TY - THES A1 - Gupta, Sanjay Kumar T1 - The human CCHC-type Zinc Finger Nucleic Acid Binding Protein (CNBP) binds to the G-rich elements in target mRNA coding sequences and promotes translation T1 - Das humane CCHC-Typ-Zinkfinger-Nukleinsäure-Binde-Protein (CNBP) bindet an G-reiche Elemente in der kodierenden Sequenz seiner Ziel-mRNAs und fördert deren Translation N2 - The genetic information encoded with in the genes are transcribed and translated to give rise to the functional proteins, which are building block of a cell. At first, it was thought that the regulation of gene expression particularly occurs at the level of transcription by various transcription factors. Recent discoveries have shown the vital role of gene regulation at the level of RNA also known as post-transcriptional gene regulation (PTGR). Apart from non-coding RNAs e.g. micro RNAs, various RNA binding proteins (RBPs) play essential role in PTGR. RBPs have been implicated in different stages of mRNA life cycle ranging from splicing, processing, transport, localization and decay. In last 20 years studies have shown the presence of hundreds of RBPs across eukaryotic systems many of which are widely conserved. Given the rising number of RBPs and their link to human diseases it is quite evident that RBPs have major role in cellular processes and their regulation. The current study is aimed to describe the so far unknown molecular mechanism of CCHC-type Zinc Finger Nucleic Acid Binding Protein (CNBP/ZNF9) function in vivo. CNBP is ubiquitously expressed across various human tissues and is a highly conserved RBP in eukaryotes. It is required for embryonic development in mammals and has been implicated in transcriptional as well as post-transcriptional gene regulation; however, its molecular function and direct target genes remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and document the consequences of CNBP binding. We established CNBP as a cytoplasmic RNA-binding-protein and used Photoactivatable Ribonucleoside Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) to identify direct interactions of CNBP with 4178 mRNAs. CNBP preferentially bound a G-rich motif in the target mRNA coding sequences. Functional analyses, including ribosome profiling, RNA sequencing, and luciferase assays revealed the CNBP mode of action on target transcripts. CNBP binding was found to increase the translational efficiency of its target genes. We hypothesize that this is consistent with an RNA chaperone function of CNBP helping to resolve secondary structures, thus promoting translation. Altogether this study provides a novel mechanism of CNBP function in vivo and acts as a step-stone to study the individual CNBP targets that will bring us closer to understand the disease onset. N2 - Die in der DNA kodierte genetische Information wird transkribiert und translatiert, um funktionelle Proteine zu bilden, welche die Bausteine von Zellen sind. Lange Zeit wurde vermutet, dass die Regulation der Genexpression insbesondere auf dem Level der Transkription erfolgt. Kürzlich gemachte Entdeckungen haben jedoch die zentrale Rolle der Genregulation auf dem Level der RNA, auch bekannt als posttranskriptionelle Genregulation (PTGR), gezeigt. Neben nicht-kodierenden RNAs wie microRNAs, besitzen verschiedene RNA-Binde-Proteine (RBP) eine Schlüsselrolle in der PTGR. RBPs wurden mit diversen Ebenen des mRNA- Lebenszyklus, wie Speißen, Prozessieren, Transport, Lokalisation und Abbau in Verbindung gebracht. In den letzten 20 Jahren haben Studien die Existenz von Hunderten von RBPs in unterschiedlichen eukaryotischen Systemen gezeigt, von denen viele weithin konserviert sind. Bedenkt man die steigende Anzahl entdeckter und charakterisierter RBPs und ihren Bezug zu Krankheiten des Menschen, so ist es offensichtlich, dass RBPs eine große Rolle in der Regulation zellulärer Prozesse besitzen. Das Ziel der hier vorliegenden Studie bestand darin, die bis jetzt unbekannten molekularen Mechanismen der Funktion des CCHC-Typ-Zinkfinger-Nukleinsäure- Binde-Proteins (CNBP/ZNF9) in vivo zu beschreiben. CNBP ist in verschiedenen humanen Geweben ubiquitär exprimiert und ein hoch konserviertes RBP in Eukaryoten. Es ist für die embryonale Entwicklung in Säugetieren notwendig und wurde mit der transkriptionellen und posttranskriptionellen Genregulation in Verbindung gebracht. Seine molekulare Funktion sowie die unmittelbaren Zielgene blieben jedoch unklar. In dieser Studie verwendeten wir systemweit analysierende Methoden um CNPB-Zieltranskripte zu identifizieren und dokumentierten die Folgen der Bindung von CNBP an diese. Wir haben CNBP als ein zytoplasmatisches RNA-Binde-Protein charakterisiert und Quervernetzung und Immunpräzipitation mit photoaktivierbaren Ribonukleotiden (PAR-CLIP) angewendet. Dabei wurden direkte Interaktionen von CNBP mit 4178 mRNAs identifiziert. CNBP bindet bevorzugt an ein G-reiches Motiv in der kodierenden Sequenz der Ziel-mRNA. Funktionale Analysen, unter anderem Ribosom-Profil-Untersuchungen, RNA Sequenzierung und Luciferaseproben, zeigten die Art und Weise, wie CNBP auf die Zieltranskripte wirkt. Die Bindung von CNBP an seine Zieltranskripte erhöht deren Translationseffizienz. Wir vermuten, dass dies eine RNA-Chaperon- Funktion von CNBP darstellt, die hilft Sekundärstrukturen aufzulösen und die Translation zu fördern. Zusammengefasst liefert diese Studie einen neuen Mechanismus der Funktion von CNBP in vivo und kann als Startpunkt dienen um einzelne CNBP Ziele zu untersuchen. Dies wird uns helfen dem Verständnis der Krankheitsentstehung näher zu kommen. ... KW - CNBP KW - RNA binding potein CNBP Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142917 ER - TY - THES A1 - Tawk [Taouk], Caroline S. T1 - The role of host-stress in the infection by the bacterial pathogen \(Shigella\) \(flexneri\) T1 - Die Rolle von Wirtszellstress in der Infektion mit dem bakteriellen Krankheiserreger \(Shigella\) \(flexneri\) N2 - The human-bacterial pathogen interaction is a complex process that results from a prolonged evolutionary arms race in the struggle for survival. The pathogen employs virulence strategies to achieve host colonization, and the latter counteracts using defense programs. The encounter of both organisms results in drastic physiological changes leading to stress, which is an ancient response accompanying infection. Recent evidence suggests that the stress response in the host converges with the innate immune pathways and influences the outcome of infection. However, the contribution of stress and the exact mechanism(s) of its involvement in host defense remain to be elucidated. Using the model bacterial pathogen Shigella flexneri, and comparing it with the closely related pathogen Salmonella Typhimurium, this study investigated the role of host stress in the outcome of infection. Shigella infection is characterized by a pronounced pro-inflammatory response that causes intense stress in host tissues, particularly the intestinal epithelium, which constitutes the first barrier against Shigella colonization. In this study, inflammatory stress was simulated in epithelial cells by inducing oxidative stress, hypoxia, and cytokine stimulation. Shigella infection of epithelial cells exposed to such stresses was strongly inhibited at the adhesion/binding stage. This resulted from the depletion of sphingolipidrafts in the plasma membrane by the stress-activated sphingomyelinases. Interestingly, Salmonella adhesion was not affected, by virtue of its flagellar motility, which allowed the gathering of bacteria at remaining membrane rafts. Moreover, the intracellular replication of Shigella lead to a similar sphingolipid-raft depletion in the membrane across adjacent cells inhibiting extracellular bacterial invasion. Additionally, this study shows that Shigella infection interferes with the host stress granule-formation in response to stress. Interestingly, infected cells exhibited a nuclear depletion of the global RNA-binding stress-granule associated proteins TIAR and TIA-1 and their accumulation in the cytoplasm. Overall, this work investigated different aspects of the host stress-response in the defense against bacterial infection. The findings shed light on the importance of the host stress-pathways during infection, and improve the understanding of different strategies in host-pathogen interaction. N2 - Die Interaktion von Mensch und bakteriellem Krankheitserreger ist ein komplexer Prozess, der aus dem anhaltenden evolutionären Wettrüsten im Kampf ums Überleben resultiert. Der Erreger setzt Virulenzstrategien zur Kolonisierung des Wirtes ein und dieser nutzt Verteidigungsprogramme um dem entgegenzuwirken. Die Begegnung der beiden Organismen resultiert in drastischen physiologischen Veränderungen, welche zu Stress führen, der eine klassische infektionsbegleitende Reaktion ist. Neuere Untersuchungen deuten darauf hin, dass die Stressantwort des Wirtes mit den Signalwegen der angeborenen Immunantwort konvergiert und im Ergebnis die Infektion beeinflusst. Jedoch bleiben die Bedeutung des Stresses und der exakte Mechanismus wie Stress an der Verteidigung des Wirtes beteiligt ist, noch zu klären. In dieser Studie dienten der bakterielle Krankheitserreger Shigella flexneri und vergleichend dazu der nah verwandte Erreger Salmonella Typhimurium als Modellorganismen, um die Rolle von Wirtszellstress für den Ausgang der Infektion zu untersuchen. Die Infektion mit Shigellen ist durch eine ausgeprägte pro-inflammatorische Reaktion gekennzeichnet. Diese versursacht in den Wirtsgeweben, insbesondere im Darmepithel, einen starken Stress, der die erste Barriere gegen die Besiedelung mit Shigellen darstellt. In der vorliegenden Arbeit wurde entzündlicher Stress in Epithelzellen durch die Induktion von oxidativem Stress, Hypoxie und Zytokinstimulation simuliert. Die Shigelleninfektion von Epithelzellen, die solchen Belastungen ausgesetzt waren, war stark im Adhäsions-/ Bindungsstadium gehemmt. Dies resultierte aus der Verarmung von Sphingolipidflößen in der Plasmamembran durch stressaktivierte Sphingomyelinasen. Interessanterweise wurde die Adhäsion von Salmonellen, aufgrund ihrer Flaggellenvermittelten Beweglichkeit, nicht beeinträchtigt und ermöglichte so die Ansammlung von Bakterien an den verbleibenden Membranflößen. Darüber hinaus führte die intrazelluläre Replikation von Shigellen zu einer ähnlichen Verminderung von Sphingolipidflößen in der Membran benachbarter Zellen, wodurch die extrazelluläre bakterielle Invasion gehemmt wurde. Zusätzlich zeigt diese Studie, dass eine Infektion mit Shigellen mit der Bildung von Stressgranula in der Wirtszelle interferiert. Interessanterweise zeigten infizierte Zellen eine nukleäre Depletion der globalen RNA-bindenden und Stressgranula assoziierten Proteine TIAR und TIA-1 sowie deren Akkumulation im Zytoplasma. Insgesamt untersuchte diese Arbeit verschiedene Aspekte der Stressreaktion der Wirtszelle bei der Verteidigung gegen bakterielle Infektionen. Die Ergebnisse beleuchten die Bedeutung der Stresssignalwege im Wirt während der Infektion und verbessern das Verständnis der verschiedenen Strategien in der Interaktion von Wirt und Krankheitserreger. KW - Shigella flexneri KW - Angeborene Immunität KW - Stress KW - Host-pathogen interaction KW - Innate immunity KW - Bacterial infection KW - Host defense Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151107 ER -