetrien und ihren möglichen Auswirkungen auf die Element-Entstehung und Verteilung zu suchen. Dafür wurden die beiden Supernova-Überreste CTB 109 und RCW 103 ausgewählt. CTB 109 besitzt im Zentrum einen anomale Röntgenpulsar, also einen Neutronenstern mit hohem Magnetfeld und starker Rotation, die durch Asymmetrien hervorgerufen worden sein könnten. Auch RCW 103 hat vermutlich einen solchen Pulsar als zentrale Quelle. Beide Überreste sind noch recht jung und befinden sich in ihrer Sedov-Taylor Phase. Die Distanz zur Erde beträgt für beide Überreste ungefähr 3 kpc, womit sie in der näheren Umgebung der Erde zu finden sind. Die Elemente bis zur Eisengruppe haben ihre bekanntesten Linien im Bereich der Röntgenstrahlung. Deswegen wurden für diese Arbeit archivierte Daten des Satelliten XMM-Newton ausgewählt und die Spektren in definierten Regionen in den bei- den Supernova-Überresten mit den EPIC MOS-Kameras ausgewertet. Die heutigen Röntgensatelliten haben jedoch keine ausreichende Sensitivität, um die schwersten Elemente zu detektieren. In den Spektren der beiden Überreste wurden deshalb vorwiegend die Elemente Silizium und Magnesium gefunden, in CTB 109 auch Neon. Elemente mit höheren Massezahlen konnten leider nicht signifikant aus dem Hintergrund herausgefiltert werden. Deutlich sind die Peaks der drei Elementen sichtbar, aber auch Schwefel ist in den Regionen mit hohen Zählraten zu entdecken. Für bei- de Supernova-Überreste wurde der beste Fit mit dem Modell vpshock gefunden. In diesem Modell wird ein Plasma angenommen, das bei konstanter Temperatur plan-parallel geschockt wird. Um diesen Fit zu erzielen wurden die Parameter für die Elemente Fe, S, Si, Mg, O und Ne variiert. Die restlichen Elemente wurden auf die solare Häufigkeit festgelegt. Bei CTB 109 befinden sich die Temperaturen (kT) in den Regionen mit hohen Zählraten im Bereich zwischen 0.6 und 0.7 keV und liegen damit im selben Bereich, der bereits mit anderen Teleskopen für CTB 109 gefunden wurde. In den Regionen mit niedrigen Zählraten liegen die Temperaturen etwas tiefer mit 0.3-0.4 keV. Im Supernova-Überrest RCW 103 wurde nur eine Region mit hoher Zählrate analysiert und eine Temperatur von 0.57 keV gefunden, während in der Region mit niedriger Zählrate die Temperatur kT = 0.36 ± 0.08 keV beträgt. Beide Werte passen zu den Werten in CTB 109. Die einzelnen Elementlinien wurden zusätzlich mit einer Gauß-Verteilung angepasst und die Flüsse ermittelt. Diese wurden in Intensitätskarten aufgetragen, in denen die unterschiedlichen Verteilungen der Elemente über den Supernova-Überrest zu sehen sind. Während Silizium in einigen wenigen Regionen geklumpt auftritt, ist Magnesium über die Überreste verteilt und hat in einigen Regionen höhere Werte als Silizium. Das lässt den Schluss zu, dass die beiden Elemente auf unterschiedliche Weise aus der Explosion herausgeschleudert wurden. Die Verteilung ist hier durchaus asymmetrisch, es ist jedoch nicht möglich dies auf eine asymmetrische Explosion der Supernova zurückzuführen. Dafür müssen mehr als zwei Supernova-Überreste mit dieser Methode untersucht werden und mit einer noch nicht vorhandenen Theorie zur Verteilung der Elemente in Überresten verglichen werden. Im direkten Vergleich der beiden bisher untersuchten Supernova-Überreste CTB 109 und RCW 103 sieht man, dass die beiden Überreste sich sehr in der Temperatur und der Verteilung der Elemente ähneln. Das lässt auf eine einheitliche Ausbreitung der Elemente innerhalb der Supernova-Überreste schließen. Silizium wird aufgrund der Explosion in fingerartigen Strukturen, die Rayleigh-Taylor-Instabilitäten, nach außen transportiert. Dabei bildet es Klumpen, die mit den weiter außen liegenden Schalen reagieren. Magnesium und Neon hingegen werden hauptsächlich in den Brennphasen vor der Explosion und in den äußeren Schichten des Sterns, der Zwiebelschalenstruktur, produziert. Dadurch ist eine ausgedehnte Verteilung zu er- warten. Diese Verteilungen der drei Elemente ist in dieser Arbeit bestätigt worden. Während Magnesium und Neon über den gesamten Überrest hohe Flüsse aufweisen, ist Silizium sehr lokal im Lobe von CTB 109 und im hellen Süden von RCW 103 zu finden. Mit zukünftigen Röntgenteleskopen, die eine höhere räumliche Auflösung ermöglichen, könnten die beobachteten Zusammenhänge zwischen der asymmetrischen Elementverteilung im Supernovaüberrest und den Mechanismen der Elemententstehung in der Supernova weiter untersucht werden. N2 - Elements heavier than iron are produced via neutron capture. Where this process happens is still unknown. There are two main sites discussed in literature: supernova explosions and neutronstar mergers. Both will produce the lighter heavy elements, but the dominant producer of these two scenarios has still not determined. There are some good arguments for supernova explosions: when a massive star undergoes core collapse that results in a massive explosion, the temperatures and densities are very high. The atoms that are already in this environment can capture free neutrons. The charge number will increase and a more massive element will be created. Simulations with spherical symmetries show that the ejecta is protonrich. Due to asymmetries that are generated by rotations and magnetic fields of the progenitor star, the Explosion can produce neutronrich ejecta in the required amount to benefit the rapid neutron capture. I looked at the remnants of these explosions to find asymmetries and investigate their impact on nucleosynthesis and the distribution of elements. For this purpose, the supernova remnants CTB 109 and RCW 103 were selected for the analysis. CTB 109 has an anomalous X-ray pulsar in its center that rotates rapidly and has high magnetic fields. Both effects are assumed to exist due to asymmetries during the explosion. RCW 103 presumably has a similar central source. The remnants are both still in their Sedov-Taylor phase and are located at a distance of about 3 kpc from Earth. The elements with mass numbers up to that of iron have their prominent Emission lines in the energy range of the X-rays. For that reason, archived data from XMM-Newton were taken and the spectra in chosen regions in the remnants were analyzed with the EPIC MOS cameras. Unfortunately, the sensitivity of the present instruments is not high enough to detect the heaviest elements. In this work, mainly the element lines of silicon and magnesium were found. Neon was also detected for CTB 109. Elements with higher charge numbers could not be significantly separated from the background. All three elements can be seen clearly in the extracted spectra. In regions with high count rates even sulfur can be found. I used a model for a plan parallel shocked plasma with constant energy. To find the best fit, the elements Fe, S, Si, Mg, O and Ne were varied, while the other elements were fixed to the solar abundances. For CTB 109, the temperatures in the regions with high count rates are in the range of 0.6 and 0.7 keV and are in the same range as observations with other telescopes for CTB 109. In the regions with low count rates the temperature is lower at 0.3 to 0.4 keV. For RCW 103, only one region with high count rate was analyzed that has a temperature of 0.57 keV. In the region with low count rate, the temperature is kT = 0.36 ± 0.08 keV. Both values are very similar to CTB 109. The element lines of silicon, magnesium and neon were modeled separately with a Gaussian distribution and the fluxes were determined. They were plotted in intensity maps where the different distributions of the elements are shown. While silicon clumps in just a few regions, magnesium is spread widely over the remnants. In some regions, magnesium has an even higher flux than silicon. This leads to the assumption that both elements are transported in different ways from the explosion center into the surroundings. The Distribution of both elements shows asymmetric behavior, but it cannot be proven that this is due to the supernova explosion itself. Therefore, more than two supernova remnants have to be analyzed with this method. In addition, a theory of the evolution of element abundances in supernova remnants would help to interpret these results. The comparison of both supernova remnants CTB 109 and RCW 103 shows that the temperatures and the distributions are very similar. This indicates that the transportation of elements from the core into the remnant occurs in the same way in both supernova remnants. Silicon comes directly from the center of the explosion and is transported outwards with finger like structures that are formed by Rayleigh-Taylor instabilities. It clumps and interacts with the surrounding materials. Magnesium and neon are products of burning stages before the explosion. They will also be produced in the onion-like structure of the progenitor star. Therefore we assume a distribution that is spread widely over the whole remnant. This distribution is shown in this work. Magnesium and neon have high fluxes in nearly all analyzed regions, while silicon is only located in the Lobe of CTB 109 and the bright south of RCW 103. To extend the investigation of the correlation between asymmetrical element distributions in supernova remnants and the mechanisms of heavy element production, new X-ray telescopes are required that have higher spectral resolution than the ones today. KW - Supernovaüberrest KW - Elemente KW - CTB 109 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119108 ER - TY - JOUR A1 - Edgecock, T. R. A1 - Caretta, O. A1 - Davenne, T. A1 - Densam, C. A1 - Fitton, M. A1 - Kelliher, D. A1 - Loveridge, P. A1 - Machida, S. A1 - Prior, C. A1 - Rogers, C. A1 - Rooney, M. A1 - Thomason, J. A1 - Wilcox, D. A1 - Wildner, E. A1 - Efthymiopoulos, I. A1 - Garoby, R. A1 - Gilardoni, S. A1 - Hansen, C. A1 - Benedetto, E. A1 - Jensen, E. A1 - Kosmicki, A. A1 - Martini, M. A1 - Osborne, J. A1 - Prior, G. A1 - Stora, T. A1 - Melo Mendonca, T. A1 - Vlachoudis, V. A1 - Waaijer, C. A1 - Cupial, P. A1 - Chancé, A. A1 - Longhin, A. A1 - Payet, J. A1 - Zito, M. A1 - Baussan, E. A1 - Bobeth, C. A1 - Bouquerel, E. A1 - Dracos, M. A1 - Gaudiot, G. A1 - Lepers, B. A1 - Osswald, F. A1 - Poussot, P. A1 - Vassilopoulos, N. A1 - Wurtz, J. A1 - Zeter, V. A1 - Bielski, J. A1 - Kozien, M. A1 - Lacny, L. A1 - Skoczen, B. A1 - Szybinski, B. A1 - Ustrycka, A. A1 - Wroblewski, A. A1 - Marie-Jeanne, M. A1 - Balint, P. A1 - Fourel, C. A1 - Giraud, J. A1 - Jacob, J. A1 - Lamy, T. A1 - Latrasse, L. A1 - Sortais, P. A1 - Thuillier, T. A1 - Mitrofanov, S. A1 - Loiselet, M. A1 - Keutgen, Th. A1 - Delbar, Th. A1 - Debray, F. A1 - Trophine, C. A1 - Veys, S. A1 - Daversin, C. A1 - Zorin, V. A1 - Izotov, I. A1 - Skalyga, V. A1 - Burt, G. A1 - Dexter, A. C. A1 - Kravchuk, V. L. A1 - Marchi, T. A1 - Cinausero, M. A1 - Gramegna, F. A1 - De Angelis, G. A1 - Prete, G. A1 - Collazuol, G. A1 - Laveder, M. A1 - Mazzocco, M. A1 - Mezzetto, M. A1 - Signorini, C. A1 - Vardaci, E. A1 - Di Nitto, A. A1 - Brondi, A. A1 - La Rana, G. A1 - Migliozzi, P. A1 - Moro, R. A1 - Palladino, V. A1 - Gelli, N. A1 - Berkovits, D. A1 - Hass, M. A1 - Hirsh, T. Y. A1 - Schuhmann, M. A1 - Stahl, A. A1 - Wehner, J. A1 - Bross, A. A1 - Kopp, J. A1 - Neuffer, D. A1 - Wands, R. A1 - Bayes, R. A1 - Laing, A. A1 - Soler, P. A1 - Agarwalla, S. K. A1 - Cervera Villanueva, A. A1 - Donini, A. A1 - Ghosh, T. A1 - Gómez Cadenas, J. J. A1 - Hernández, P. A1 - Martín-Albo, J. A1 - Mena, O. A1 - Burguet-Castell, J. A1 - Agostino, L. A1 - Buizza-Avanzini, M. A1 - Marafini, M. A1 - Patzak, T. A1 - Tonazzo, A. A1 - Duchesneau, D. A1 - Mosca, L. A1 - Bogomilov, M. A1 - Karadzhov, Y. A1 - Matev, R. A1 - Tsenov, R. A1 - Akhmedov, E. A1 - Blennow, M. A1 - Lindner, M. A1 - Schwetz, T. A1 - Fernández Martinez, E. A1 - Maltoni, M. A1 - Menéndez, J. A1 - Giunti, C. A1 - González García, M. C. A1 - Salvado, J. A1 - Coloma, P. A1 - Huber, P. A1 - Li, T. A1 - López Pavón, J. A1 - Orme, C. A1 - Pascoli, S. A1 - Meloni, D. A1 - Tang, J. A1 - Winter, W. A1 - Ohlsson, T. A1 - Zhang, H. A1 - Scotto-Lavina, L. A1 - Terranova, F. A1 - Bonesini, M. A1 - Tortora, L. A1 - Alekou, A. A1 - Aslaninejad, M. A1 - Bontoiu, C. A1 - Kurup, A. A1 - Jenner, L. J. A1 - Long, K. A1 - Pasternak, J. A1 - Pozimski, J. A1 - Back, J. J. A1 - Harrison, P. A1 - Beard, K. A1 - Bogacz, A. A1 - Berg, J. S. A1 - Stratakis, D. A1 - Witte, H. A1 - Snopok, P. A1 - Bliss, N. A1 - Cordwell, M. A1 - Moss, A. A1 - Pattalwar, S. A1 - Apollonio, M. T1 - High intensity neutrino oscillation facilities in Europe JF - Physical Review Special Topics-Accelerators and Beams N2 - The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive. KW - EMMA KW - beta-beam Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126611 VL - 16 IS - 2 ER - TY - THES A1 - Werner, Jan T1 - Numerical Simulations of Heavy Fermion Systems: From He-3 Bilayers to Topological Kondo Insulators T1 - Numerische Simulationen von Schwer-Fermionen-Systemen: Von He-3-Doppellagen zu Topologischen Kondo Isolatoren N2 - Even though heavy fermion systems have been studied for a long time, a strong interest in heavy fermions persists to this day. While the basic principles of local moment formation, Kondo effect and formation of composite quasiparticles leading to a Fermi liquid, are under- stood, there remain many interesting open questions. A number of issues arise due to the interplay of heavy fermion physics with other phenomena like magnetism and superconduc- tivity. In this regard, experimental and theoretical investigations of He-3 can provide valuable insights. He-3 represents a unique realization of a quantum liquid. The fermionic nature of He-3 atoms, in conjunction with the absence of long-range Coulomb repulsion, makes this material an ideal model system to study Fermi liquid behavior. Bulk He-3 has been investigated for quite some time. More recently, it became possible to prepare and study layered He-3 systems, in particular single layers and bilayers. The pos- sibility of tuning various physical properties of the system by changing the density of He-3 and using different substrate materials makes layers of He-3 an ideal quantum simulator for investigating two-dimensional Fermi liquid phenomenology. In particular, bilayers of He-3 have recently been found to exhibit heavy fermion behavior. As a function of temperature, a crossover from an incoherent state with decoupled layers to a coherent Fermi liquid of composite quasiparticles was observed. This behavior has its roots in the hybridization of the two layers. The first is almost completely filled and subject to strong correlation effects, while the second layer is only partially filled and weakly correlated. The quasiparticles are formed due to the Kondo screening of localized moments in the first layer by the second-layer delocalized fermions, which takes place at a characteristic temperature scale, the coherence scale Tcoh. Tcoh can be tuned by changing the He-3 density. In particular, at a certain critical filling, the coherence scale is expected to vanish, corresponding to a divergence of the quasiparticle effective mass, and a breakdown of the Kondo effect at a quantum critical point. Beyond the critical point, the layers are decoupled. The first layer is a local moment magnet, while the second layer is an itinerant overlayer. However, already at a filling smaller than the critical value, preempting the critical point, the onset of a finite sample magnetization was observed. The character of this intervening phase remained unclear. Motivated by these experimental observations, in this thesis the results of model calcula- tions based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. It leads to an effective ferromagnetic interaction between spins on neighboring sites. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential µ and inverse temperature β = 1/T . The method is a cluster extension to the Dy- namical Mean-Field Theory (DMFT), and allows to systematically include non-local correla- tions beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green’s function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. Both observations serve as fingerprints of the Fermi liquid state. The heavy fermion state appears at a characteristic coherence scale Tcoh. This scale depends strongly on the density. While it is rather high for small filling, for larger filling Tcoh is increas- ingly suppressed. This involves a decreasing quasiparticle residue Z ∼ Tcoh and an enhanced mass renormalization m∗/m ∼ Tcoh−1. Extrapolation leads to a critical filling, where the co- herence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Taking only single-site DMFT results into account, the above scenario seems plausible. However, paramagnetic DMFT neglects the ring exchange interaction completely. In or- der to improve on this, Cellular DMFT simulations are conducted for small clusters of size Nc = 2 and 3. The results paint a different physical picture. The ring exchange, by favor- ing a ferromagnetic alignment of spins, competes with the Kondo screening. As a result, strong short-range ferromagnetic fluctuations appear at larger values of µ. By lowering the temperature, these fluctuations are enhanced at first. However, for T < Tcoh they are increas- ingly suppressed, which is consistent with Fermi liquid coherence. However, beyond a certain threshold value of µ, fluctuations persist to the lowest temperatures. At the same time, while not apparent in the DMFT results, the total occupation n increases quite strongly in a very narrow range around the same value of µ. The evolution of n with µ is always continuous, but hints at a discontinuity in the limit Nc → ∞. This first-order transition breaks the Kondo effect. Beyond the transition, a ferromagnetic state in the first layer is established, and the second layer becomes a decoupled overlayer. These observations provide a quite appealing interpretation of the experimental results. As a function of chemical potential, the Kondo breakdown quantum critical point is preempted by a first-order transition, where the layers decouple and the first layer turns into a ferromagnet. In the experimental situation, where the filling can be tuned directly, the discontinuous transition is mirrored by a phase separation, which interpolates between the Fermi liquid ground state at lower filling and the magnetic state at higher filling. This is precisely the range of the intervening phase found in the experiments, which is characterized by an onset of a finite sample magnetization. Besides the interplay of heavy fermion physics and magnetic exchange, recently the spin- orbit coupling, which is present in many heavy fermion materials, attracted a lot of interest. In the presence of time-reversal symmetry, due to spin-orbit coupling, there is the possibility of a topological ground state. It was recently conjectured that the energy scale of spin-orbit coupling can become dom- inant in heavy fermion materials, since the coherence scale and quasiparticle bandwidth are rather small. This can lead to a heavy fermion ground state with a nontrivial band topology; that is, a topological Kondo insulator (TKI). While being subject to strong correlation effects, this state must be adiabatically connected to a non-interacting, topological state. The idea of the topological ground state realized in prototypical Kondo insulators, in par- ticular SmB6, promises to shed light on some of the peculiarities of these materials, like a residual conductivity at the lowest temperatures, which have remained unresolved so far. In this work, a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer’s doublet coupled to a single conduction band. The model is investigated in the presence of a Hubbard interaction as a function of interaction strength U and inverse temperature β. The bulk properties of the model are obtained by DMFT, with a hybridization expansion CTQMC impurity solver. The DMFT approximation of a local self-energy leads to a very simple way of computing the topological invariant. The results show that with increasing U the system can be driven through a topological phase transition. Interestingly, the transition is between distinct topological insulating states, namely the Γ-phase and M-phase. This appearance of different topological phases is possible due to the symmetry of the underlying square lattice. By adiabatically connecting both in- teracting states with the respective non-interacting state, it is shown that the transition indeed drives the system from the Γ-phase to the M-phase. A different behavior can be observed by pushing the bare position of the Kramer’s doublet to higher binding energies. In this case, the non-interacting starting point has a trivial band topology. By switching on the interaction, the system can be tuned through a quantum phase transition, with a closing of the band gap. Upon reopening of the band gap, the system is in the Γ-phase, i. e. a topological insulator. By increasing the interaction strength further, the system moves into a strongly correlated regime. In fact, close to the expected transition to the M phase, the mass renormalization becomes quite substantial. While absent in the para- magnetic DMFT simulations conducted, it is conceivable that instead of a topological phase transition, the system undergoes a time-reversal symmetry breaking, magnetic transition. The regime of strong correlations is studied in more detail as a function of temperature, both in the bulk and with open boundary conditions. A quantity which proved very useful is the bulk topological invariant Ns, which can be generalized to finite interaction strength and temperature. In particular, it can be used to define a temperature scale T ∗ for the onset of the topological state. Rescaling the results for Ns, a nice data collapse of the results for different values of U, from the local moment regime to strongly mixed valence, is obtained. This hints at T ∗ being a universal low energy scale in topological Kondo insulators. Indeed, by comparing T ∗ with the coherence scale extracted from the self-energy mass renormalization, it is found that both scales are equivalent up to a constant prefactor. Hence, the scale T ∗ obtained from the temperature dependence of topological properties, can be used as an independent measure for Fermi liquid coherence. This is particularly useful in the experimentally relevant mixed valence regime, where charge fluctuations cannot be neglected. Here, a separation of the energy scales related to spin and charge fluctuations is not possible. The importance of charge fluctuations becomes evident in the extent of spectral weight transfer as the temperature is lowered. For mixed valence, while the hybridization gap emerges, a substantial amount of spectral weight is shifted from the vicinity of the Fermi level to the lower Hubbard band. In contrast, this effect is strongly suppressed in the local moment regime. In addition to the bulk properties, the spectral function for open boundaries is studied as a function of temperature, both in the local moment and mixed valence regime. This allows an investigation of the emergence of topological edge states with temperature. The method used here is the site-dependent DMFT, which is a generalization of the conventional DMFT to inhomogeneous systems. The hybridization expansion CTQMC algorithm is used as impurity solver. By comparison with the bulk results for the topological quantity Ns, it is found that the temperature scale for the appearance of the topological edge states is T ∗, both in the mixed valence and local moment regime. N2 - Obwohl Heavy-Fermion-Systemen bereits seit vielen Jahrzehnten intensiv untersucht werden, ist auch heute ein großes Interesse an Heavy Fermions vorhanden. Obwohl die grundlegenden Konzepte wie die Ausbildung lokaler Momente, der Kondo-Effekt und die zur Entstehung einer Fermi-Flüssigkeit führenden, koha¨renten Quasiteilchen gut verstanden sind, gibt es weiterhin viele offene Fragestellungen. Diese ergeben sich u.a. aus dem Zusammenspiel von Heavy Fermions mit anderen Phänomenen wie Magnetismus und Supraleitung. In dieser Hinsicht können Untersuchungen an He-3 sehr wertvolle Einsichten liefern. Das liegt darin begründet, dass He-3 eine einzigartige Realisierung einer Quanten-Flu¨ssigkeit darstellt. Da He-3-Atome Fermionen sind, und da die langreichweitige Coulomb-Abstoßung keine Rolle spielt, ist dieses Material in idealer Weise dazu geeignet, um Fermi-Flüssigkeiten zu studieren. In drei Dimensionen wird He-3 bereits seit La¨ngerem untersucht. Vor Kurzem gelang es dann auch, Schichtsysteme aus He-3 zu erzeugen und zu untersuchen. Damit ergibt sich die Möglichkeit, die Phänomenologie zweidimensionaler Fermi-Flu¨ssigkeiten detailliert zu unter- suchen. He-3-Schichtsysteme stellen einen idealen Quanten-Simulator für diese Systeme dar, da sich durch Variation der He-3-Konzentration und durch die Wahl verschiedener Substrat- materialien unterschiedliche Eigenschaften der Fermi-Flüssigkeit gezielt einstellen lassen. So wurde in He-3-Doppellagen ein Heavy-Fermion-Verhalten nachgewiesen. In Abha¨ngig- keit der Temperatur wurde ein kontinuierlicher Übergang von einem inkohärenten Zustand mit entkoppelten Lagen zu einer koha¨renten Fermi-Flüssigkeit aus Quasiteilchen mit gemischtem Charakter beobachtet. Dieses Verhalten hat seinen Ursprung in der Hybridisierung der beiden Lagen. Die erste Lage ist beinahe vollständig gefüllt und von starken Korrelationseffekten beeinflusst, wa¨hrend die zweite Lage nur teilgefüllt ist und Korrelationen eine geringe Rolle spielen. Die Quasiteilchen entstehen bei der Kondo-Abschirmung der lokalisierten Momente der ersten Lage durch die delokalisierten Fermionen der zweiten Lage, die bei einer charakteristischen Temperatur-Skala, der Kohärenz-Skala Tcoh stattfindet. Durch das Verändern der Dichte von He-3-Atomen lässt sich Tcoh variieren. Dabei zeigte sich, dass bei einer kritischen Dichte ein Verschwinden der Kohärenzskala zu erwarten ist. Dies korrespondiert mit einer Divergenz der effektiven Masse der Quasiteilchen, und einem Zusammenbrechen des Kondo-Effekts an einem quantenkritischen Punkt. Jenseits dieses kritischen Punktes sind die Lagen vollständig entkoppelt. Die erste Lage ist ein Magnet von lokalen Momenten, während die zweite Lage einen itineranten Overlayer darstellt. Allerdings wurde bereits bei einer Dichte, die kleiner ist als der kritische Wert, die Herausbildung einer endlichen Magnetisierung der Probe beobachtet. Der Charakter dieser Zwischenphase, die dem kritischen Punkt voraus geht, blieb allerdings ungeklärt. In dieser Arbeit werden Resultate von Modellrechnungen eines erweiterten Periodischen Anderson Modell vorgestellt, die von den experimentellen Beobachtungen motiviert wur- den. Dabei ist der Ringaustausch dreier Teilchen, also der dominante magnetische Aus- tauschmechanismus in Schichtsystemen aus He-3, im Modell explizit enthalten. Dieser fu¨hrt zu einer effektiv ferromagnetischen Wechselwirkung zwischen Spins auf benachbarten Gitterplätzen. Zudem berücksichtigt das Modell die Bedingung, dass keine Doppelbesetzung von Gitterplätzen auftritt, indem der Grenzfall einer sehr großen lokalen Coulomb-Abstoßung angenommen wird. Mit Hilfe der Cellular DMFT wird das Modell als Funktion der Parameter chemisches Potential µ und inverse Temperature β = 1/T untersucht. Diese Methode stellt eine Cluster- Erweiterung der Dynamical Mean-Field Theory (DMFT) dar, und erlaubt es, auf systemati- sche Weise nichtlokale Korrelationen zu berücksichtigen, die über die DMFT-Approximation hinaus gehen. Für die Lösung der in jedem Iterationsschritt auftretenden Cluster-Modelle wird ein CTQMC-Cluster-Lo¨ser eingesetzt, der auf der Hybridisierungentwicklung basiert. Dieser liefert unverzehrte, numerisch exakte Ergebnisse für die Greensche Funktion und andere Observablen. In einem ersten Schritt wird die Entstehung der kohärenten Fermi-Flüssigkeitsphase unter- sucht. Bei ausreichend tiefer Temperatur zeigt die Selbst-Energie in Matsubara-Frequenzen eine lineare Frequenzabhängigkeit. Gleichzeitig findet in der Spin-Suszeptibilität ein Über- gang von einem Verhalten nach Curie-Weiss-Gesetz zu einem Pauli-Verhalten statt. Beide Beobachtungen sind eindeutige Hinweise auf einen Fermi-Flüssigkeitszustand. Heavy Fermions bilden sich unterhalb der Kohärenz-Skala Tcoh aus. Diese hängt stark von der He-3-Dichte ab. Tcoh ist bei kleiner Füllung recht hoch, wird bei größerer Fu¨llung allerdings zunehmend unterdrückt. Dies bedingt ein abnehmendes Quasiteilchen-Gewicht Z ∼ Tcoh und eine zunehmende Massenrenormierung m∗/m ∼ Tcoh−1. Durch Extrapolation erhält man einen quantenkritischen Punkt, an dem die Kohärenzskala verschwindet. Gleichzeitig divergiert hier die effektive Masse. Dies entspricht dem Zusammenbrechen des Kondo- Effekts, der für die Entstehung der Quasiteilchen verantwortlich ist, da die effektive Hybri- disierung zwischen den Lagen verschwindet. Berücksichtigt man nur Ergebnisse von paramagnetischer DMFT, so erscheint das obige Szenario plausibel. Allerdings wird in diesem Fall der Ringaustausch komplett vernachlässigt. Um diese Situation zu verbessern, werden Simulationen mit Hilfe von Cellular DMFT an kleinen Clustern der Gro¨ßen Nc = 2 and 3 durchgeführt. Die Ergebnisse zeichnen ein anderes physikalisches Bild. Der Ringaustausch konkurriert mit der Kondoabschirmung der lokalen Momente, da er eine ferromagnetische Ausrichtung der Spins bevorzugt. Daraus resultieren auf kurzen Längenskalen für steigendes µ starke ferromagnetische Fluktuationen. Mit sinkender Temperatur werden diese zunächst verstärkt, dann für T < Tcoh allerdings zunehmend unterdrückt. Dies ist konsistent mit einer kohärenten Fermi-Flüssigkeit. Bei Überschreiten eines gewissen Schwellwertes für µ bestehen die starken Fluktuationen bis zu den tiefsten Temperaturen, die in der Simulation erreicht wurden. Gleichzeitig, zeigt sich ein starker Anstieg der Gesamtbesetzung n in einem engen Fenster um denselben Schwellwert von µ. Dieses Verhalten fehlt in den DMFT-Resultaten vollständig. Die Entwicklung von n mit µ ist stets kontinuierlich, weist allerdings auf eine Diskontinuität im Grenzfall Nc → ∞ hin. Dieser Ü bergang erster Ordnung lässt den Kondo-Effekt abrupt zusammenbrechen. Jenseits des Übergangs ist in der ersten Lage ein ferromagnetischer Zustand ausgebildet, während die zweite Lage ein davon entkoppelter Overlayer wird. ... KW - Fermionensystem KW - Heavy Fermion Systems KW - Starke Kopplung KW - Fermi-Flüssigkeit KW - Topologischer Isolator KW - Stark korrelierte Fermionen KW - topologische Isolatoren Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112039 ER - TY - THES A1 - Bustamante, Mauricio T1 - Ultra-high-energy neutrinos and cosmic rays from gamma-ray bursts: exploring and updating the connection T1 - Ultra-Hochenergie-Neutrinos und die kosmische Strahlung von Gammastrahlenausbrüche: die Erforschung und die Aktualisierung der Verbindung N2 - It is natural to consider the possibility that the most energetic particles detected (> 10^18 eV), ultra-high-energy cosmic rays (UHECRs), are originated at the most luminous transient events observed (> 10^52 erg s^-1), gamma-ray bursts (GRBs). As a result of the interaction of highly-accelerated, magnetically-confined protons and ions with the photon field inside the burst, both neutrons and UHE neutrinos are expected to be created: the former escape the source and beta-decay into protons which propagate to Earth, where they are detected as UHECRs, while the latter, if detected, would constitute the smoking gun of hadronic acceleration in the sources. Recently, km-scale neutrino telescopes such as IceCube have finally reached the sensitivities required to probe the neutrino predictions of some of the existing GRB models. On that account, we present here a revised, self-consistent model of joint UHE proton and neutrino production at GRBs that includes a state-of-the-art, improved numerical calculation of the neutrino flux (NeuCosmA); that uses a generalised UHECR emission model where some of the protons in the sources are able to "leak out" of their magnetic confinement before having interacted; and that takes into account the energy losses of the protons during their propagation to Earth. We use our predictions to take a close look at the cosmic ray-neutrino connection and find that the current UHECR observations by giant air shower detectors, together with the upper bounds on the flux of neutrinos from GRBs, are already sufficient to put tension on several possibilities of particle emission and propagation, and to point us towards some requirements that should be fulfilled by GRBs if they are to be the sources of the UHECRs. We further refine our analysis by studying a dynamical burst model, where we find that the different particle species originate at distinct stages of the expanding GRB, each under particular conditions. Finally, we consider a possibility of new physics: the effect of neutrino decay in the flux of UHE neutrinos from GRBs. On the whole, our results demonstrate that self-consistent models of particle production are now integral to the advancement of the field, given that the full picture of the UHE Universe will only emerge as a result of looking at the multi-messenger sky, i.e., at gamma-rays, cosmic rays, and neutrinos simultaneously. N2 - Es ist eine natürliche Annahme, dass die energiereichsten beobachteten Teilchen (> 1018 eV), die ultra-hochenergetische Kosmische Strahlung (UHECRs), möglicherweise in Verbindung mit den leuchtkräftigsten zeitlich beschränkten Ereignissen (> 1052 erg s−1), sogenannten Gammablitzen (GRBs), stehen. Als Folge der Wechselwirkungen zwischen den extrem beschleunigten, in Magnetfeldern gefangenen Protonen und Ionen und den Photonfeldern im Inneren der Gammablitze wer- den sowohl Neutronen als auch UHE Neutrinos erwartet. Erstere köonnen die Quelle verlassen und zerfallen zu Protonen via β-Zerfall, welche zur Erde propagieren und dort als UHECR detektiert werden köonnen, während Letztere, wenn detektiert, den eindeutigen Beweis für die Beschleunigung von Hadronen in besagten Quellen erbringen würden. Vor Kurzem haben km3-große Neutrinoteleskope, wie IceCube, endlich die benötigte Sensitivität erreicht, um die Neutrinovorhersagen für einige existierende GRB-Modelle zu testen. In diesem Zusammenhang präsentieren wir hier ein überarbeitetes, selbstkonsistentes Modell der gemein- samen Produktion von UHE Protonen und Neutrinos in GRBs. Dieses enthält eine hochmoderne, verbesserte numerische Kalkulation des Neutrinoflusses (NeuCosmA), ein verallgemeinertes Emissionsmodell für UHECR, welches darauf beruht, dass einige Protonen direkt aus den Magnetfeldern innerhalb der Quelle entkommen können ohne wechselzuwirken, und bezieht die Energieverluste der Protonen auf ihrem Weg zur Erde mit ein. Wir nutzen unsere Voraussagen, um einen genaueren Blick auf die Verbindung zwischen Kosmischer Strahlung und Neutrinos zu werfen, und stellen fest, dass aktuelle UHECR Beobachtungen mittels gigantischen Luftschauerdetektoren zusammen mit den oberen Schranken auf den Neutrinofluss von GRBs bereits ausreichen, um Widersprüche zu einigen Emissions- und Propagationsmodellen aufzuzeigen, und deuten uns in die Richtung einiger Voraussetzungen, die von GRBs erfüllt sein müssen, sollten diese die Quellen der UHECRs sein. Des Weiteren verfeinern wir unsere Analyse, indem wir ein dynamisches Explosionsmodell studieren, mittels welcher wir herausfinden, dass unterschiedliche Teilchen von bestimmten Phasen des expandieren GRBs stammen, welche durch unterschiedliche Bedingungen charakterisiert sind. Zum Schluss betrachten wir die Möglichkeit von ”neuer Physik”, den Zerfall von UHE Neutrinos im Neutrinofluss von GRBs. Im Großen und Ganzen zeigen unsere Ergebnisse, dass selbstkonsistente Modelle mittlerweile ein integraler Bestandteil für den Fortschritt dieses Feldes geworden sind, wenn man berücksichtigt, dass der Gesamtzusammenhang des UHE Universums erst sichtbar wird, wenn man den Himmel in unterschiedlichen Kanälen betrachtet, genauer gesagt gleichzeitig in Gammastrahlung, in Kosmischer Strahlung und in Neutrinos. KW - Gamma-Burst KW - cosmic ray KW - astroparticle KW - grb KW - gamma-ray burst KW - ultra high energy KW - Neutrino Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112480 ER - TY - THES A1 - Rothe, Dietrich Gernot T1 - Spin Transport in Topological Insulators and Geometrical Spin Control T1 - Spintransport in topologischen Isolatoren und geometrische Spinkontrolle N2 - In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation. The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin. Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states. In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance, but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system. N2 - Manipulation und Transport von elektronischen Spins sind die wesentlichen Elemente, die für das Funktionieren einer zukünftigen Spin-basierten Elektronik implementiert werden müssen. Diese Arbeit befasst sich schwerpunktmäßig mit Halbleitersystemen, in denen diese Prinzipien mit hoher Zuverlässigkeit möglich sind. Dazu wurden sowohl numerische als auch analytische Berechnungsmethoden genutzt, letztere oft in der Form einfacher Modelle zur Interpretation der numerischen Ergebnisse. Das Halbleitersystem von HgTe/CdTe Quantentrögen, auch bekannt als zweidimensionaler topologischer Isolator, ist sowohl von fundamentalem wissenschaftlichen Interesse, da die topologisch nichttriviale Energiestruktur zu einem Schutz von Transporteigenschaften führt, als auch von angewandterem Interesse, da aus diesem Materialsystem Proben gefertigt werden können, die ballistischen Transport hoher Qualität zeigen, und da zudem die Rashba Spin-Bahn-Kopplung sowie die elektronische Dichte durch elektrische Steuerelektroden einstellbar sind. Wir erweitern das Bernevig-Hughes-Zhang Modell für zweidimensionale topologische Isolatoren, indem wir ein Vierbandmodell herleiten, das Rashba Spin-Bahn-Kopplungsterme enthält, die durch ein äußeres elektrisches Feld hervorgerufen werden, wenn dieses die Inversionssymmetrie des Quantentroges bricht. Der Transport von Spins in diesem System zeigt ein interessantes Wechselspiel zwischen Effekten der Rashba Spin-Bahn-Kopplung und Effekten der intrinsischen Dirac-artigen Spin-Bahn-Kopplung. Dabei dominiert die Rashba Spin-Bahn-Kopplung das Verhalten des Spin-Hall-Signals. Basierend auf der einstellbaren Rashba Spin-Bahn-Kopplung, schlagen wir einen spinselektiven Polarisator zur rein elektrischen Erzeugung und Detektion von Spinströmen vor. Das Funktionsprinzip ist vergleichbar mit demjenigen eines doppelbrechenden Kristalls. In der vorgeschlagenen Anordnung untersuchen wir die Spinpolarisation in verschieden Spinvektorkomponenten und zeigen die Realisierbarkeit von hoher Spinpolarisation in der Ebene. Da der Spin keine Erhaltungsgröße des Halbleitermodells ist, analysieren wir in einem ersten Schritt den Transport von der Erhaltungsgröße Helizität, und setzen die erzeugte Polarisation dann in Bezug zur Spinpolarisation. Des Weiteren analysieren wir thermoelektrischen Transport in einem System, das auch den Spin-Hall-Effekt zeigt. Aufgrund von Spin-Bahn-Kopplung kommt es beim Anlegen eines Temperaturgradienten zu einem transversalen Spinstrom, genannt Spin-Nernst-Effekt. Dieser ist über eine Mott-artige Beziehung mit dem Spin-Hall-Effekt verknüpft. Im metallischen Energiebereich können wir die Signale qualitativ anhand von einfachen analytischen Modellen verstehen. Im Energiebereich der elektronischen Bandlücke finden wir ein Spin-Nernst-Signal, das vom räumlichen Überlapp der Randzustände herrührt, die an gegenüberliegenden Kanten des Halbleitersystems lokalisiert sind. Im methodischen ersten Teil dieser Arbeit diskutieren wir zwei komplementäre Methoden zur Konstruktion von effektiven Halbleitermodellen, nämlich die Methode der Envelopefunktionen und die Methode der Invarianten. Außerdem präsentieren wir Elemente der elektronischen Transporttheorie, unter besonderer Beachtung von Spintransport. Wir diskutieren die Zusammenhänge zwischen dem adiabatischen Theorem in der Quantenmechanik einerseits, und semiklassischer Transporttheorie sowie der topologischen Klassifizierung von Phasen andererseits. Als weitere Anwendung des adiabatischen Theorems zeigen wir, wie universelle Kontrolle eines einzelnen Spins in einem Quantenpunkt aus Schwerlochzuständen experimentell realisiert werden kann, ohne dabei die Zeitumkehrsymmetrie zu brechen. Zu diesem Zweck führen wir ein elektrisches Quadrupolfeld ein, dessen Konfiguration als adiabatischer Kontrollparameter dient. Wir schlagen die experimentelle Realisierung des Quantenpunktes in einem QaAs/GaAlAs Quantentrogsystem vor. KW - Elektronischer Transport KW - Topologischer Isolator KW - Spintronik KW - topological insulators KW - topologische Isolatoren KW - mesoskopische Physik KW - mesoscopic physics KW - Halbleiterphysik KW - Thermoelektrizität KW - Quanteninformation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125628 ER - TY - THES A1 - Franke, Fabian T1 - Produktion und Zerfall von Neutralinos im Nichtminimalen Supersymmetrischen Standardmodell T1 - Production and Decay of Neutralinos in the Nonminimal Supersymmetric Standard Model N2 - Das Ziel der vorliegenden Arbeit ist eine umfassende Analyse von Erzeugung und anschließenden Zerfällen von Neutralinos im Nichtminimalen Supersymmetrischen Standardmodell (NMSSM) speziell für den nächsten verfügbaren Elektron-Positron-Speicherring LEP2 am CERN mit einer voraussichtlichen Schwerpunktsenergie von 190 GeV. Das NMSSM ist die einfachste Erweiterung des Minimalen Supersymmetrischen Standardmodells MSSM mit einem Singlett-Superfeld, so dass der Higgs-Sektor insgesamt sieben physikalische Higgs-Teilchen enthält, und zwar drei neutrale skalare, zwei pseudoskalare und zwei geladene. Weiterhin enthält das NMSSM fünf Neutralinos gegenüber vier im MSSM. In dieser Arbeit präsentieren wir die 5 x 5 Neutralinomischungsmatrix, stellen die Eigenwertgleichung auf und analysieren das Massenspektrum und die Parameterabhängigkeit möglicher masseloser Zustände. Für die Untersuchung von Neutralinoproduktion und -zerfall wurden verschiedene Szenarien gewählt, in denen das leichteste Neutralino eine Masse von 10 GeV und eine Singlettkomponente von über 90% besitzt oder in denen das leichteste Neutralino bis zu 50 Gev schwer ist und sich der Singlettanteil auf die beiden leichtesten Neutralinos verteilt. Die Wirkungsquerschnitte für die Neutralinoproduktion wurden in den gewählten Szenarien für Schwerpunktsenergien von 100 GeV bis 600 GeV berechnet, also bis zu einem Bereich, den ein geplanter Elektron-Positron-Linearbeschleuniger erreichen kann. Typische Wirkungsquerschnitte für die direkte Produktion vorwiegend singlettartiger Neutralinos liegen im Bereich von 100 fb. Selbst wenn das leichteste Neutralino sehr leicht ist, kann das nächste bereits so schwer sein, dass bei LEP2 nur die nicht nachtweisbare Paarproduktion des leichtesten supersymmetrischen Teilchens möglich ist. Somit ist bei LEP2 keine Erhöhung der unteren Neutralinomassengrenzen im NMSSM zu erwarten, falls kein Neutralino gefunden wird. In Szenarien mit leichten singlettartigen Neutralinos können sehr oft auch sehr leichte Higgs-Bosonen mit Massen unterhalb der im MSSM vorhandenen Grenzen existieren. Somit kann in allen unseren Szenarien der Neutralinozerfall in ein skalares oder pseudoskalares Higgs-Boson möglich sein und dann Verweigungsverhältnisse bis zu fast 100% erreichen. Wir berechnen in dieser Arbeit für die bei LEP2 produzierbaren Neutralinos die Verwzeigungsverhältnisse für die Zweikörperzerfälle in Higgs-Bosonen, die Dreikörperzerfälle in zwei Fermionen und den Schleifenzerfall in ein Photon. In allen Fällen befindet sich im Endzustand außerdem das unsichtbare leichteste Neutralino, dass sich experimentell als fehlende Energie niederschlägt. Zur Bestimmung der Signaturen betrachten wir außerdem die anschließenden Zerfallsmodi der leichten Higgs-Bosonen. Der Nachweis von leichten singlettartigen Neutralinos im NMSSM kann einerseits unmöglich sein, wenn entweder die schweren Neutralinos bei der verfügbaren Schwerpunktsenergie nicht produziert werden können oder über Higgs-Bosonen vollkommen in das LSP zerfallen, andererseits aber auch durch klare Signaturen mit einem Photon oder mit Jets im Endzustand erleichtert werden. Bei LEP2 sollten also durchaus Chancen bestehen, auch im Rahmen des NMSSM ein Neutralino zu entdecken. Zumindest werden sich weitere Einschränkungen des Parameterraums ergeben. Der Dissertation ist ein Anhang beigefügt, der eine vollständige Liste aller Feynman-Regeln des NMSSM enthält, die sich von denjenigen des MSSM unterscheiden. N2 - The aim of our study is a comprehensive analysis of the production and the subsequent decays of neutralinos in the Nonminimal Supersymmetric Standard Model (NMSSM) especially for a center-of-mass energy of 190 Gev expected at the electon-positron storage ring LEP2 at CERN. The NMSSM is the simplest extension of the Minimal Supersymmetric Standard Modell (MSSM) by a singlet superfield. The Higgs sector contains seven physical Higgs particles, three scalars, two pseudoscalar and two charged Higgs bosons. The neutralino sector consists of five neutralinos instead of four in the MSSM. We present the 5 x 5 neutralino mixing matrix, compute the eigenvalue equation and analyse the mass spectrum and the parameter dependence of massless neutralino states. For the study of neutralino production and decay we choose scenarios where the lightest neutralino has a mass of 10 GeV and a singlet component of more than 90%, or where the lightest neutralino has a mass of up to 50 GeV and the lightest two neutralinos contains significant singlet contributions. In these scenarios the cross sections are computed for center-of-mass energies ranging from 100 GeV to 600 GeV of a electron-positron linear collider. Typical cross sections for the direct production of mainly singlet-like neutralinos are around 100 fb. Even if a neutralino is rather light, the next neutralino could already be so heavy that at LEP energies only the invisible pair production of the lightest neutralino is kinematically allowed. Therefore one cannot expect to raise the lower NMSSM neutralino mass bound if no neutralino is found. In scenarios with light singlet-like neutralinos there often exist also light Higgs bosons with masses below the MSSM mass bounds. Therefore in our scenarios the neutralino decay in a scalar or pseudoscalar Higgs can reach decay rates up to 100%. We compute the decay rates for the two-body decays into Higgs bosons, for the three-body decays into two fermions and the loop decay into a photon. All final states contain the invisible lightest neutralino with the experimental signature of missing energy. In order to determine the signatures we also consider the decay modes of the light Higgs bosons. The detection of light singlet-like neutralino could be impossible if the heavier neutralinos can not be produced at the collider or if they decay via Higgs bosons into the LSP. But it could also faciliated by clear signatures with a photon or jets in the final states. LEP2 offers some chances to detect a NMSSM neutralino, at least further restrictions of the NMSSM parameter space can be expected. The dissertation contains an appendix with a complete list of all Feyman rules of the NMSSM that are different from their MSSMM counterparts. KW - Supersymmetrie KW - Neutralino KW - Produktion KW - Zerfall KW - LEP KW - Nichtminimales Suerpsymmetrisches Standardmodell KW - Neutralino KW - Produktion KW - Zerfall KW - LEP2 KW - Nonminimal Supersymmetric Standard Model KW - Neutralino KW - Production KW - Decay KW - LEP2 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25666 ER - TY - THES A1 - Brünger, Christian T1 - Numerical Studies of Quantum Spin Systems T1 - Numerische Untersuchungen von Quanten-Spin-Systemen N2 - Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasenübergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen Näherungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet. Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert. Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hintergrund untersucht. Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch gekopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten Kette durch Windung der Leiter variiert werden kann. Dieses Model eignet sich, den Übergang zwischen einer Spin-1/2-Kette ohne Spinlücke und einer Spin-1-Kette mit Spinlücke zu studieren. Besondere Beachtung ist dem Öffnen der Spinlücke in Abhängigkeit der ferromagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass das System, abhängig von der Leiterwindung, wesentliche Unterschiede im Skalierungsverhalten der Spinlücke aufweist. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der Spinlücke und unabhängig von der Wahl der Parameter sich stets in der Haldane-Phase befindet. Die Analyse der Modelle bedient sich hauptsächlich Quanten-Monte-Carlo-Methoden, aber auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldnäherungen gestützten Rechnungen. N2 - In a first part the bilayer Heisenberg Model and the 2D Kondo necklace model are studied. Both models exhibit a quantum phase transition between an ordered and disordered phase. The question is addressed to the coupling of a single doped hole to the critical fluctuations. A self-consistent Born approximation predicts that the doped hole couples to the magnons such that the quasiparticle residue vanishes at the quantum critical point. In this work the delicate question about the fate of the quasiparticle residue across the quantum phase transition is also tackled by means of large scale quantum Monte Carlo simulations. Furthermore the dynamics of a single hole doped in the magnetic background is investigated. In the second part an analysis of the spiral staircase Heisenberg ladder is presented. The ladder consists of two ferromagnetic coupled spin-1/2 chains, where the coupling within the second chain can be tuned by twisting the ladder. Within this model the crossover between an ungapped spin-1/2 system and a gapped spin-1 system can be studied. In this work the emphasis is on the opening of the spin gap with respect to the ferromagnetic rung coupling. It is shown that there are essential differences in the scaling behavior of the spin gap depending on the twist of the model. Moreover, by means of the string order parameter it is shown, that the system remains in the Haldane phase within the whole parameter range although the spin gap scales differently. The tools which are used for the analyses are mainly large scale quantum Monte Carlo methods, but also exact diagonalization techniques as well as mean field approaches. KW - Spinsystem KW - Quanten-Monte Carlo KW - QMC KW - Spiral-Staircase-Heisenberg-Modell KW - Quantum Monte Carlo KW - Spiral Staircase Heisenberg Model KW - SSHL Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26439 ER - TY - THES A1 - Paul, Surajit T1 - Evolution of shocks and turbulence in major galaxy-cluster mergers T1 - Evolution von Schocks und Turbulenz bei der Verschmelzung von großen Galaxienclustern N2 - Mergers between rich clusters of galaxies represent the most violent events in the Universe. The merger events initiate a complex chain of processes that leads to the dissipation of the collisional energy. This phase of violent relaxation is accompanied by turbulence and shock waves as well as non-thermal particle acceleration. This thesis aims at the interpretation of multi-wavelength observations of the merging cluster of galaxies Abell 3376 in the framework of a theoretical model of the involved effects. Observations with the Very Large Array radio interferometer were carried out and analyzed to clarify the morphology of the non-thermal particle distribution in Abell 3376, in particular about the shocked regions. The dissipation in the hot intra-cluster gas was studied using archival X-ray observations with ROSAT and XMM. Results were compared with constrained numerical simulations of the evolution of the merger process in the framework of cosmological structure formation. For this purpose, the ENZO-Code was employed for the computation of the gas dynamics and self-gravity of the colliding mass distribution. The non-thermal properties of the intra-cluster gas could be indirectly inferred from the local Mach number and the strength of the turbulence. N2 - Die Verschmelzung reicher Galaxienhaufen ist das energiereichste Ereignis im Universum. Während des Verschmelzungsvorgangs wird eine komplexe Kette von Prozessen ausgelöst, durch die die Stoßenergie der Galaxienhaufen freigesetzt wird. In dieser Phase der heftigen Relaxation entwickeln sich Turbulenz und Stoßwellen sowie nicht-thermische Teilchenpopulationen. In der vorliegenden Dissertation wird der Versuch unternommen, Multiwellenlängenbeobachtungen des kollidierenden Galaxienhaufens Abell 3376 im Rahmen eines theoretischen Modells der involvierten Effekte zu interpretieren. Es wurden Beobachtungen mit dem Very Large Array Radiointerferometer durchgeführt und analysiert, um die Morphologie der nichtthermischen Teilchenverteilung in Abell 3376 insbesondere im Bereich der Stoßwellen aufzuklären. Die Dissipation im heißen Intracluster-Gas wurde anhand von archivierten Röntgenbeobachtungen von ROSAT und XMM untersucht. Die Ergebnisse wurden mit eingeschränkten numerischen Simulationen der Entwicklung des Verschmelzungsprozesses im Rahmen der kosmologischen Strukturbildung verglichen. Dabei wurde das ENZO-Programm verwendet, das die gasdynamischen Eigenschaften sowie die Eigengravitation der kollidierenden Massenverteilung berechnet. Aussagen über die nichtthermischen Eigenschaften des intracluster-Gases konnten aus der lokalen Machzahl sowie der Turbulenzstärke indirekt abgeleitet werden. KW - Galaxienhaufen KW - Hydrodynamik KW - Radioastronomie KW - Radioastronomie KW - Galaxiencluster KW - Hydrodynamische Simulationen KW - Kosmogonie KW - Astrophysik KW - Radio Astronomy KW - Galaxy Clusters KW - Hydrodynamic Simulations Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47266 ER - TY - THES A1 - Speckner, Christian T1 - LHC Phenomenology of the Three-Site Higgsless Model T1 - LHC-Phänomenologie des Three-Site Higgsless Model N2 - The Three-Site Higgsless Model is alternative implementation of electroweak symmetry breaking which in the Standard Model is mediated by the Higgs mechanism. The main features of this model is the appearance of two new heavy vector resonances W' and Z' with masses > 380 GeV as well as a set of new heavy fermions (> 1.8 TeV). In this model, unitarity of the amplitudes for the scattering of longitudinal gauge bosons is maintained by the exchange of the W' and Z' up to a scale of ~2 TeV. Consistency with the electroweak precision observables from the LEP / LEP-II experiments implies an exceedingly small coupling of the new vector bosons to the light Standard Model fermions (about 3% of the isospin gauge coupling). In this thesis, the LHC phenomenology of this scenario is explored. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo eventgenerator WHIZARD / O'Mega. With this implementation, we simulated the parton-level production of the gauge boson and fermion partners in different channels possibly suitable for their discovery at the LHC. The results are presented together with an introduction to the model and a discussion of its properties. We find that, while the fermiophobic nature of the new heavy gauge bosons does make them intrinsically difficult to observe at a collider, the LHC should be able to establish the existence of both resonances and even give some hints about the properties of their couplings which would be a vital test of the consistency of such a scenario. For the heavy fermions, we find that their large mass is accompanied by relative widths of more than $10\%$, making them ill-suited for a direct discovery at the LHC. Nevertheless, our simulations reveal that there is a part of parameter space where, given enough time, patience and a good understanding of detector and backgrounds, a direct discovery might be possible. N2 - Das "Three-Site Higgsless Model" ist eine alternative Implementation der Elektroschwachen Symmetriebrechung, welche im Standardmodell der Teilchenphysik durch den Higgsmechanismus erfolgt. Die wesentlichen Eigenschaften dieses Modell sind das Auftreten zweier neuer schwerer Vektorresonanzen W' und Z' mit Massen > 380 GeV sowie eines Satzes von schweren (> 1.8 TeV) Fermionen. Die Unitarität der Amplituden für die Streuung longitudinaler Eichbosonen wird in diesem Modell durch den Austausch von der W' und Z' bis zu einer Skala von ~2 TeV sichergestellt. Konsistenz mit den elektroschwachen Präzisionsobservablen aus den LEP / LEP-II Experimenten bedingt eine äußerst kleine Kopplung der neuen Vektorbosonen an die leichten Fermionen des Standardmodells (etwa 3% der Isospin-Eichkopplung). In dieser Doktorarbeit wird die LHC-Phänomenologie dieses Szenarios untersucht. Zu diesem Zwecke wurden die Kopplungen und Breiten aller neuen Teilchen berechnet und das Modell in den Monte-Carlo-Generator WHIZARD / O'Mega implementiert. Diese Implementation wurde verwendet, um die Produktion der Fermion- und Eichbosonpartner auf Partonniveau in verschiedenen Kanälen zu simulieren, welche sich für die Entdeckung am LHC eignen könnten. Die Ergebnisse werden zusammen mit ein Einführung in das Modell sowie einer Diskussion der Modelleigenschaften präsentiert. Obwohl ihre fermiophobe Natur die Entdeckung der schweren Eichbosonen an Teilchenbeschleunigern grundsätzlich erschwert, zeigt sich, daß der LHC die entsprechenden Resonanzen finden kann und sogar einige Rückschlüsse auf die Stärke der fermiophoben Kopplungen (was ein wesentlicher Test der Konsistenz eines solchen Szenarios wäre) zulassen sollte. Bei der Berechnung der Breite der schweren Fermionen stellt sich heraus, daß zu der großen Masse auch relative Breiten von 10% und mehr kommen, so daß diese Teilchen sich eher schlecht für eine direkte Entdeckung am LHC eignen. Trotzdem zeigen die Simulationen daß, hinreichend viel Zeit, Geduld sowie ein gutes Verständnis von Detektor und Hintergrund vorausgesetzt, eine direkte Entdeckung zumindest in einem Teil des Parameterraums möglich ist. KW - LHC KW - Phänomenologie KW - Theoretische Physik KW - Elementarteilchenphysik KW - Theoretical Physics KW - Particle Physics KW - LHC KW - Phenomenology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45931 ER - TY - THES A1 - Böttcher, Jan Frederic T1 - Fate of Topological States of Matter in the Presence of External Magnetic Fields T1 - Schicksal von topologischen Zuständen in der Gegenwart von externen magnetischen Feldern N2 - The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe. Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a $\mathbb{Z}$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase. A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the $8 \times 8$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk $p$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk $p$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion. Furthermore, we employ the numerical implementation of the $8\times 8$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe. N2 - Der Quanten-Hall (QH) Effekt, welcher in einem zwei-dimensionalen (2D) Elektronengas durch ein externes Magnetfeld erzeugt werden kann, ebnete den Weg für topologische Konzepte in der Physik der kondensierten Materie. Während der QH Effekt aus diesem Grund nicht ohne Landau Level existieren kann, gibt es eine Vielzahl von neuartigen topologischen Phasen, die auch in der Abwesenheit von Magnetfeldern existieren können. Zum Beispiel stellen die Quanten-Spin-Hall (QSH), die Quanten-Anomale-Hall (QAH) und die drei-dimensionale (3D) topologische Isolator-Phase isolierende, topologische Phasen dar, die Ihre nicht-triviale Topologie einer invertierten Bandstruktur verdanken. Letztere wird durch eine starke Spin-Bahn Wechselwirkung, oder im Allgemeinen durch starke relativistische Korrekturen, erzeugt. Das Hauptziel dieser Thesis ist es dabei das Schicksal dieser bereits bestehenden topologischen Zustände in Magnetfeldern zu erforschen und deren Verbindungen zu Quantenanomalien aufzuzeigen. In diesem Zusammenhang werden wir insbesondere die Realisierung der Paritätsanomalie in Festkörpersystemen diskutieren. Weitergehend wenden wir Bandstruktur-Engineering an, d.h. die Veränderung der Quantentrogdicke, der Verspannung und der Materialkomposition, um die vielfältigen topologischen Eigenschaften des topologischen Isolators (TIs) HgTe zu manipulieren und zu untersuchen. Wie die QH Phase, zeichnet sich die QAH Phase durch unidirektional propagierende, metallische Randkanäle aus. Aber im Vergleich zur QH Phase, kann sie auch ohne Landau Level existieren. Die QAH Phase stellt daher ein Kondensierte-Materie-Analogon zur Paritätsanomalie dar. Wir zeigen, dass diese Verbindung es uns ermöglicht in der Gegenwart eines Magnetfelds zwischen QH und QAH Zuständen zu unterscheiden. Damit widerlegen wir den weitverbreiten Glauben, dass diese zwei topologischen Phasen nicht unterschieden werden können, da beide durch eine $\mathbb{Z}$ topologische Invariante beschrieben sind. Etwas genauer gesagt, zeigen wir, dass die QAH Topologie in einer besonderen topologischen Invarianten kodiert bleibt, der spektralen Asymmetrie. Diese quantifiziert die Differenz in der Anzahl von Zuständen in Leitungs- und Valenzbändern. Indem wir die effektive Wirkung eines QAH Isolators im Magnetfeld herleiten, zeigen wir, dass die spektrale Asymmetrie dabei mit einem einzigartigen Chern-Simons Term verbunden ist, welcher die Information über die QAH Randkanäle beinhaltet. Wenn ein QAH Isolator einem externen Magnetfeld ausgesetzt wird, kann dies zur Bildung von gegenläufigen QH und QAH Randkanälen führen. Diese helikalartigen Randzustände besitzen exotische Eigenschaften, die es uns ermöglichen QH und QAH Phasen zu unterscheiden. Unsere Ergebnisse sind insbesondere für paramagnetische TIs von Bedeutung, da für diese ein externes Magnetfeld von Nöten ist, um die QAH Phase zu induzieren. Ein Nebenprodukt der Bandinversion ist die Bildung von zusätzlichen Extrema in der Dispersion des Valenzbands bei großen Impulsen (oft auch als `Kamelrücken' bezeichnet). Wir entwickeln eine numerische Implementierung des $8 \times 8$ Kane Modells um die Signaturen des Kamelrückens in (Hg,Mn)Te Quantentrögen zu untersuchen. Indem die Quantentrogdicke und die Mn-Konzentration variiert wird, zeigen wir, dass die Klasse von topologisch nicht-trivialen Materialien weiter in direkte und indirekte TIs unterteilt werden kann. Für direkte TIs mit $p$-Ladungsträgerdichten, zeigen wir, dass die Anheftung des chemischen Potentials an den Kamelrücken zu einem Beginn von QH-Plateaus bei ungewöhnlich kleinen Magnetfeldern (zweistelliger mT-Bereich) führen kann. Im Gegensatz dazu verhindert der Kamelrücken bei indirekten TIs die Beobachtung von QH Plateaus im $p$-Bereich bis zu großen Magnetfeldern (einige Tesla). Diese Ergebnisse erlauben es uns jüngste experimentelle Beobachtungen in (Hg,Mn)Te Quantentrögen der Existenz des Kamelrückens zuzuschreiben. Obwohl sich unsere Diskussion dabei auf (Hg,Mn)Te beschränkt, sollte sich unser Modell leicht auch auf andere topologische Materialien mit einer kamelartigen Struktur im Valenzband übertragen lassen. Zusätzlich haben wir die numerische Implementierung des $8 \times 8$ Kane Modells verwendet, um den Übergang von einer 2D QSH zu einer 3D TI Phase in verspannten HgTe Quantentrögen zu untersuchen. Diese Halbleitermaterialien zeichnen sich durch 2D topologische Oberflächenzustände an Grenzflächen aus, welche, wie wir zeigen, sehr sensitiv für die lokale Kristallsymmetrie des Gitters und elektrostatische Ladung sind. Wir bestimmen die klassische Zyklotronfrequenz der Oberflächenelektronen und vergleichen diese mit experimentellen Messungen an verspannten HgTe Qunatentrögen. KW - Topologie KW - Festkörperphysik KW - Magnetfeld KW - Feldtheorie KW - Topological Insulators KW - Parity Anomaly Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220451 ER - TY - THES A1 - Wang, Zhenjiu T1 - Numerical simulations of continuum field theories and exotic quantum phase transitions T1 - Numerische Simulationen von Kontinuumsfeldtheorien und exotisch Quantenphasenübergänge N2 - In this thesis, we investigate several topics pertaining to emergent collective quantum phenomena in the domain of correlated fermions, using the quantum Monte Carlo method. They display exotic low temperature phases as well as phase transitions which are beyond the Landau–Ginzburg theory. The interplay between three key points is crucial for us: fermion statistics, many body effects and topology. We highlight the following several achievements: 1. Successful modeling of continuum field theories with lattice Hamiltonians, 2. their sign-problem-free Monte Carlo simulations of these models, 3. and numerical results beyond mean field descriptions. First, we consider a model of Dirac fermions with a spin rotational invariant inter- action term that dynamically generates a quantum spin Hall insulator. Surprisingly, an s-wave superconducting phase emerges due to the condensation of topological de- fects of the spin Hall order parameter. When particle-hole symmetry is present, the phase transition between the topological insulator and the superconducting phase is an example of a deconfined quantum critical point(DQCP). Although its low energy effec- tive field theory is purely bosonic, the exact conservation law of the skyrmion number operator rules out the possibility of realizing this critical point in lattice boson models. This work is published in Ref. [1]. Second, we dope the dynamically generated quantum spin Hall insulator mentioned above. Hence it is described by a field theory without Lorentz invariance due to the lack of particle-hole symmetry. This sheds light on the extremely hot topic of twisted bilayergraphene: Why is superconductivity generated when the repulsive Coulomb interaction is much stronger than the electron-phonon coupling energy scale? In our case, Cooper pairs come from the topological skyrmion defects of the spin current order parameter, which are charged. Remarkably, the nature of the phase transition is highly non-mean-field-like: one is not allowed to simply view pairs of electrons as single bosons in a superfluid-Mott insulator transition, since the spin-current order parameter can not be ignored. Again, due to the aforementioned skyrmions, the two order parameters are intertwined: One phase transition occurs between the two symmetry breaking states. This work is summarized in Ref. [2]. Third, we investigate the 2 + 1 dimensional O(5) nonlinear sigma model with a topological Wess-Zumino-Witten term. Remarkably, we are able to perform Monte Carlo calculations with a UV cutoff given by the Dirac Landau level quantization. It is a successful example of simulating a continuous field theory without lattice regularization which leads to an additional symmetry breaking. The Dirac background and the five anti-commuting Dirac mass terms naturally introduce the picture of a non-trivial Berry phase contribution in the parameter space of the five component order parameter. Using the finite size scaling method given by the flux quantization, we find a stable critical phase in the low stiffness region of the sigma model. This is a candidate ground state of DQCP when the O(5) symmetry breaking terms are irrelevant at the critical point. Again, it has a bosonic low energy field theory which is seemingly unable to be realized in pure boson Hamiltonians. This work is summarized in Ref. [3]. N2 - In dieser Arbeit untersuchen wir verschiedene Themen über emergente kollektive Quan- tenphänomene im Bereich der korrelierten Fermionen unter Verwendung der Quanten- Monte-Carlo-Methode. Sie zeigen sowohl exotische Tieftemperaturphasen als auch Phasenübergänge, die jenseits der Landau-Ginzburg-Theorie liegen. Das Zusammen- spiel von drei Schlüsselpunkten ist für uns entscheidend: Fermionenstatistik, Vielteilch- eneffekte und Topologie. Es sind bemerkenswerte Erfolge erzielt worden: 1. Erfolgre- iche Modellierung mehrerer kontinuierlicher Feldtheorien über Gitter-Hamiltonians. 2. Vorzeichenproblem-freie Monte-Carlo-Simulation von ihnen. 3. Numerische Ergebnisse jenseits des Molekularfeld-Verständnisses. Zunächst betrachten wir ein Modell von Dirac-Fermionen mit einem spinrotations- invarianten Wechselwirkungsterm, der dynamisch einen Quanten-Spin-Hall-Zustand erzeugt. Überraschenderweise entsteht eine s-Wellen-supraleitende Phase durch die Kondensation von topologischen Defekten des Spin-Hall-Ordnungsparameters. Wenn Teilchen-Loch-Symmetrie vorhanden ist, ist dieser Phasenübergang zwischen topologis- chem Isolator und Supraleiter ein Beispiel für einen dekondefinierten quantenkritischen Punkt (DQCP). Obwohl seine niedrigenergetische effektive Feldtheorie rein bosonisch ist, schließt der exakte Erhaltungssatz des Skyrmionenzahloperators die Möglichkeit aus, diesen kritischen Punkt in Gitter-Boson-Modellen zu realisieren. Diese Arbeit ist veröffentlicht in Ref. [1]. Zweitens dotieren wir den dynamisch erzeugten Quanten-Spin-Hall-Isolator von oben. Er wird aufgrund der fehlenden Teilchen-Loch-Symmetrie durch eine Feldtheorie ohne Lorenzt-Invarianz beschrieben. Dies wirft ein Licht auf das extrem heiße Thema des verdrehten Doppelschichtgraphens: Warum wird Supraleitung erzeugt, wenn die ab- stoßende Coulombwechselwirkung viel stärker ist als die Elektron-Phonon Kopplungsen- ergie? In unserem Fall kommen Kupferpaare aus den topologischen Skyrmiondefekten der Parameter der Spinstromordnung, die geladen sind. Bemerkenswerterweise ist die Art des Phasenübergangs in hohem Maße nicht molekularfeldartig: Es ist nicht erlaubt, ein Elektronenpaar einfach als einzelnes Boson in einem Superfluid-Mott- Isolator-Übergang zu betrachten, da der Parameter der Spin-Strom-Ordnung nicht ignoriert werden kann. Wiederum aufgrund der oben erwähnten Skyrimionen, sind zwei Ordnungsparameter miteinander verbunden: ein Phasenübergang findet zwischen den beiden Zuständen mit gebrochener Symmetrie statt. Diese Arbeit ist in Ref. [2]. Drittens untersuchten wir das 2 + 1-dimensionale nichtlineare O(5)-Sigma-Modell mit einem topologischen Wess-Zumino-Witten-Term. Bemerkenswerterweise sind wir in der Lage, Monte-Carlo-Berechnungen durchzuführen, mit UV-Cutoff gegeben durch die Quantifizierung der Dirac-Landau-Ebenen. Es ist ein erfolgreiches Beispiel für die Simulation einer kontinuierlichen Feldtheorie ohne Gitterregularisierung, die zu zusätzlichen Symmetriebrechungen führt. Der Dirac-Hintergrund und die 5 antikom- mutiernenden Dirac-Massenterme führen natürlich das Bild eines nicht-trivialen Berryphasen Beitrags im Parameterraum des Ordnungsparameters mit fünf Komponenten ein. Unter Verwendung der Methode der endlichen Größenskalierung, die durch Flussquantisierung gegeben ist, fanden wir eine stabile kritische Phase im Bereich der niedrigen Steifigkeit des Sigma-Modells. Dies ist ein Kandidat für den Grundzustand des DQCP, wenn die O(5)-Symmetrie brechenden Terme am kritischen Punkt irrelevant sind. Auch hier handelt es sich um eine niedrigenergetische bosonische Feldtheorie, die scheinbar durch reine Boson-Hamiltonians nicht realisiert werden kann. Diese Arbeit ist in Ref. [3]. KW - Quanten-Monte-Carlo-Methode KW - Quantenphasenübergänge KW - Stark korrelierte Elektronen KW - Quantum Monte Carlo method KW - Quantum phase transitions KW - Strongly correlated electrons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238001 ER - TY - THES A1 - Klett, Michael T1 - Auxiliary particle approach for strongly correlated electrons : How interaction shapes order T1 - Hilfsteilchen-Projektion stark korrelierter Elektronensysteme N2 - Since the genesis of condensed matter physics, strongly correlated fermionic systems have shown a variety of fascinating properties and remain a vital topic in the field. Such systems arise through electronic interaction, and despite decades of intensive research, no holistic approach to solving this problem has been found. During that time, physicists have compiled a wealth of individual experimental and theoretical results, which together give an invaluable insight into these materials, and, in some instances, can explain correlated phenomena. However, there are several systems that stubbornly refuse to fall completely in line with current theoretical descriptions, among them the high-\( T_c{}\) cuprates and heavy fermion compounds. Although the two material classes have been around for the better part of the last 50 years, large portions of their respective phase diagram are still under intensive debate. Recent experiments in several electron-doped cuprates compounds, e.g. neodymium cerium copper oxide (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), reveal a charge ordering about an antiferromagnetic ground state. So far, it has not been conclusively clarified how this intertwining of charge and spin polarization comes about and how it can be reconciled with a rigorous theoretical description. The heavy-fermion semimetals, on the other hand, have enjoyed renewed scientific interest with the discovery of topological Kondo insulators, a new material class offering a unique interface of topology, symmetry breaking, and correlated phenomena. In this context, samarium hexaboride (SmB\(_6\)) has emerged as a prototypical system, which may feature a topological ground state. In this thesis, we present a spin rotational invariant auxiliary particle approach to investigate the propensities of interacting electrons towards forming new states of order. In particular, we study the onset of spin and charge order in high-\( T_c{}\) cuprate systems and Kondo lattices, as well as the interplay of magnetism and topology. To that end, we use a sophisticated mean-field approximation of bosonic auxiliary particles augmented by a stability analysis of the saddle point via Gaussian fluctuations. The latter enables the derivation of dynamic susceptibilities, which describe the response of the system under external fields and offer a direct comparison to experiments. Both the mean-field and fluctuation formalisms require a numerical tool that is capable of extremizing the saddle point equations, on the one hand, and reliably solving a loop integral of the susceptibility-type, on the other. A full, from scratch derivation of the formalism tailored towards a software implementation, is provided and pedagogically reviewed. The auxiliary particle method allows for a rigorous description of incommensurate magnetic order and compares well to other established numerical and analytical techniques. Within our analysis, we employ the two-dimensional one-band Hubbard as well as the periodic Anderson model as minimal Hamiltonians for the high-\( T_c{}\) cuprates and Kondo systems, respectively. For the former, we observe a regime of intertwined charge- and spin-order in the electron-doped regime, which matches recent experimental observations in the cuprate material Nd\(_{2x}\)Ce\(_x\)CuO\(_4\). Furthermore, we localize the emergence of a Kondo regime in the periodic Anderson model and establish the magnetic phase diagram of the two-band model for topological Kondo insulators. The emerging antiferromagnetic ground state can be characterized by its topological properties and shows, for a non-trivial phase, topologically protected hinge modes. N2 - Stark korrelierte Fermionen in einem Festkörper-Kristallgitter weisen eine Vielzahl faszinierender kollektiver Eigenschaften auf und stellen damit eines der konzeptionell reichhaltigsten Themenkomplexe auf dem Gebiet der Physik der kondensierten Materie da. Die dazu nötigen Mechanismen lassen sich auf die elektronische Coulomb-Wechsel-wirkung zurückführen und sind trotz jahrzehntelanger intensiver Forschung bis heute nicht geschlossen gelöst worden. Vielmehr wurden - Stück für Stück - experimentelle und theoretische Einzelergebnisse zusammen getragen, die nicht nur einen tiefen Einblick in diese Materialien geben, sondern in einigen Fällen sogar korrelierte Phänomene erklären können. Allerdings gibt es durchaus Strukturen, die sich hartnäckig weigern, mit den bisherigen theoretischen Beschreibungen vollständig übereinzustimmen, darunter die Kuprat-Hochtemperatursupraleiter und die Schwer-Fermionenverbindungen. Obwohl diese beiden Materialklassen seit etwa 50 Jahren erforscht werden, sind große Teile ihrer jeweiligen Phasendiagramme noch nicht abschließend entschlüsselt. Experimente an mehreren elektronendotierten Kuprat-verbindungen, z. B. Neodym-Cerium-Kupferoxid (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), zeigen unter anderem eine Ladungsdichtewelle, die auf einem antiferromagnetischen Grundzustand beruht. Bislang ist nicht abschließend geklärt, wie diese Verschränkung von Ladungs- und Spinpolarisation zustande kommt und wie sie mit einer strengen theoretischen Beschreibung in Einklang zu bringen ist. Schwer-Fermionen Halbmetalle erleben mit der Entdeckung der topologischen Kondo-Isolatoren eine Renaissance und bieten eine einzigartige Schnittstelle zwischen Topologie, Symmetriebrechung und korrelierten Phänomenen. Der wahrscheinlich vielversprechendste Kandidat dieser neuen Materialklasse ist Samariumhexaborid (SmB\(_6\)). In dieser Arbeit nutzen wir einen spinrotationsinvarianten Hilfsteilchenansatz um die Emergenz neuer Ordnungszustände wechselwirkender Elektronen zu untersuchen. Im Besonderen interessiert uns das Zusammenspiel von Spin- und Ladungsdichtewellen in den Hochtemperatur Kupraten und Kondo-systemen, sowie die Interaktion von Magnetismus und Topologie. Dazu verwenden wir eine hoch parametrische Molekular-Feld-Analyse der bosonischen Hilfsteilchen, die anschließend durch eine Stabilitätsanalyse des Sattelpunkts ergänzt wird. Sowohl die Molekular-Feld-Approximation, als auch der Fluktuations-Formalismus erfordern ein numerisches Softwaretool, das in der Lage ist sowohl Sattelpunkt-Gleichungen als auch Loopintegral präzise zu lösen. Wir präsentieren eine pädagogisch aufgearbeitete, von Grund auf entwickelte Herleitung des Formalismus, die auf eine Software-Implementierung zugeschnitten ist. Der Hilfsteilchenansatz erlaubt überdies eine rigorose Beschreibung inkommensurabel magnetischer Ordnungen und reproduziert etablierten numerischen und analytische Ergebnisse in guter Übereinstimmung. Für unsere Analyse verwenden wir sowohl das zweidimensionale Einband-Hubbard- als auch das periodische Anderson-Modell als minimalen Hamitonian für die Hochtemperatur-Kuprate bzw. Kondo-Systeme. Im Falle der Kuprate finden wir eine Phase, die durch eine kombinierte Ladungs- und Spinordnung im elektronendotierten Parameterbereich gekennzeichnet ist und überdies gut mit experimentellen Beobachtungen im Kupratmaterial Nd\(_{2x}\)Ce\(_x\)CuO\(_4\) übereinstimmt. Des Weitern wird das Auftreten des Kondo-Regimes im periodischen Anderson-Modell untersucht und das magnetische Phasendiagramm des Zwei-Band-Hamiltonians eines topologischen Kondo-Isolators kartiert. Der antiferromagnetische Grundzustand kann durch eine topologische Invariante charakterisiert werden und zeigt für eine nicht-triviale Phase eindimensionale topologisch geschützte Kantenmoden. KW - Festkörpertheorie KW - Slave-Boson-Verfahren KW - Hochtemperatursupraleiter KW - Kondo-System KW - Topologische Phase KW - Mean-Field-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248121 ER - TY - THES A1 - Reinthaler, Rolf Walter T1 - Charge and Spin Transport in Topological Insulator Heterojunctions T1 - Ladungs- und Spintransport in Topologischen Isolator Heterojunctions N2 - Over the last decade, the field of topological insulators has become one of the most vivid areas in solid state physics. This novel class of materials is characterized by an insulating bulk gap, which, in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter make topological insulators promising candidates for applications in high fidelity spintronics and topological quantum computing. This thesis contributes to bringing these fascinating concepts to life by analyzing transport through heterostructures formed by two-dimensional topological insulators in contact with metals or superconductors. To this end, analytical and numerical calculations are employed. Especially, a generalized wave matching approach is used to describe the edge and bulk states in finite size tunneling junctions on the same footing. The numerical study of non-superconducting systems focuses on two-terminal metal/topological insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and the edge contributions are not additive. While for a long junction, the transport is determined purely by edge states, for a short junction, the conductance signal is built from both bulk and edge states in a ratio, which depends on the width of the sample. Further, short junctions show a non-monotonic conductance as a function of the sample length, which distinguishes the topologically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance of the topological insulator can be traced to the formation of an effectively propagating solution, which is robust against scalar disorder. The analysis of the competition of edge and bulk contributions in nanostructures is extended to transport through topological insulator/superconductor/topological insulator tunneling junctions. If the dimensions of the superconductor are small enough, its evanescent bulk modes can couple edge states at opposite sample borders, generating significant and tunable crossed Andreev reflection. In experiments, the latter process is normally disguised by simultaneous electron transmission. However, the helical edge states enforce a spatial separation of both competing processes for each Kramers’ partner, allowing to propose an all-electrical measurement of crossed Andreev reflection. Further, an analytical study of the hybrid system of helical edge states and conventional superconductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect. It is characterized by edge states. Both the helicity and the protection against scalar disorder of these edge states are unaffected by an in-plane magnetic field. At the same time its superconducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because the combination of helical edge states and superconductivity results in a giant g-factor. This is manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect is an effective generator and detector for spin currents. The research presented here deepens the understanding of the competition of bulk and edge transport in heterostructures based on topological insulators. Moreover it proposes feasible experiments to all-electrically measure crossed Andreev reflection and to test the spin polarization of helical edge states. N2 - Während des letzten Jahrzehnts haben sich topologische Isolatoren zu einem der aktivsten Bereiche der Festkörperphysik entwickelt. Diese neuartige Materialklasse charakterisiert sich durch einen isolierenden Volumenzustand, welcher, in zweidimensionalen und zeitumkehrinvarianten Systemen, durch helikale Randkanäle ergänzt wird. Diese Randkanäle machen topologische Isolatoren zu vielversprechenden Kandidaten für Anwendungen in den Bereichen der präzisen Spintronik und der topologischen Quantencomputer. Diese Doktorarbeit trägt zu der Realisierung dieser faszinierenden Konzepte bei, indem sie den Transport durch Heterostrukturen aus zweidimensionalen topologischen Isolatoren und Metallen oder Supraleitern analysiert. Hierfür werden analytische und numerische Methoden angewandt. Im Besonderen wird eine generalisierte Methode zum Wellenfunktionsanpassung an Grenzflächen verwendet, um Rand- und Volumenzustände simultan beschreiben zu können. Für die numerische Untersuchung nicht-supraleitender Systeme werden topologische Isolatoren als Tunnelbarrieren zwischen metallischen Kontakten betrachtet. Unerwarteterweise sind die Leitfähigkeiten von Rand- und Volumenzuständen nicht additiv. In langen und breiten Tunnelbarrieren wird der Transport ausschließlich durch die Randkanäle bestimmt. In kurzen Tunnelbarrieren hingegen ergibt sich die Leitfähigkeit aus einem Gemisch von Rand- und Volumenzuständen, welches von der Breite der Probe abhängt. In kurzen Tunnelbarrieren zeigt die Leitfähigkeit als Funktion der Probenlänge außerdem ein Maximum, welches das topologisch nicht-triviale Regime von dem topologisch trivialen Regime unterscheidet. Diese nicht-monotone Leitfähigkeit basiert auf der Formation einer effektiv propagierenden Mode, welche gegen Streuung durch nicht-magnetische Störstellen geschützt ist. Die Analyse des Zusammenspiels von Rand- und Volumenzuständen wird auf supraleitende Tunnelbarrieren zwischen zwei topologischen Isolatoren ausgeweitet. Wenn die räumlichen Dimensionen der Tunnelbarriere klein genug sind, können die entgegenlaufenden Randkanäle an gegenüberliegenden Rändern des topologischen Isolators durch die evaneszenten Volumenzustände des Supraleiters gekoppelt werden. Hierdurch kann eine nicht-lokale Andreev-Reflexion generiert und kontrolliert werden. In Experimenten wird dieser Prozess normalerweise durch simultane Elektrontransmission überlagert. Für einzelne Kramers-Partner jedoch forciert die Helizität der Randkanäle die räumliche Trennung beider Prozesse, was eine rein elektrische Messung der nicht-lokalen Andreev-Reflexion ermöglicht. Im Weiteren wird eine Studie über Hybridsysteme aus helikalen Randkanälen und konventionellen Supraleitern im magnetischen Feld, welches in der Ebene des zweidimensionalen topologischen Isolators liegt, präsentiert. Die Studie beschreibt den neuartigen supraleitenden Quanten-Spin-Hall-Effekt. Die hierfür charakteristischen Randkanäle bleiben selbst in endlichen Magnetfeldern helikal und gegen nicht-magnetische Störstellen geschützt. Gleichzeitig führt die Kombination von helikalen Randkanälen und Supraleitung zu einem riesigen Landé-Faktor, wodurch die supraleitende Bandlücke und der Magnetotransport dieser Systeme mit kleinen Magnetfeldern manipuliert werden kann. Dies kann durch einen nicht-monotonen supraleitenden Überschussstrom und ein aufgespaltenes Maximum der dI/dV -Charakteristik als Funktion des Magnetfeldes gemessen werden. In der Folge stellt der supraleitende Quanten-Spin-Hall-Effekt einen effektiven Generator und Detektor für Spinströme dar. Die hier präsentierte Forschung vertieft das Verständnis des Zusammenspiels von Rand- und Volumentransport in Heterostrukturen aus toplogischen Isolatoren. Außerdem werden realisierbare Experimente beschrieben, mit welchen die nicht-lokale Andreev-Reflexion rein elektrisch gemessen und die Spinpolarisierung der helikalen Randkanäle getestet werden können. KW - Topologischer Isolator KW - NSN-junctions KW - NSN-Grenzfächen KW - Spintronik KW - Elektronischer Transport KW - Crossed Andreev Reflection KW - Topological edge states KW - Crossed Andreev Refexion KW - Topologische Randkanäle KW - Supraleiter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135611 ER - TY - JOUR A1 - Schottdorf, Manuel A1 - Keil, Wolfgang A1 - Coppola, David A1 - White, Leonard E. A1 - Wolf, Fred T1 - Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex JF - PLoS Computational Biology N2 - The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models. KW - placental mammal KW - simple receptive-fields KW - ocular dominance columns KW - lateral geniculate-nucleus KW - direction selectivity KW - tree shrew KW - orientation columns KW - K-PG radiation KW - monkey striate cortex KW - ancestor KW - cortical magnification factor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138879 VL - 11 IS - 11 ER - TY - JOUR A1 - Rousochatzakis, Ioannis A1 - Reuther, Johannes A1 - Thomale, Ronny A1 - Rachel, Stephan A1 - Perkins, N. B. T1 - Phase Diagram and Quantum Order by Disorder in the Kitaev K\(_1\) - K\(_2\) Honeycomb Magnet JF - Physical Review X N2 - We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling K\(_2\), which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iridate Na\(_2\)IrO\(_3\), and may also play a role in \(\alpha\)-RuCl\(_3\) and Li\(_2\)IrO\(_3\). This coupling naturally explains the zigzag ordering (without introducing unrealistically large longer-range Heisenberg exchange terms) and the special entanglement between real and spin space observed recently in Na\(_2\)IrO\(_3\). Moreover, the minimal K\(_1\) - K\(_2\) model that we present here holds the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to the fundamentally different symmetries of the classical and quantum counterparts. KW - model KW - anyons KW - lattice KW - confinement-deconfinement transition Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137235 VL - 5 IS - 041035 ER - TY - THES A1 - Schulz, Robert Frank T1 - A radio view of high-energy emitting AGNs T1 - Eine radioastronomische Betrachtung von hochenergetisch emittierenden AGNs N2 - The most energetic versions of active galactic nuclei (AGNs) feature two highly-relativistic plasma outflows, so-called jets, that are created in the vicinity of the central supermassive black hole and evolve in opposite directions. In blazars, which dominate the extragalactic gamma-ray sky, the jets are aligned close to the observer's line of sight leading to strong relativistic beaming effects of the jet emission. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-parsec scales, close to their formation region. In this thesis, I focus on the properties of three AGNs, IC 310, PKS 2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. In these kinds of AGNs, the jets are less strongly aligned with respect to the observer than in blazars. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large samples in the monitoring programmes MOJAVE and TANAMI. My analysis of radio interferometric observations and flux density monitoring data reveal very different characteristics of the jet emission in these sources. The work presented in this thesis illustrates the diversity of the radio properties of gamma-ray-loud AGNs that do not belong to the dominating class of blazars. N2 - Die energetischsten Versionen von aktiven Galaxienkernen (AGNs) weisen zwei hoch-relativistische Plasmaausflüsse, sogenannte Jets auf, welche in der Nähe des zentralen supermassiven schwarzen Lochs entstehen und sich in entgegengesetzte Richtungen ausbreiten. In Blazaren, die die extragalaktische Gamma-Strahlung dominieren, sind diese Jets nahe zur Sichtlinie des Beobachters orientiert, das zu starkem relativistischen Beaming der Jetemission führt. Radiobeobachtungen vor allem mit Very Long Baseline Interferometry (VLBI) bieten die beste Möglichkeit direkt Informationen über die intrinsischen Eigenschaften von Jets in der Nähe ihrer Entstehungsregion auf sub-parsec Skalen zu sammeln. Der Fokus dieser Dissertation liegt auf den Eigenschaften von drei AGNs, IC 310, PKS 2004-447, and 3C 111, die zur kleinen Population von gamma-lauten AGNs abseits von Blazaren gehören. Diese Jets weisen einen etwas größeren Winkel zur Sichtlinie des Beobachters auf als Blazare. Ich untersuche diese AGNs im Detail mit Hilfe verschiedener radioastronomischer Instrumente in Bezug auf deren hochenergetischer Emission und im Vergleich der großen Samples der Langzeitbeobachtungsprogramme MOJAVE und TANAMI. Meine Analyse von Radiointerferometrie-Beobachtungen und Flussdichte-Messungen zeigen sehr unterschiedliche Eigenschaften der Jets. Damit verdeutlicht diese Arbeit anschaulich die vielfältigen Radioeigenschaften von gamma-lauten AGNs, die nicht zur dominierenden Klasse von Blazaren gehören. KW - Aktiver galaktischer Kern KW - Radioastronomie KW - Very long baseline interferometry KW - High-energy emission KW - Astrophysical Jet KW - Active galactic nucleus KW - Radio astronomy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137358 ER - TY - THES A1 - Pasold, Christian T1 - QCD and electroweak NLO corrections to W + Photon and Z + Photon production including leptonic decays T1 - QCD und elektroschwache NLO Korrekturen zu W + Photon und Z + Photon Produktion inklusive leptonischer Zerfälle N2 - At a hadron collider as the LHC or the Tevatron the production of a photon in association with a leptonically decaying vector boson represents an important class of processes. These processes stand out due to a very clean signal of a photon and two leptons. Furthermore they provide direct access to the photon–vector-boson couplings and thus an easy opportunity to test the gauge sector of the Standard Model. Within the scope of this work we present a full calculation of the next-to-leading-order corrections which include the O (αs) corrections of the strong interaction as well as the electroweak corrections of O (α) including all photon-induced contributions. For the creation of matrix elements we use methods based on Feynman diagrams. The IR singularities are treated with the dipole subtraction technique. In order to separate photons from jets, a quark-to-photon fragmentation function ´a la Glover / Morgan or Frixione’s cone isolation is employed. Moreover, two different scenarios for charged leptons in the fi state were considered. The fi scenario for dressed leptons assumes that a charged lepton and a photon will be recombined if they are collinear. In the second scenario for bare muons it is assumed that leptons and photon can be separated in a detector also if they are collinear. For our calculation we implemented all corrections into a fl Monte Carlo program. Be- sides the computation of the total cross section this program is also able to generate diff tial distributions of several experimentally motivated observables. Apart from the expected large electroweak corrections in the high transverse-momentum regions and sizeable corrections in the resonance regions of the transverse or the invariant masses we found photon-induced corrections up to several 10% for high transverse momenta. Within run I at the LHC for 7/8 TeV the experimental accuracy for Vγ production was roughly 10%. Due to the higher luminosity at run II this accuracy will be reduced to the level of a few percent so that corrections of the same order within the theoretical predictions might become relevant. In this work we present results for the total cross section at the LHC for 7, 8 and 14 TeV and the corresponding distributions for 14 TeV. N2 - An einem Hadron Beschleuniger wie dem LHC oder dem Tevatron spielt die Prozessklasse der Produktion eines Photons in Kombination mit einem leptonisch zerfallenden massiven Eichbosons eine wichtige Rolle. Die Gründe für die große Bedeutung sind zum einen die klare Signatur aus einem Photon und zwei Leptonen als auch der direkte Zugang zu den Kopplungen des Photons an die massiven Eichbosonen und damit die Möglichkeit den Eichsektor des Standard-Modells der Elementarteilchenphysik zu testen. Um die Präzision der theoretischen Vorhersagen weiter zu erhöhen wurde im Rahmen dieser Arbeit eine vollständige Berechnung der Korrekturen in nächstführender Ordnung durchgeführt. Diese umfassen alle Korrekturen der starken Wechselwirkung von O (αs) sowie die elektroschwachen Korrekturen von O (α) inklusive aller photon-induzierten Beiträge. Zur Erzeugung von Matrixelementen wurde dabei auf Feynman-Diagramm basierte Methoden zurückgegriffen. Für die Behandlung der IR-Divergenzen wurde die Dipolesubtraktion verwendet wobei die Separation von kollinearen Photon–Jet-Konfigurationen mithilfe der Quark-Photon-Fragmentationsfunktion a´ la Glover / Morgan oder des Frixione-Kriteriums erfolgte. Außerdem wurden zwei experimentell motivierte Szenarien für die Behandlung von geladenen Leptonen im Endzustand berücksichtigt. In einem Fall werden kollineare Photon–Lepton-Paare zu einem Quasiteilchen zusammengefasst. Dieses Szenario entspricht der experimentellen Behandlung von Elektronen, die im Falle eines kollinearen Photons im elektromagnetischen Kalorimeter nicht von diesem getrennt werden können. Im zweiten Szenario werden Myonen und Photonen als experimentell separierbar angenommen, sodass Myon und Photon getrennt von einander im Detektor rekonstruiert werden können. Für die Berechnung der Korrekturen wurden alle Beiträge in einem fl Monte Carlo Programm implementiert, das neben der Berechnung des totalen Wirkungsquerschnittes auch die Erzeugung von Histogrammen für verschiedenste experimentell motivierte Observablen ermöglicht. Neben den typischen großen elektroschwachen Korrekturen bei hohen Transversalimpulsen sowie in Bereichen der Resonanzregion von transversaler beziehungsweise invarianter Masse zeigt sich, dass auch die photon-induzierten Korrekturen in der Größenordnung von einigen 10% bei hohen Transversalimpulsen beitragen. Die experimentelle Genauigkeit für Vγ Produktion in Run I mit 7/8 TeV am LHC lag bei etwa 10%. Aufgrund der gesteigerten Luminosität in Run II wird diese Genauigkeit noch weiter verbessert werden, sodass Korrekturen von ∼ 5% innerhalb der theoretischen Vorhersagen nicht mehr vernachlässigt werden können. In dieser Arbeit zeigen wir Ergebnisse für den totalen Wirkungsquerschnitt am LHC für 7, 8 und 14 TeV sowie die dazugehörigen Verteilungen für 14 TeV. KW - Quantenchromodynamik KW - particle physics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137456 ER - TY - THES A1 - Fuchs, Moritz Jakob T1 - Spin dynamics in the central spin model: Application to graphene quantum dots T1 - Spin-Dynamik im zentralen Spin-Modell: Anwendung auf Graphen-Quantenpunkte N2 - Due to their potential application for quantum computation, quantum dots have attracted a lot of interest in recent years. In these devices single electrons can be captured, whose spin can be used to define a quantum bit (qubit). However, the information stored in these quantum bits is fragile due to the interaction of the electron spin with its environment. While many of the resulting problems have already been solved, even on the experimental side, the hyperfine interaction between the nuclear spins of the host material and the electron spin in their center remains as one of the major obstacles. As a consequence, the reduction of the number of nuclear spins is a promising way to minimize this effect. However, most quantum dots have a fixed number of nuclear spins due to the presence of group III and V elements of the periodic table in the host material. In contrast, group IV elements such as carbon allow for a variable size of the nuclear spin environment through isotopic purification. Motivated by this possibility, we theoretically investigate the physics of the central spin model in carbon based quantum dots. In particular, we focus on the consequences of a variable number of nuclear spins on the decoherence of the electron spin in graphene quantum dots. Since our models are, in many aspects, based upon actual experimental setups, we provide an overview of the most important achievements of spin qubits in quantum dots in the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors on a rather general ground. Subsequently, we elaborate on their effect in GaAs and graphene, which can be considered as prototype materials. Moreover, we also explain how the central spin model can be described in terms of open and closed quantum systems and which theoretical tools are suited to analyze such models. Based on these prerequisites, we then investigate the physics of the electron spin using analytical and numerical methods. We find an intriguing thermal flip of the electron spin using standard statistical physics. Subsequently, we analyze the dynamics of the electron spin under influence of a variable number of nuclear spins. The limit of a large nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master equation, which reveals a decoherence of the electron spin with a power-law decay on short timescales. Interestingly, we find a dependence of the details of this decay on the orientation of an external magnetic field with respect to the graphene plane. By restricting to a small number of nuclear spins, we are able to analyze the dynamics of the electron spin by exact diagonalization, which provides us with more insight into the microscopic details of the decoherence. In particular, we find a fast initial decay of the electron spin, which asymptotically reaches a regime governed by small fluctuations around a finite long-time average value. Finally, we analytically predict upper bounds on the size of these fluctuations in the framework of quantum thermodynamics. N2 - Auf Grund ihres Potentials hinsichtlich der Realisierung eines Quantencomputers wurde Quantenpunkten im Laufe der letzten Jahre große Aufmerksamkeit zuteil. In diesen Halbleiterstrukturen können einzelne Elektronen kontrolliert eingeschlossen werden, deren Spin wiederum als Basis eines Quantenbits zu Speicherung von Informationen verwendet werden kann. Allerdings unterliegt das Elektron vielvältigen Wechselwirkungen mit seiner Umgebung, was oftmals zu einem sehr schnellen Verlust dieser Information führt. Eine der wichtigsten Ursachen stellt dabei die Hyperfeinwechselwirkung der Kernspins der Halbleiteratome mit dem Elektronspin dar. Eine vielversprechende Möglichkeit diesen Effekt zu minimieren besteht daher in der Verringerung der Anzahl an Kernspins durch Anreicherung spinfreier Isotope. Diese Strategie kann auf Bauteile, bestehend aus Elementen der IV. Gruppe des Periodensystems wie beispielsweise Kohlenstoff, angewendet werden. Ausgehend von dieser Möglichkeit, wird in der vorliegenden Arbeit das Verhalten des Elektronspins in (kohlenstoffbasierten) Graphenquantenpunkten im Rahmen des zentralen Spinmodells analysiert. Besonderes Augenmerk wird dabei auf die Abhängigkeit der Dekohärenzphänomene von der Kernspinzahl gelegt. Da sich die Modelle, auf denen diese Untersuchung basiert, an experimentellen Gegebenheiten orientieren, wird zunächst ein überblick über die wichtigsten experimentellen Errungenschaften präsentiert. Neben einer allgemeinen Behandlung der Spinwechselwirkungen in Halbleitern wird dabei auch speziell auf die Eigenschaften von GaAs- und Graphenquantenpunkten eingegangen, die beide als Musterbeispiele angesehen werden können. Des Weiteren wird erläutert, wie sich das zentrale Spinmodell als offenes bzw. geschlossenes Quantensystem beschreiben lässt und mit welchen theoretischen Methoden sich diese untersuchen lassen. Aufbauend auf diesen Erkenntnissen, wird dann das Verhalten des Elektronspins mit Hilfe analytischer und numerischer Methoden erforscht. Im Rahmen der statistischen Physik findet sich ein thermisch induzierter Wechsel der Spinorientierung. überdies wird die Zeitentwicklung des Elektronspins für unterschiedliche Kernspinzahlen analysiert. Der Limes großer Kernspinzahlen wird mit Hilfe der Nakajima-Zwanzig Mastergleichung untersucht, wobei sich für den zeitlichen Verlauf der Dekohärenz des Elektronspins ein Potenzgesetz findet. Die Details dieses Potenzgesetzes hängen dabei von der Orientierung eines äußeren Magnetfeldes ab. Eine Beschränkung auf sehr kleine Spinsysteme ermöglicht die Anwendung von exakter Diagonalisierung, welche zusätzliche Erkenntnisse über die mikroskopischen Vorgänge, die zu Dekohärenz führen, liefert. Insbesondere ist ein schneller übergang zu einem quasi-statischen Verhalten beobachtbar, das durch kleine Fluktuationen um einen Langzeitmittelwert gekennzeichnet ist. Für diese Fluktuationen konnten im Rahmen der Quantenthermodynamik zusätzlich analytische Obergrenzen gefunden werden. KW - Elektronenspin KW - Quantenpunkt KW - Graphen KW - Quantum dot KW - Spin KW - Central spin KW - Graphene KW - Solid state physics KW - Festkörperphysik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136079 ER - TY - JOUR A1 - Varykhalov, A. A1 - Marchenko, D. A1 - Sánchez-Barriga, J. A1 - Scholz, M. R. A1 - Verberck, B. A1 - Trauzettel, B. A1 - Wehling, T. O. A1 - Carbone, C. A1 - Rader, O. T1 - Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co JF - Physical Review X N2 - The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions. KW - NI(111) KW - ultrasoft pseudopotentials KW - monolayer graphite KW - electronic states KW - transistors KW - surface Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135732 VL - 2 IS - 041017 ER - TY - THES A1 - Posske, Thore Hagen T1 - Dressed Topological Insulators: Rashba Impurity, Kondo Effect, Magnetic Impurities, Proximity-Induced Superconductivity, Hybrid Systems T1 - Topologische Isolatoren mit Zusätzen: Rashba Störstelle, Kondo Effekt, Magnetische Störstellen, Induzierte Supraleitung, Hybridsysteme N2 - Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples. N2 - Topologische Isolatoren sind elektronische Phasen, welche im Inneren isolieren, jedoch auf ihren Oberflächen über besondere, metallische Randkanäle mit einer spinabhängigen Dispersion verfügen. Diesen Phasen wird eine große Bedeutung hinsichtlich zukünftiger Realisationen von Spintronik und topologischem Quantenrechnen zugeordnet. Neben der Bestimmung intrinsischer Eigenschaften dieser neuartigen Systeme kann die Betrachtung von Kombinationen mit wohlbekannten physikalischen Systemen originelle, neue Physik generieren. Diese Dissertation befasst sich mit eben solchen Kombinationen. Insbesondere werden die folgenden Systeme analysiert: Ein lokaler Rashba-Rückstreuer, ein Kondo-Quantenpunkt im Zweikanalregime, im Gitter geordnete, magnetische Adatome auf einem starken, dreidimensionalen topologischen Isolator, die näheinduzierte Supraleitung in letzteren Systemen und Hybridverbindungen bestehend aus einem topologischen Isolator und einem Halbmetall. Die primären Resultate sind die analytische Beschreibung der Kondowolke und die Beschreibung ihrer möglichen Detektion in Stromkorrelationen weit entfernt von der Kondo-Region. Dabei wird die Methode der refermionisierbaren Parameterkonfigurationen verwendet und erweitert. Des Weiteren wird die Entdeckung einer Klasse von bandlückenfreien topologischen Phasen beschrieben, deren Randkanäle sich fast wie die von konventionellen topologischen Isolatoren verhalten. Die dargestellte Forschung wird voraussichtlich in der zukünftigen Klassifizierung und Anwendung von Systemen, die als Komponente mindestens einen topologischen Isolator enthalten, hilfreich sein. Dafür werden einige Beispiele gegeben. KW - Topologischer Isolator KW - physics KW - topological insulators KW - Emery Kivelson line KW - Toulouse point KW - Kondo cloud KW - helical liquid KW - Kondo effect KW - Rashba impurity KW - self-organized magnetization KW - hybrid systems KW - Festkörperphysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131249 ER - TY - THES A1 - Bolaños-Rosales, Alejandro T1 - Low Mach Number Simulations of Convective Boundary Mixing in Classical Novae T1 - Simulationen der konvektiven Mischung in Klassischen Novae im Strömungsbereich kleiner Machzahlen N2 - Classical novae are thermonuclear explosions occurring on the surface of white dwarfs. When co-existing in a binary system with a main sequence or more evolved star, mass accretion from the companion star to the white dwarf can take place if the companion overflows its Roche lobe. The envelope of hydrogen-rich matter which builds on top of the white dwarf eventually ignites under degenerate conditions, leading to a thermonuclear runaway and an explosion in the order of 1046 erg, while leaving the white dwarf intact. Spectral analyses from the debris indicate an abundance of isotopes that are tracers of nuclear burning via the hot CNO cycle, which in turn reveal some sort of mixing between the envelope and the white dwarf underneath. The exact mechanism is still a matter of debate. The convection and deflagration in novae develop in the low Mach number regime. We used the Seven League Hydro code (SLH ), which employs numerical schemes designed to correctly simulate low Mach number flows, to perform two and three- dimensional simulations of classical novae. Based on a spherically-symmetric model created with aid of a stellar evolution code, we developed our own nova model and tested it on a variety of numerical grids and boundary conditions for validation. We focused on the evolution of temperature, density and nuclear energy generation rate at the layers between white dwarf and envelope, where most of the energy is generated, to understand the structure of the transition region, and its effect on the nuclear burning. We analyzed the resulting dredge-up efficiency stemming from the convective motions in the envelope. Our models yield similar results to the literature, but seem to depend very strongly on the numerical resolution. We followed the evolution of the nuclear species involved in the CNO cycle and concluded that the thermonuclear reactions primarily taking place are those of the cold and not the hot CNO cycle. The reason behind this could be that under the conditions generally assumed for multi-dimensional simulations, the envelope is in fact not degenerate. We performed initial tests for 3D simulations and realized that alternative boundary conditions are needed. N2 - Klassische Novae sind thermonukleare Explosionen an der Oberfläche von Weißen Zwergen. Wenn ein solcher sich in einem Doppelsternsystem zusammen mit einem Hauptreihenstern oder einem späteren Stern befindet, kann Akkretion vom Begleiter zum Weißen Zwerg stattfinden, falls der Begleitstern seine Roche-Grenze überschre- itet. Die wasserstoffreiche Hülle, die sich auf der Oberfläche des Sterns bildet, zündet aufgrund des enormen Gravitationsdrucks in einer Deflagration. Aufgrund der Entar- tung des Gases führt das nukleare Brennen zu einem thermonuklearen Durchgehen (engl. runaway)und schließlich zu einer Explosion mit Energien in der Größenord- nung von 1046 erg. Der Weiße Zwerg bleibt dabei unberührt. Spektralanalysen der ausgestoßenen Gase deuten auf Isotope hin, die am heißen CNO-Zyklus beteiligt sind. Dies legt nahe, dass vor oder während der Brennphase eine Durchmischung von Materie zwischen der akkretierten Hülle und dem Weißen Zwerg stattfinden muss. Die Konvektion und Deflagration entwickeln sich im Strömungsbereich kleiner Machzahlen. Wir benutzten den Seven League Hydro code (SLH ), welcher ëber numerische Verfahren verfügt, die auf einen weiten Bereich von Machzahlen anwend- bar sind. Daraus errechneten wir Simulationen von Klassischen Novae in zwei und drei Dimensionen. Basierend auf einem sphärisch-symmetrischen Modell, das wir mit einem Sternentwicklungscode erstellten, entwickelten wir ein eigenes Nova-Modell. Wir testeten dies in Kombination mit eienr Reihe von Gittern und Randbedingun- gen. Anschließend analysierten wir im Detail das Verhalten von Temperatur, Dichte und nuklearer Energieerzeugungsrate in den Schichten zwischen Weißem Zwerg und Wasserstoffhülle, wo die Kernfusion hauptsächlich stattfindet, um die Struktur der Brennzone und deren Einfluss auf die Nukleosynthese zu verstehen. Wir analysierten die Effizienz der Konvektion, welche Elemente aus dem Weißen Zwerg nach oben in die Hülle transportiert. Die Ergebnisse entsprechen denen der Literatur, dennoch hängen sie stark von der numerischen Auflösung ab. Wir untersuchten die Isotopen- häufigkeit der im CNO-Zyklus beteiligten Elemente, und schloßen hieraus, dass das Brennen durch den weniger energetischen “kalten” CNO-Zyklus verläuft. Dies kann darauf zurückgeführt werden, dass unter den Bedingungen, die die Mehrzahl der multi- dimensionalen Modelle aus der Fachliteratur mit sich bringen, die Wasserstoffhülle tatsächlich nicht entartet ist. Abschließend simulierten wir testweise 3D-Modelle, aber neue Randbedingungen sind nötig, um mit den Berechnungen fortfahren zu können. KW - Nova KW - Weißer Zwerg KW - classical novae KW - convection KW - numerical hydrodynamics KW - nuclear reactions KW - stellar evolution KW - simulation KW - low Mach number flows KW - numerische Hydrodynamik KW - thermonukelare Reaktionen KW - Sternentwicklung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132863 ER - TY - JOUR A1 - Bechtle, Philip A1 - Bringmann, Torsten A1 - Desch, Klaus A1 - Dreiner, Herbi A1 - Hamer, Matthias A1 - Hensel, Carsten A1 - Krämer, Michael A1 - Nguyen, Nelly A1 - Porod, Werner A1 - Prudent, Xavier A1 - Sarrazin, Björn A1 - Uhlenbrock, Mathias A1 - Wienemann, Peter T1 - Constrained supersymmetry after two years of LHC data: a global view with Fittino JF - Journal of High Energy Physics N2 - We perform global fits to the parameters of the Constrained Minimal Super-symmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5 fb\(^{−1}\) of integrated luminosity. We also include the most recent upper bound on the branching ratio B\(_s\)  → μμ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, (g − 2)\(_μ\) in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for B(B\(_s\)→μμ) just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions. KW - supersymmetry phenomenology Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129573 VL - 06 IS - 098 ER - TY - JOUR A1 - Camago-Molina, J.E. A1 - O'Leary, B. A1 - Porod, W. A1 - Staub, F. T1 - Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars JF - European Physical Journal C N2 - Several extensions of the Standard Model of particle physics contain additional scalars implying a more complex scalar potential compared to that of the Standard Model. In general these potentials allow for charge- and/or color-breaking minima besides the desired one with correctly broken SU(2) L ×U(1) Y . Even if one assumes that a metastable local minimum is realized, one has to ensure that its lifetime exceeds that of our universe. We introduce a new program called Vevacious which takes a generic expression for a one-loop effective potential energy function and finds all the tree-level extrema, which are then used as the starting points for gradient-based minimization of the one-loop effective potential. The tunneling time from a given input vacuum to the deepest minimum, if different from the input vacuum, can be calculated. The parameter points are given as files in the SLHA format (though is not restricted to supersymmetric models), and new model files can be easily generated automatically by the Mathematica package SARAH. This code uses HOM4PS2 to find all the minima of the tree-level potential, PyMinuit to follow gradients to the minima of the one-loop potential, and CosmoTransitions to calculate tunneling times. KW - True Vacuum KW - One-loop Effective Potential KW - Saddle Point KW - Minimal Surface Tension KW - CMSSM Point KW - SM Gauge Group KW - Renormalization Scale KW - Landau Gauge KW - Homotopy Continuation Method KW - Gauge-dependent Quantity KW - False Vacuum KW - Spectrum Generator KW - SLHA File KW - Tunneling Time KW - Charged Scalar Field Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132110 VL - 73 IS - 2588 ER - TY - JOUR A1 - Kilian, W. A1 - Ohl, T. A1 - Reuter, J. A1 - Speckner, C. T1 - QCD in the color-flow representation JF - Journal of High Energy Physics N2 - For many practical purposes, it is convenient to formulate unbroken non-abelian gauge theories like QCD in a color-flow basis. We present a new derivation of SU(N) interactions in the color-flow basis by extending the gauge group to U(N) × U(1)′ in such a way that the two U(1) factors cancel each other. We use the quantum action principles to show the equivalence to the usual basis to all orders in perturbation theory. We extend the known Feynman rules to exotic color representations (e.g. sextets) and discuss practical applications as they occur in automatic computation programs. KW - QCD KW - scattering amplitudes KW - 1/N expansion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129583 VL - 10 IS - 022 ER - TY - JOUR A1 - Langenfeld, Ulrich A1 - Moch, Sven-Olaf A1 - Pfoh, Torsten T1 - QCD threshold corrections for gluino pair production at hadron colliders JF - Journal of High Energy Physics N2 - We present the complete threshold enhanced predictions in QCD for the total cross section of gluino pair production at hadron colliders at next-to-next-to-leading order. Thanks to the computation of the required one-loop hard matching coefficients our results are accurate to the next-to-next-to-leading logarithm. In a brief phenomenological study we provide predictions for the total hadronic cross sections at the LHC and we discuss the uncertainties arising from scale variations and the parton distribution functions. KW - resummation KW - supersymmetric standard model Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129609 VL - 11 IS - 070 ER - TY - JOUR A1 - Winter, Walter T1 - Long-baseline sensitivity studies and comparison (discussion session) JF - Journal of Physics: Conference Series N2 - In this discussion session, the sensitivity and optimization of future long-baseline experiments is addressed, with a special emphasis on feasible projects and the description in terms of the error on the parameters. In addition, a statement on the precision interesting for \(ν_e → ν_τ\) and \(ν_μ → ν_τ\)oscillation measurements is obtained. A special topic is the impact of the recent T2K hint for non-zero \(θ_{13}\). KW - physics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129440 N1 - Published under licence by IOP Publishing Ltd VL - 408 IS - 012020 ER - TY - JOUR A1 - Assaad, Fakher F. A1 - Herbut, Igor F. T1 - Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice JF - Physical Review X N2 - In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is small, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetrybreaking field and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the projective auxiliary-field quantum Monte Carlo algorithm. With our enhanced resolution, we find a direct and continuous quantum phase transition between the semimetallic and the insulating antiferromagnetic states with increase of the interaction. The single-particle gap, measured in units of Hubbard U, tracks the staggered magnetization. An excellent data collapse is obtained by finite-size scaling, with the values of the critical exponents in accord with the Gross-Neveu universality class of the transition. KW - strongly correlated materials KW - mesoscopics KW - computational physics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129829 VL - 3 IS - 031010 ER - TY - JOUR A1 - Assaad, F. F. A1 - Bercx, M. A1 - Hohenadler, M. T1 - Topological Invariant and Quantum Spin Models from Magnetic pi Fluxes in Correlated Topological Insulators JF - Physical Review X N2 - The adiabatic insertion of a \(\pi\) flux into a quantum spin Hall insulator gives rise to localized spin and charge fluxon states. We demonstrate that \(\pi\) fluxes can be used in exact quantum Monte Carlo simulations to identify a correlated \(Z_2\) topological insulator using the example of the Kane-Mele-Hubbard model. In the presence of repulsive interactions, a \(\pi\) flux gives rise to a Kramers doublet of spin-fluxon states with a Curie-law signature in the magnetic susceptibility. Electronic correlations also provide a bosonic mode of magnetic excitons with tunable energy that act as exchange particles and mediate a dynamical interaction of adjustable range and strength between spin fluxons. \(\pi\) fluxes can therefore be used to build models of interacting spins. This idea is applied to a three-spin ring and to one-dimensional spin chains. Because of the freedom to create almost arbitrary spin lattices, correlated topological insulators with \(\pi\) fluxes represent a novel kind of quantum simulator, potentially useful for numerical simulations and experiments. KW - topological insulators KW - strongly correlated materials Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129849 VL - 3 IS - 1 ER - TY - JOUR A1 - Geissler, F. A1 - Budich, J. C. A1 - Trauzettel, B. T1 - Group theoretical and topological analysis of the quantum spin Hall effect in silicene JF - New Journal of Physics N2 - Silicene consists of a monolayer of silicon atoms in a buckled honeycomb structure. It was recently discovered that the symmetry of such a system allows for interesting Rashba spin–orbit effects. A perpendicular electric field is able to couple to the sublattice pseudospin, making it possible to electrically tune and close the band gap. Therefore, external electric fields may generate a topological phase transition from a topological insulator to a normal insulator (or semimetal) and vice versa. The contribution of the present paper to the study of silicene is twofold. Firstly, we perform a group theoretical analysis to systematically construct the Hamiltonian in the vicinity of the K points of the Brillouin zone and find an additional, electric field induced spin–orbit term, that is allowed by symmetry. Subsequently, we identify a tight-binding model that corresponds to the group theoretically derived Hamiltonian near the K points. Secondly, we start from this tight-binding model to analyze the topological phase diagram of silicene by an explicit calculation of the Z2 topological invariant of the band structure. To this end, we calculate the Z2 topological invariant of the honeycomb lattice in a manifestly gauge invariant way which allows us to include Sz symmetry breaking terms—like Rashba spin–orbit interaction—into the topological analysis. Interestingly, we find that the interplay of a Rashba and an intrinsic spin–orbit term can generate a non-trivial quantum spin Hall phase in silicene. This is in sharp contrast to the more extensively studied honeycomb system graphene where Rashba spin–orbit interaction is known to compete with the quantum spin Hall effect in a detrimental way. KW - quantum spin KW - Hall effect Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129732 VL - 15 IS - 085030 ER - TY - JOUR A1 - Budich, Jan Carl A1 - Trauzettel, Björn T1 - Z(2) Green's function topology of Majorana wires JF - New Journal of Physics N2 - We represent the Z2 topological invariant characterizing a one-dimensional topological superconductor using a Wess–Zumino–Witten dimensional extension. The invariant is formulated in terms of the single-particle Green’s function which allows us to classify interacting systems. Employing a recently proposed generalized Berry curvature method, the topological invariant is represented independent of the extra dimension requiring only the single-particle Green’s function at zero frequency of the interacting system. Furthermore, a modified twisted boundary conditions approach is used to rigorously define the topological invariant for disordered interacting systems. KW - Green's function Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129751 VL - 15 IS - 065006 ER - TY - THES A1 - Brehm, Sascha T1 - Two-Particle Excitations in the Hubbard Model for High-Temperature Superconductors: A Quantum Cluster Study T1 - Zwei-Teilchen Anregungen im Hubbard Modell für Hochtemperatur-Supraleiter: Eine Quanten-Cluster Untersuchung N2 - Two-particle excitations, such as spin and charge excitations, play a key role in high-Tc cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials . To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility chi0 including the VCA one-particle propagators.Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides the INS data on magnetic properties further important new insights were gained recently via ARPES (Angle-Resolved Photoemission-Spectroscopy) and Raman experiments which disclosed a quite different doping dependence of the antinodal compared to the near-nodal gap. This thesis provides an approach to the Raman response similar to the magnetic case for inspecting this gap dichotomy. In agreement with experiments and one-particle data obtained in the VCA, we recover the antinodal gap decreasing and the near-nodal gap increasing as a function of doping. Hence, our results prove the Hubbard model to account for these salient gap features. In summary, we develop a two-particle cluster approach which is appropriate for the strongly-correlated regime and contains no free parameter. Our results obtained with this new approach combined with the phase diagram and the one-particle excitations obtained in the VCA strongly constitute a Hubbard model description of HTSC cuprate materials. N2 - Zwei-Teilchen Anregungen, darunter Spin und Ladungs Anregungen, sind von besonderer Bedeutung in Hoch-Tc Kuprat Supraleitern (HTSL). Aufgrund der antiferromagnetischen Phase bei niedrigen Dotierungen werden magnetische Anregungen direkt mit dem Mechanismus der Supraleitung in Verbindung gebracht. Gerade die sogenannte Resonanzmode ist ein vielversprechender Kandidat für den pairing glue, eine bosonische Anregung, welche die Paarung von Elektronen induziert. Weiterhin wird deren Wechselwirkung mit itineranten Elektronen verantwortlich gemacht für einige der beobachteten Eigenschaften der HTSL. Für ein tieferes Verständnis der Kuprate ist es daher unerlässlich, der Resonanzmode auf den Grund zu gehen. Um die entsprechenden Zwei-Teilchen Korrelationsfunktionen zu analysieren, entwickeln wir auf Basis des Variational Cluster Approach (VCA, eine Cluster Methode, um Ein-Teilchen Green Funktionen zu berechnen) in der vorliegenden Dissertation eine neue, nicht-perturbative und parameterfreie Technik für T=0. Im Sinne der VCA berechnen wir einen effektiven Elektron-Loch Vertex auf einem einzelnen Cluster und verwenden eine vollkommen renormierte Bubble Suszeptibilität chi0, welche die VCA Ein-Teilchen-Propagatoren beinhaltet. Mit Hilfe unserer neuen Technik können wir die magnetischen Anregungen der HTSL im Rahmen des Hubbard Modells in der stark korrellierten Phase reproduzieren. Als herausragendes Ergebnis erhalten wir die berühmte Resonanzmode im underdotierten Bereich innerhalb des von der Supraleitung induzierten Gaps der Spin-Flip Elektron-Loch Anregungen. Deren Intensität und Sanduhren-förmige Dispersion zeigen eine sehr gute Übereinstimmung mit den Experimenten. Weiterhin sind charakteristische Eigenschaften, wie die Energie der Resonanzmode oder die Differenz des Imaginärteils der Suszeptibilität in der supraleitenden und normalen Phase im Einklang mit Inelastischen Neutronenstreu (INS) Experimenten. Zum ersten Mal bringt eine stark-korrellierte und parameterfreie theoretische Rechnung diese besonderen magnetischen Eigenschaften hervor und bekräftigt damit die Erklärung der Resonanzmode als S=1 magnetisches Exziton. Neben den INS Resultaten zu magnetischen Eigenschaften wurden kürzlich weitere wichtige neue Erkenntnisse mittels ARPES (Winkelaufgelöste Photoemissionen Spektroskopie) und Raman Experimenten erhalten. Beide legten eine deutlich unterschiedliche Dotierungsabhängigkeit des anti-nodalen Gaps verglichen mit dem Gap nahe des nodalen Punktes offen. Im Rahmen dieser Dissertation wird eine der magnetischen Berechnung ähnliche Technik für den Raman Response benutzt, um dieses unterschiedliche Verhalten des Gaps zu untersuchen. Übereinstimmend mit den Experimenten und Ein-Teilchen Ergebnissen aus VCA Rechnungen bekommen wir ein Abfallen des anti-nodalen Gaps und Ansteigen des Gaps nahe dem nodalen Punkt als Funktion der Dotierung. Folglich zeigen unsere Ergebnisse, dass das Hubbard Modell diese besonderen Eigenschaften des Gaps beinhaltet. Zusammenfassend entwickeln wir eine Zwei-Teilchen Cluster Technik, welche für stark korrellierte Systeme geeignet ist und keine freien Parameter enthält. Unsere Ergebnisse mit dieser neuen Technik in Verbindung mit dem Phasendiagramm und Ein-Teilchen Anregungen der VCA Rechnungen bekräftigen mit Nachdruck eine Beschreibung der HTSL Kuprate auf Basis des Hubbard Modells. KW - Hochtemperatursupraleiter KW - Hubbard-Modell KW - Magnetismus KW - Starke Kopplung KW - High-temperature superconductivity KW - Hubbard model KW - magnetism KW - strong correlated electrons Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38719 ER - TY - THES A1 - Plentinger, Florian T1 - Systematic Model Building with Flavor Symmetries T1 - Systematischer Modellbau mit Flavor Symmetrien N2 - Die Beobachtung von Neutrinomassen und Leptonenmischungen haben gezeigt, dass das Standard-Modell unvollständig ist. Im Zuge dieser Entdeckung tauchen neue Fragestellungen auf: warum sind die Neutrinomassen so klein, wie sieht ihre Massenhierarchie aus, warum sind die Mischungen im Quark- und Leptonen-Sektor so unterschiedlich oder welche Form hat der Higgs-Sektor. Um diese Fragen zu beantworten und um zukünftige experimentelle Daten vorherzusagen, werden verschiedene Ansätze betrachtet. Besonders interessant sind Grand Unified Theories, wie SU(5) oder SO(10). GUTs sind vertikale Symmetrien, da sie die SM-Teilchen in Multipletts vereinheitlichen und üblicherweise neue Elementarteilchen vorhersagen, die durch den Seesaw-Mechanismus, auf natürliche Weise die Kleinheit der Neutrinomassen erklären. Darüberhinaus sind auch horizontale Symmetrien, d.h. Flavor-Symmetrien, welche auf den Generationen-Raum der SM-Teilchen wirken, interessant. Sie können die Quark- und Leptonen-Massenhierarchien, sowie die unterschiedlichen Quark- und Leptonenmischungen, erklären. Ausserdem beeinflussen Flavor-Symmetrien massgeblich den Higgs-Sektor und sagen bestimmte Formen von Massenmatrizen vorher. Diese hohe Vorhersagekraft machen GUTs und Flavor-Symmetrien sowohl für Theoretiker, als auch für Experimentalphysiker interessant. Solche Erweiterungen des SM können mit weiteren Konzepten wie Supersymmetrie oder extra Dimensionen kombiniert werden. Hinzu kommt, dass sie für gewöhnlich Auswirkungen auf die beobachtete Materie-Antimaterie Asymmetrie des Universums haben und einen dunkle Materie Kandidaten beinhalten können. Im Allgemeinen sagen sie auch die seltene Leptonenzahl verletzenden Zerfälle mu -> e gamma, tau -> mu gamma und tau -> e gamma vorher, die stark von Experimenten eingeschränkt sind, aber möglicherweise in der Zukunft beobachtet werden. In dieser Arbeit kombinieren wir all diese Zugänge, d.h. GUTs, den Seesaw-Mechanismus und Flavor-Symmetrien. Drüber hinaus ist unser Anliegen einen systematischen Zugang zum Modellbau zu entwickeln und durchzuführen, sowie die Suche nach phänomenologischen Implikationen. Dies stellt eine neue Sichtweise im Modellbau dar, da es uns erlaubt bestimmte Modelle durch ihre theoretischen und phänomenologischen Vorhersagen zu filtern. D.h. wir können weitere Einschränkungen an Modelle fordern, um ein bestimmtes auszuwählen. Die Ergebnisse unserer Herangehensweise sind zum Beispiel mannigfaltige Leptonen-Flavor- und GUT-Modelle, ein systematischer Scan von Leptonenzahl verletzenden Prozessen, neue Massenmatrizen, eine neues Veständnis der Leptonenmischungswinkel, eine Verallgemeinerung der Idee der Quark-Leptonen-Komplementarität theta_12=pi/4-epsilon/sqrt{2} und zum ersten Mal die QLC-Relation in einer SU(5) GUT. N2 - The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays mu -> e gamma, tau -> mu gamma and tau -> e gamma which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and to search for phenomenological implications. This provides a new perspective in model building since it allows us to screen models by its predictions on the theoretical and phenomenological side, i.e., we can apply further model constraints to single out a desired model. The results of our approach are, e.g., diverse lepton flavor and GUT models, a systematic scan of lepton flavor violation, new mass matrices, a new understanding of lepton mixing angles, a general extension of the idea of quark-lepton complementarity theta_12=pi/4-epsilon/sqrt{2} and for the first time the QLC relation in an SU(5) GUT. KW - Symmetrie KW - Flavour KW - Flavor Symmetrie KW - GUT KW - Textur KW - Massenmatrix KW - PMNS KW - Neutrinooszillation KW - Flavourmischung KW - CKM-Matrix KW - Große Vereinheitlichung KW - flavor symmetry KW - GUT KW - texture KW - mass matrix KW - PMNS Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38077 ER - TY - THES A1 - Csallner, Sigrun T1 - Produktion und Nachweis schwerer Selektronen T1 - Production and Decay of Heavy Selectrons N2 - Wir studieren die Produktion und den Nachweis von Selektronen mit Massen jenseits der Schwelle zur Paarerzeugung an künftigen Linearbeschleunigern mit Schwerpunktsenergien von 500 GeV und 800 GeV. Hierzu betrachten wir die Produktion von linken und rechten Selektronen in Assoziation mit dem jeweils leichtesten Neutralino oder Chargino durch Elektron-Elektron-, Elektron-Positron- und Elektron-Photon-Streuung im Rahmen des MSSM. Die Produktion durch Elektron-Elektron-Streuung untersuchen wir zusätzlich in zwei erweiterten Modellen, dem NMSSM und einem E6-Modell mit einem zusätzlichen U(1)-Eichfaktor. N2 - We investigate the production and the decay of selectrons with masses beyond the threshold for pair production at future linear colliders with center-of-mass energies of 500 GeV and 800 GeV. For this we study the production of left and right selectrons in association with the lightest neutralino or chargino, respectively, via electron-electron, electron-positron and electron-photon scattering in the framework of the MSSM. Furthermore we analyse the production via electron-electron scattering in two extended models, the NMSSM and an E6-model with an additional U(1) gauge factor. KW - Linearbeschleuniger KW - Elektron-Elektron-Streuung KW - Supersymmetrie KW - Selektron KW - Supersymmetrie KW - Linearbeschleuniger KW - erweiterte Modelle KW - Elektron-Elektron-Streuung KW - selectron KW - supersymmetry KW - linear collider KW - extended models KW - electron-electron scattering Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22433 ER - TY - THES A1 - Elbracht, Oliver T1 - Wave Extraction in Numerical Relativity T1 - Extraktion von Gravitationswellen in numerischer Relativitätstheorie N2 - Diese Arbeit konzentriert sich auf eine fundamentale Problematik der numerischen Relativitätstheorie: Die Extraktion von Gravitationswellen in einer eich- und koordinateninvarianten Formulierung, um ein physikalisch interpretierbares Objekt zu erhalten. Es wird eine neue Methodik entwickelt, um die physikalisch relevanten Größen aus einer numerisch erzeugten Raumzeit zu extrahieren. Wir präsentieren eine allgemeingültige kanonische Formulierung der Weyl Skalare im Newman-Penrose Formalismus als eine Funktion von fundamentalen Raumzeit-Invarianten. Dadurch zeigt sich, dass mit Hilfe dieser Methodik die explizite Konstruktion eines Vierbeins vollständig redundant ist. Als weiteren Schwerpunkt charakterisieren wir innerhalb des Newman-Penrose Formalismus eine spezielle Untergruppe von Tetraden, die transversen Frames. Es wird eine bisher unbekannte Verbindung zwischen den primär genutzen Vierbeinen für die Extraktion der Wellenform abgeleitet, dem Gram-Schmidt Vierbein und dem quasi-Kinnersley Vierbein. Abschliessend studieren wir die Abhängigkeit der Gravitationswellen eines gestörten Schwarzen Loches vom verwendeten Vierbein. Wir berechnen die Form der Gravitationswellen in dieser Raumzeit und demonstrieren inwieweit unsere neue Methodik robustere und exaktere Ergebnisse liefert, als die gewöhnlich verwendeten Ansätze zur Extraktion des Signals. N2 - This work focuses on a fundamental problem in modern numerical rela- tivity: Extracting gravitational waves in a coordinate and gauge independent way to nourish a unique and physically meaningful expression. We adopt a new procedure to extract the physically relevant quantities from the numerically evolved space-time. We introduce a general canonical form for the Weyl scalars in terms of fundamental space-time invariants, and demonstrate how this ap- proach supersedes the explicit definition of a particular null tetrad. As a second objective, we further characterize a particular sub-class of tetrads in the Newman-Penrose formalism: the transverse frames. We establish a new connection between the two major frames for wave extraction: namely the Gram-Schmidt frame, and the quasi-Kinnersley frame. Finally, we study how the expressions for the Weyl scalars depend on the tetrad we choose, in a space-time containing distorted black holes. We apply our newly developed method and demonstrate the advantage of our approach, compared with methods commonly used in numerical relativity. KW - Allgemeine Relativitätstheorie KW - Gravitationswelle KW - gravitational waves Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40672 ER - TY - THES A1 - Schmidt, Manuel J. T1 - Replica Symmetry Breaking at Low Temperatures T1 - Replikasymmetriebrechung bei tiefen Temperaturen N2 - In this thesis, the low-temperature regime of replica symmetry breaking in the SK-model has been thoroughly investigated. In order to access this regime and to perform self-consistence calculations with high accuracy at high orders of replica symmetry breaking, a formalism has been developed which reduces the numerical effort to the absolute minimum. The central idea of its derivation is the identification of asymptotic regions in which the recursion relations can be solved analytically. The new object in the numerical treatment is then the correction to this asymptotic regime, represented by a sequence of so-called kernel correction functions. This method increased the effciency of the numerics considerably so that up to 200 orders of RSB could be calculated at zero temperature and zero external field, and up to 60 (65) orders of RSB for finite temperature (external field). The remarkable high precision of these calculations allowed the extraction of several quantities with accuracy exceeding the literature values by several orders of magnitude. The results of the numerical calculations have been analyzed in great detail. Especially the convergence behavior of various observables and of the order function with respect to the RSB order has been investigated since the high but finite RSB regime has been addressed in the present work for the first time. Several unexpected features of finite order replica symmetry breaking have been observed. N2 - In der vorliegenden Dissertation wurden die Eigenschaften der Replikasymmetriebrechung (RSB) im Sherrington-Kirkpatrick-Modell bei tiefen Temperaturen gründlich untersucht. Um entsprechend tiefe Temperaturen und sogar T = 0 zu erreichen und gleichzeitig die Selbstkonsistenzrechnungen mit hoher numerischer Genauigkeit und bei hohen RSB Ordnungen durchzuführen, wurde ein Formalismus entwickelt, welcher den numerischen Aufwand auf ein absolutes Minimum reduziert. Das zentrale Konzept der Ableitung dieser Formulierung ist die Identifikation asymptotischer Bereiche, in denen die Rekursionsgleichungen der Replikasymmetriebrechung bei endlichen Ordnungen analytisch gelöst werden können. Das neue Objekt, welches numerisch behandelt werden muss, ist die Korrektur zu diesen asymptotischen Bereichen, welche durch eine Reihe von Funktionen, den sogenannten kernel correction functions beschrieben wird. Diese Methode hat die Effizienz der numerischen Behandlung erheblich verbessert, so dass bis zu 200 RSB Ordnungen bei verschwindender Temperatur und bei verschwindendem Magnetfeld und bis zu 60 (65) RSB Ordnungen bei endlichen Temperaturen (Magnetfeldern) berechnet werden konnten. Die ungewöhnlich hohe Genauigkeit dieser Rechnungen erlaubte die Bestimmung vieler Observablen mit einer Genauigkeit, die mehrere Größenordnungen über den Literaturwerten liegt. Die Ergebnisse der numerischen Rechnungen wurden im Detail analysiert. Speziell das Konvergenzverhalten der Ordnungsfunktion und der interessanten Observablen als Funktionen der RSB Ordnung wurde untersucht. Dieser Bereich hoher, aber endlicher RSB Ordnungen wurde in der vorliegenden Arbeit das erste Mal analysiert und viele unerwartete Eigenschaften wurden gefunden. KW - Spin-Spin-Wechselwirkung KW - Spin-Struktur KW - RSB KW - glassy systems KW - spin glasses Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30660 ER - TY - THES A1 - Maier, Andreas T1 - Adaptively Refined Large-Eddy Simulations of Galaxy Clusters T1 - Adaptiv verfeinerte Grobstruktursimulationen von Galaxienhaufen N2 - It is aim of this work to develop, implement, and apply a new numerical scheme for modeling turbulent, multiphase astrophysical flows such as galaxy cluster cores and star forming regions. The method combines the capabilities of adaptive mesh refinement (AMR) and large-eddy simulations (LES) to capture localized features and to represent unresolved turbulence, respectively; it will be referred to as Fluid mEchanics with Adaptively Refined Large-Eddy SimulationS or FEARLESS. N2 - Ziel dieser Arbeit war, ein neues numerisches Modell zu entwickeln, welches es ermöglicht Grobstruktursimulationen auch mit adaptiven Gittercodes auszuführen, um Turbulenz über große Längenskalenbereiche konsistent zu simulieren. KW - Turbulenz KW - Galaxienhaufen KW - Hydrodynamik KW - Numerische Strömungssimulation KW - LES KW - Computersimulation KW - Astrophysik KW - AMR KW - FEARLESS Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32274 ER - TY - THES A1 - Berger, Karsten T1 - Discovery and Characterization of the first Low-Peaked and Intermediate-Peaked BL Lacertae Objects in the Very High Energy Gamma-Ray Regime T1 - Entdeckung und Charakterisierung der ersten "low-peaked" und "intermediate-peaked" BL Lacertae Objekte im Hochenergetischen Gammabereich N2 - 20 years after the discovery of the Crab Nebula as a source of very high energy gamma-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for gamma-ray emission from a particular type of blazars previously undetected at very high gamma-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at gamma-ray energies up to 10 GeV. Their spectra observed at lower gamma-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy gamma-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality. This was successfully achieved and resulted in a vastly improved performance of the MAGIC telescope in monitoring campaigns. The detections of low-peaked and intermediate-peaked BL Lac objects are in line with theoretical expectations, but push the models based on electron shock acceleration and inverse-Compton cooling to their limits. The short variability time scales of the order of one day observed at very high energies show that the gamma-rays originate rather close to the putative supermassive black holes in the centers of blazars, corresponding to less than 1000 Schwarzschild radii when taking into account relativistic bulk motion. N2 - 20 Jahre nachdem zum ersten Mal hoch energetische Gamma-Strahlung aus der Richtung des Krabbennebels detektiert wurde, ist die Zahl der mit erdgebundenen Tscherenkow Teleskopen neu entdeckten Quellen oberhalb von 100 GeV erheblich gestiegen, auf insgesamt 81, zum derzeitigen Stand dieser Arbeit. Die Quellen haben unterschiedliche Ursprünge, die von galaktischen Objekten, wie z.B. Supernova Überresten, Pulsaren, Doppelsystemen zu bisher nicht identifizierten Objekten und extragalaktischen Objekten wie Blazaren und Radio Galaxien reicht. Das Ziel dieser Arbeit war es nach Gamma-Strahlung von einer bestimmten Art von Blazaren zu suchen, die bisher nicht im Hochenergie Gamma Bereich detektiert werden konnten. Für die Suche werden die Daten des MAGIC Teleskops auf La Palma verwendet, welches das weltweit größte Teleskop seiner Art ist. Alle bisher entdeckten Blazare waren vom gleichen Typ, der sogenannten Klasse der “high-peaked BL Lacertae”. Diese Quellen emittieren nicht thermische Strahlung und zeigen ein Maximum in der Radio-zu-Röntgen Spektralverteilung bei Röntgenenergien. Die gesamte Blazar Population reicht von diesen seltenen BL Lacertae Objekten mit niedriger Leuchtkraft und einem Maximum im Röntgenbereich hin zu den sehr viel zahlreicheren Radio Quasaren mit hoher Leuchtkraft, deren Maximum der Spektralen Energieverteilung im Infrarotbereich liegt. Tatsächlich dominieren diese “low-peaked” Quellen die Populationsstudien von satellitengestützten Gammabeobachtungen im Energiebereich bis zu 10 GeV. Ihre Spektren im niederenergetischen Gammabereich lassen sich exponentiell bis zu höheren Energien extrapolieren, ohne dass ein Abbruch erkennbar ist, obwohl theoretische Modelle einen Wendepunkt unterhalb von 100 GeV erwarten. Darauf begründet wurden Beobachtungen mit dem MAGIC Tscherenkow Teleskop durchgeführt, welches die derzeit niedrigste Energieschwelle besitzt. Im Rahmen dieser Arbeit konzentrierte sich die Suche auf die bekannten Quellen BL Lac, W Comae und S5 0716+714. Zwei von diesen Quellen wurden eindeutig im Hochenergetischen Gammabereich mit dem MAGIC Teleskop entdeckt, basierend auf insgesamt etwa 150 Stunden an Daten, die zwischen 2005 und 2008 gesammelt wurden. Die Analyse dieses sehr großen Datensatzes benötigte neue Techniken um die Effekte von Beobachtungen unter Dämmerungsbedingungen auf die Datenqualität untersuchen zu können. Die erfolgreiche Anwendung sorgte für eine gewaltige Erweiterung der Performanz des MAGIC Teleskops während Überwachungskampagnen. Die Detektionen der sogenannten “low-peaked” und “intermediate-peaked” Objekte liegt im Rahmen der theoretischen Erwartungen, jedoch werden Modelle, die auf der Schockbeschleunigung von Elektronen und die Kühlung durch den umgekehrten Compton Prozess basieren an ihre Grenzen gebracht. Die beobachtete Kurzzeitvariabilität im hochenergetischen Gammabereich beträgt etwa einen Tag, was zeigt, dass die Gammastrahlung relativ nah am vermuteten Supermassiven Schwarzen Loch entsteht, weniger als 1000 Schwarzschild Radien entfernt, wenn man die Bewegung mit relativistischen Geschwindigkeiten berücksichtigt. KW - Aktiver galaktischer Kern KW - BL-Lacertae-Objekt KW - Gammastrahlung KW - Astronomische Beobachtung KW - Active galactic nuclei KW - BL-Lacertae-object KW - gamma radiation KW - astronomical observation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37431 ER - TY - JOUR A1 - Roy, Bitan A1 - Assaad, Fakher F. A1 - Herbut, Igor F. T1 - Zero Modes and Global Antiferromagnetism in Strained Graphene JF - Physical Review X N2 - A novel magnetic ground state is reported for the Hubbard Hamiltonian in strained graphene. When the chemical potential lies close to the Dirac point, the ground state exhibits locally both the Neel and ferromagnetic orders, even for weak Hubbard interaction. Whereas the Neel order parameter remains of the same sign in the entire system, the magnetization at the boundary takes the opposite sign from the bulk. The total magnetization vanishes this way, and the magnetic ground state is globally only an antiferromagnet. This peculiar ordering stems from the nature of the strain-induced single-particle zero-energy states, which have support on one sublattice of the honeycomb lattice in the bulk, and on the other sublattice near the boundary of a finite system. We support our claim with the self-consistent numerical calculation of the order parameters, as well as by the Monte Carlo simulations of the Hubbard model in both uniformly and nonuniformly strained honeycomb lattice. The present result is contrasted with the magnetic ground state of the same Hubbard model in the presence of a true magnetic field (and for vanishing Zeeman coupling), which is exclusively Neel ordered, with zero local magnetization everywhere in the system. KW - honeycomb lattice KW - dirac fermions KW - Hubbard-model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116108 SN - 2160-3308 VL - 4 IS - 2 ER - TY - THES A1 - Bercx, Martin Helmut T1 - Numerical studies of heavy-fermion systems and correlated topological insulators T1 - Numerische Untersuchung von Schwere-Fermionen-Systemen und korrelierten topologischen Isolatoren N2 - In this thesis, we investigate aspects of the physics of heavy-fermion systems and correlated topological insulators. We numerically solve the interacting Hamiltonians that model the physical systems using quantum Monte Carlo algorithms to access both ground-state and finite-temperature observables. Initially, we focus on the metamagnetic transition in the Kondo lattice model for heavy fermions. On the basis of the dynamical mean-field theory and the dynamical cluster approximation, our calculations point towards a continuous transition, where the signatures of metamagnetism are linked to a Lifshitz transition of heavy-fermion bands. In the second part of the thesis, we study various aspects of magnetic pi fluxes in the Kane-Mele-Hubbard model of a correlated topological insulator. We describe a numerical measurement of the topological index, based on the localized mid-gap states that are provided by pi flux insertions. Furthermore, we take advantage of the intrinsic spin degree of freedom of a pi flux to devise instances of interacting quantum spin systems. In the third part of the thesis, we introduce and characterize the Kane-Mele-Hubbard model on the pi flux honeycomb lattice. We place particular emphasis on the correlations effects along the one-dimensional boundary of the lattice and compare results from a bosonization study with finite-size quantum Monte Carlo simulations. N2 - Gegenstand der vorliegenden Arbeit ist die Untersuchung von Aspekten der Physik schwerer Fermionen und korrelierter topologischer Isolatoren. Wir lösen den wechselwirkenden Hamiltonoperator, der das jeweilige System modelliert, mithilfe von Quanten-Monte-Carlo-Algorithmen, um Erwartungswerte sowohl im Grundzustand als auch im thermisch angeregten Zustand zu erhalten. Zunächst richten wir das Augenmerk auf den metamagnetischen Übergang im Kondo-Gitter-Model für schwere Fermionen. Unsere Rechnungen basieren auf der dynamischen Mean-Field-Theorie und der dynamischen Cluster-Näherung. Sie weisen auf einen kontinuierlichen Übergang hin, der die metamagnetischen Merkmale mit einem Lifshitz-Übergang in der Bandstruktur der schweren Fermionen verbindet. Im zweiten Teil der Arbeit untersuchen wir verschiedene Facetten von magnetischen pi-Flüssen im Kane-Mele-Hubbard-Modell des korrelierten topologischen Isolators. Wir beschreiben eine numerische Messung der topologischen Invariante. Diese Messung beruht auf der Tatsache, dass das Einfügen von pi-Flüssen lokalisierte Zustände in der Mitte der Bandlücke des Isolators erzeugt. Darüberhinaus verwenden wir den intrinsischen Spinfreiheitsgrad eines pi-Flusses, um wechselwirkende Spinmodelle zu realisieren. Im dritten Teil der Arbeit stellen wir das Kane-Mele-Modell auf dem hexagonalen pi-Fluss-Gitter vor und charakterisieren es. Wir legen besonderen Schwerpunkt auf Wechselwirkungseffekte entlang des eindimensionalen Randes des Gitters und vergleichen die Ergebnisse einer Bosonisierungsstudie mit Quanten-Monte-Carlo-Simulationen auf endlichen Gittern. KW - Schwere-Fermionen-System KW - Topologischer Isolator KW - metamagnetism KW - magnetic pi flux KW - Kondo-Modell KW - Hubbard-Modell KW - Monte-Carlo-Simulation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116138 ER - TY - THES A1 - Winkler, Marco T1 - On the Role of Triadic Substructures in Complex Networks T1 - Über die Bedeutung von Dreiecksstrukturen in komplexen Netzwerken N2 - In the course of the growth of the Internet and due to increasing availability of data, over the last two decades, the field of network science has established itself as an own area of research. With quantitative scientists from computer science, mathematics, and physics working on datasets from biology, economics, sociology, political sciences, and many others, network science serves as a paradigm for interdisciplinary research. One of the major goals in network science is to unravel the relationship between topological graph structure and a network’s function. As evidence suggests, systems from the same fields, i.e. with similar function, tend to exhibit similar structure. However, it is still vague whether a similar graph structure automatically implies likewise function. This dissertation aims at helping to bridge this gap, while particularly focusing on the role of triadic structures. After a general introduction to the main concepts of network science, existing work devoted to the relevance of triadic substructures is reviewed. A major challenge in modeling triadic structure is the fact that not all three-node subgraphs can be specified independently of each other, as pairs of nodes may participate in multiple of those triadic subgraphs. In order to overcome this obstacle, we suggest a novel class of generative network models based on so called Steiner triple systems. The latter are partitions of a graph’s vertices into pair-disjoint triples (Steiner triples). Thus, the configurations on Steiner triples can be specified independently of each other without overdetermining the network’s link structure. Subsequently, we investigate the most basic realization of this new class of models. We call it the triadic random graph model (TRGM). The TRGM is parametrized by a probability distribution over all possible triadic subgraph patterns. In order to generate a network instantiation of the model, for all Steiner triples in the system, a pattern is drawn from the distribution and adjusted randomly on the Steiner triple. We calculate the degree distribution of the TRGM analytically and find it to be similar to a Poissonian distribution. Furthermore, it is shown that TRGMs possess non-trivial triadic structure. We discover inevitable correlations in the abundance of certain triadic subgraph patterns which should be taken into account when attributing functional relevance to particular motifs – patterns which occur significantly more frequently than expected at random. Beyond, the strong impact of the probability distributions on the Steiner triples on the occurrence of triadic subgraphs over the whole network is demonstrated. This interdependence allows us to design ensembles of networks with predefined triadic substructure. Hence, TRGMs help to overcome the lack of generative models needed for assessing the relevance of triadic structure. We further investigate whether motifs occur homogeneously or heterogeneously distributed over a graph. Therefore, we study triadic subgraph structures in each node’s neighborhood individually. In order to quantitatively measure structure from an individual node’s perspective, we introduce an algorithm for node-specific pattern mining for both directed unsigned, and undirected signed networks. Analyzing real-world datasets, we find that there are networks in which motifs are distributed highly heterogeneously, bound to the proximity of only very few nodes. Moreover, we observe indication for the potential sensitivity of biological systems to a targeted removal of these critical vertices. In addition, we study whole graphs with respect to the homogeneity and homophily of their node-specific triadic structure. The former describes the similarity of subgraph distributions in the neighborhoods of individual vertices. The latter quantifies whether connected vertices are structurally more similar than non-connected ones. We discover these features to be characteristic for the networks’ origins. Moreover, clustering the vertices of graphs regarding their triadic structure, we investigate structural groups in the neural network of C. elegans, the international airport-connection network, and the global network of diplomatic sentiments between countries. For the latter we find evidence for the instability of triangles considered socially unbalanced according to sociological theories. Finally, we utilize our TRGM to explore ensembles of networks with similar triadic substructure in terms of the evolution of dynamical processes acting on their nodes. Focusing on oscillators, coupled along the graphs’ edges, we observe that certain triad motifs impose a clear signature on the systems’ dynamics, even when embedded in a larger network structure. N2 - Im Zuge des Wachstums des Internets und der Verfügbarkeit nie da gewesener Datenmengen, hat sich, während der letzten beiden Jahrzehnte, die Netzwerkwissenschaft zu einer eigenständigen Forschungsrichtung entwickelt. Mit Wissenschaftlern aus quantitativen Feldern wie der Informatik, Mathematik und Physik, die Datensätze aus Biologie, den Wirtschaftswissenschaften, Soziologie, Politikwissenschaft und vielen weiteren Anwendungsgebieten untersuchen, stellt die Netzwerkwissenschaft ein Paradebeispiel interdisziplinärer Forschung dar. Eines der grundlegenden Ziele der Netzwerkwissenschaft ist es, den Zusammenhang zwischen der topologischen Struktur und der Funktion von Netzwerken herauszufinden. Es gibt zahlreiche Hinweise, dass Netz-werke aus den gleichen Bereichen, d.h. Systeme mit ähnlicher Funktion, auch ähnliche Graphstrukturen aufweisen. Es ist allerdings nach wie vor unklar, ob eine ähnliche Graphstruktur generell zu gleicher Funktionsweise führt. Es ist das Ziel der vorliegenden Dissertation, zur Klärung dieser Frage beizutragen. Das Hauptaugenmerk wird hierbei auf der Rolle von Dreiecksstrukturen liegen. Nach einer allgemeinen Einführung der wichtigsten Grundlagen der Theorie komplexer Netzwerke, wird eine Übersicht über existierende Arbeiten zur Bedeutung von Dreiecksstrukturen gegeben. Eine der größten Herausforderungen bei der Modellierung triadischer Strukturen ist die Tatsache, dass nicht alle Dreiecksbeziehungen in einem Graphen unabhängig voneinander bestimmt werden können, da zwei Knoten an mehreren solcher Dreiecksbeziehungen beteiligt sein können. Um dieses Problem zu lösen, führen wir, basierend auf sogenannten Steiner-Tripel-Systemen, eine neue Klasse generativer Netzwerkmodelle ein. Steiner-Tripel-Systeme sind Zerlegungen der Knoten eines Graphen in paarfremde Tripel (Steiner-Tripel). Daher können die Konfigurationen auf Steiner-Tripeln unabhängig voneinander gewählt werden, ohne dass dies zu einer Überbestimmung der Netzwerkstruktur führen würde. Anschließend untersuchen wir die grundlegendste Realisierung dieser neuen Klasse von Netzwerkmodellen, die wir das triadische Zufallsgraph-Modell (engl. triadic random graph model, TRGM) nennen. TRGMs werden durch eine Wahrscheinlichkeitsverteilung über alle möglichen Dreiecksstrukturen parametrisiert. Um ein konkretes Netzwerk zu erzeugen wird für jedes Steiner-Tripel eine Dreiecksstruktur gemäß der Wahrscheinlichkeitsverteilung gezogen und zufällig auf dem Tripel orientiert. Wir berechnen die Knotengradverteilung des TRGM analytisch und finden heraus, dass diese einer Poissonverteilung ähnelt. Des Weiteren wird gezeigt, dass TRGMs nichttriviale Dreiecksstrukturen aufweisen. Außerdem finden wir unvermeidliche Korrelationen im Auftreten bestimmter Subgraphen, derer man sich bewusst sein sollte. Insbesondere wenn es darum geht, die Bedeutung sogenannter Motive (Strukturen, die signifikant häufiger als zufällig erwartet auftreten) zu beurteilen. Darüber hinaus wird der starke Einfluss der Wahrscheinlichkeitsverteilung auf den Steiner-Tripeln, auf die generelle Dreiecksstruktur der erzeugten Netzwerke gezeigt. Diese Abhängigkeit ermöglicht es, Netzwerkensembles mit vorgegebener Dreiecksstruktur zu konzipieren. Daher helfen TRGMs dabei, den bestehenden Mangel an generativen Netzwerkmodellen, zur Beurteilung der Bedeutung triadischer Strukturen in Graphen, zu beheben. Es wird ferner untersucht, wie homogen Motive räumlich über Graphstrukturen verteilt sind. Zu diesem Zweck untersuchen wir das Auftreten von Dreiecksstrukturen in der Umgebung jedes Knotens separat. Um die Struktur individueller Knoten quantitativ erfassen zu können, führen wir einen Algorithmus zur knotenspezifischen Musterauswertung (node-specific pattern mining) ein, der sowohl auf gerichtete, als auch auf Graphen mit positiven und negativen Kanten angewendet werden kann. Bei der Analyse realer Datensätze beobachten wir, dass Motive in einigen Netzen hochgradig heterogen verteilt, und auf die Umgebung einiger, weniger Knoten beschränkt sind. Darüber hinaus finden wir Hinweise auf die mögliche Fehleranfälligkeit biologischer Systeme auf ein gezieltes Entfernen ebendieser Knoten. Des Weiteren studieren wir ganze Graphen bezüglich der Homogenität und Homophilie ihrer knotenspezifischen Dreiecksmuster. Erstere beschreibt die Ähnlichkeit der lokalen Dreiecksstrukturen zwischen verschiedenen Knoten. Letztere gibt an, ob sich verbundene Knoten bezüglich ihrer Dreiecksstruktur ähnlicher sind, als nicht verbundene Knoten. Wir stellen fest, dass diese Eigenschaften charakteristisch für die Herkunft der jeweiligen Netzwerke sind. Darüber hinaus gruppieren wir die Knoten verschiedener Systeme bezüglich der Ähnlichkeit ihrer lokalen Dreiecksstrukturen. Hierzu untersuchen wir das neuronale Netz von C. elegans, das internationale Flugverbindungsnetzwerk, sowie das Netzwerk internationaler Beziehungen zwischen Staaten. In Letzterem finden wir Hinweise darauf, dass Dreieckskonfigurationen, die nach soziologischen Theorien als unbalanciert gelten, besonders instabil sind. Schließlich verwenden wir unser TRGM, um Netzwerkensembles mit ähnlicher Dreiecksstruktur bezüglich der Eigenschaften dynamischer Prozesse, die auf ihren Knoten ablaufen, zu untersuchen. Wir konzentrieren uns auf Oszillatoren, die entlang der Kanten der Graphen miteinander gekoppelt sind. Hierbei beobachten wir, dass bestimmte Dreiecksmotive charakteristische Merkmale im dynamischen Verhalten der Systeme hinterlassen. Dies ist auch der Fall, wenn die Motive in eine größere Netzwerkstruktur eingebettet sind. KW - Netzwerk KW - Komplexes System KW - Substruktur KW - Dreieck KW - Networks KW - Complex Systems KW - Statistics KW - Machine Learning KW - Biological Networks KW - Statistische Physik KW - Statistische Mechanik KW - Data Mining KW - Maschinelles Lernen KW - Graphentheorie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116022 SN - 978-3-7375-5654-5 PB - epubli GmbH CY - Berlin ER - TY - JOUR A1 - Schottdorf, Manuel A1 - Eglen, Stephen J. A1 - Wolf, Fred A1 - Keil, Wolfgang T1 - Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex? JF - PLOS ONE N2 - It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moire 'Interference between hexagonal ON/OFF RGC mosaics. While this Moire-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. KW - functional architecture KW - striate cortex KW - receptive fields KW - retinotopic organization KW - columnar architecture KW - pattern formation KW - cat KW - maps KW - universality KW - topography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117558 SN - 1932-6203 VL - 9 IS - 1 ER - TY - JOUR A1 - Hansmann, P. A1 - Parragh, N. A1 - Toschi, A. A1 - Sangiovanni, G. A1 - Held, K. T1 - Importance of d-p Coulomb interaction for high T-C cuprates and other oxides JF - New Journal of Physics N2 - Current theoretical studies of electronic correlations in transition metal oxides typically only account for the local repulsion between d-electrons even if oxygen ligand p-states are an explicit part of the effective Hamiltonian. Interatomic interactions such as U-pd between d- and (ligand) p-electrons, as well as the local interaction between p-electrons, are neglected. Often, the relative d-p orbital splitting has to be adjusted 'ad hoc' on the basis of the experimental evidence. By applying the merger of local density approximation and dynamical mean field theory to the prototypical case of the three-band Emery dp model for the cuprates, we demonstrate that, without any 'ad hoc' adjustment of the orbital splitting, the charge transfer insulating state is stabilized by the interatomic interaction U-pd. Our study hence shows how to improve realistic material calculations that explicitly include the p-orbitals. KW - correlated electrons KW - dynamical mean field theory KW - transition metal oxides KW - fermions KW - superconductivity KW - energy bands KW - transition metals KW - correlated systems KW - mean-field theory KW - electronic-structure calculations KW - inplane spectral weight KW - Hubbard model KW - infinite dimensions Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117165 SN - 1367-2630 VL - 16 IS - 33009 ER - TY - JOUR A1 - Brüne, Christoph A1 - Thienel, Cornelius A1 - Stuiber, Michael A1 - Böttcher, Jan A1 - Buhmann, Hartmut A1 - Novik, Elena G. A1 - Liu, Chao-Xing A1 - Hankiewicz, Ewelina M. A1 - Molenkamp, Laurens W. T1 - Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator JF - Physical Review X N2 - We report magnetotransport studies on a gated strained HgTe device. This material is a three-dimensional topological insulator and exclusively shows surface-state transport. Remarkably, the Landau-level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×1011  cm−2