TY - THES A1 - Portmann, Johannes T1 - Accelerated inversion recovery MRI of the myocardium using spiral acquisition T1 - Beschleunigte Inversion-Recovery MR-Bildgebung des Myokards mit spiralen Auslesezügen N2 - This work deals with the acceleration of cardiovascular MRI for the assessment of functional information in steady-state contrast and for viability assessment during the inversion recovery of the magnetization. Two approaches are introduced and discussed in detail. MOCO-MAP uses an exponential model to recover dynamic image data, IR-CRISPI, with its low-rank plus sparse reconstruction, is related to compressed sensing. MOCO-MAP is a successor to model-based acceleration of parametermapping (MAP) for the application in the myocardial region. To this end, it was augmented with a motion correction (MOCO) step to allow exponential fitting the signal of a still object in temporal direction. Iteratively, this introduction of prior physical knowledge together with the enforcement of consistency with the measured data can be used to reconstruct an image series from distinctly shorter sampling time than the standard exam (< 3 s opposed to about 10 s). Results show feasibility of the method as well as detectability of delayed enhancement in the myocardium, but also significant discrepancies when imaging cardiac function and artifacts caused already by minor inaccuracy of the motion correction. IR-CRISPI was developed from CRISPI, which is a real-time protocol specifically designed for functional evaluation of image data in steady-state contrast. With a reconstruction based on the separate calculation of low-rank and sparse part, it employs a softer constraint than the strict exponential model, which was possible due to sufficient temporal sampling density via spiral acquisition. The low-rank plus sparse reconstruction is fit for the use on dynamic and on inversion recovery data. Thus, motion correction is rendered unnecessary with it. IR-CRISPI was equipped with noise suppression via spatial wavelet filtering. A study comprising 10 patients with cardiac disease show medical applicability. A comparison with performed traditional reference exams offer insight into diagnostic benefits. Especially regarding patients with difficulty to hold their breath, the real-time manner of the IR-CRISPI acquisition provides a valuable alternative and an increase in robustness. In conclusion, especially with IR-CRISPI in free breathing, a major acceleration of the cardiovascular MR exam could be realized. In an acquisition of less than 100 s, it not only includes the information of two traditional protocols (cine and LGE), which take up more than 9.6 min, but also allows adjustment of TI in retrospect and yields lower artifact level with similar image quality. N2 - Diese Arbeit behandelt die Beschleunigung der kardiovaskulären MRT zum Erfassen funktioneller Information bei Steady-State-Kontrast und zur Unter- suchung der Vitalität bei Wiederherstellung der Magnetisierung nach ihrer Inversion. Zwei Ansätze werden eingeführt und im Detail diskutiert: MOCO- MAP, welches ein exponentielles Modell nutzt, um dynamische Daten zu rekonstruieren, und IR-CRISPI, welches mit seinem “low-rank plus sparse"- Algorithmus mit Compressed Sensing verwandt ist. MOCO-MAP ist der Nachfolger der modellbasierten Beschleunigung des Parameter-Mappings (MAP) für die Anwendung im Bereich des Myokards. Hierzu wurde es mit einer Bewegungskorrektur (MOCO) versehen, um expo- nentielles Fitten eines unbewegten Objects in Zeitrichtung zu ermöglichen. Das Einbringen dieses physikalischen Vorwissens zusammen mit dem Erzwin- gen von Konsistenz mit den Messdaten wird dazu genutzt, iterativ eine Bildfolge aus Daten einer deutlich kürzeren Messung als herkömmlich zu rekonstruieren (< 3 s gegenüber ca. 10 s). Die Ergebnisse zeigen die Umsetz- barkeit der Methode sowie die Nachweisbarkeit von Delayed Enhancements im Myokard, aber deutliche funktionelle Abweichungen und Artefakte bereits aufgrund von kleinen Ungenauigkeiten der Bewegungskorrektur. IR-CRISPI geht aus CRISPI hervor, welches zur Auswertung von funk- tionellen Echtzeitdaten bei konstantem Kontrast dient. Mit der Rekon- struktion durch getrennte Berechnung von niedrigrangigem und dünnbe- setztem Matrixanteil wird hier bei der Datenrekonstruktion weniger stark eingeschränkt als bei einem strikten exponentiellen Modell. Die pirale Auf- nahmeweise erlaubt hierzu ausreichend effiziente k-Raumabdeckung. Die “low-rank plus sparse"-Rekonstruktion ist kompatibel mit dynamischen und mit Inversion-Recovery-Daten. Eine Bewegungskorrektur ist folglich nicht nötig. IR-CRISPI wurde mit einer Rauschunterdrückung durch räumliche Wavelet- Filterung versehen. Eine Studie, die 10 Patienten einschließt, zeigt die Eignung für die medizinische Anwendung. Der Vergleich mit herkömm- lichen Aufnahmetechniken lässt auf den gewonnenen diagnostischen Nutzen schließen. Besonders für Patienten, die Schwierigkeiten mit dem Luftanhal- ten haben, eröffnet diese Echtzeitaufnahmemethode eine wertvolle Alterna- tive und erhöhte Stabilität. Am Ende konnte gerade mittels IR-CRISPI eine bemerkenswerte Beschleu- nigung der kardiovaskulären MR-Untersuchung verwirklicht werden. Trotz der kurzen Aufnahmezeit von weniger als 100 s für den kompletten linken Ven- trikel schließt es nicht nur die Information zweier herkömmlicher Protokolle mit ein (Cine und LGE), die zusammen mehr als 9,6 min dauern, sondern es erlaubt zusätzlich auch das Einstellen der TI-Zeit im Nachhinein und liefert Ergebnisse mit geringerem Artefaktlevel bei ähnlicher Bildqualität KW - Kernspintomografie KW - Herzfunktion KW - Herzmuskel KW - Bildgebendes Verfahren KW - Echtzeit KW - cine loop KW - late enhancement KW - late gadolinium-enhancement KW - magnetic resonance imaging KW - real-time imaging KW - spiral trajectory Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302822 ER - TY - THES A1 - Klinnert Vlachopoulou, Cristina Maria T1 - Comparison between Dual-Energy-CT perfusion imaging and perfusion-weighted SElf-gated Non-Contrast-Enhanced FUnctional MR imaging of the lung in patients with pulmonary artery embolism T1 - Vergleich zwischen Perfusionskarten der Lunge des DECT und "SElf-gated Non-Contrast-Enhanced Functional” MRT bei Patienten mit einer Lungenembolie N2 - Pulmonary artery embolism (PE) is a common condition and an even more common clinical suspect. The computed tomography pulmonary angiogram (CTPA) is the main medical imaging tool used to diagnose a suspected case of PE. To gain a better impression of the effects of a PE on the perfusion and hence the gas exchange, a functional imaging method is beneficial. One approach for functional imaging using radiation exposure is the generation of color-coded iodine perfusion maps acquired by Dual-Energy Computed Tomography (DECT), which enable the detection of perfusion defects in the pulmonary parenchyma. In contrast to the existing approach of DECT with iodine color-coded maps, the SElf-gated Non-Contrast-Enhanced FUnctional Lung (SENCEFUL) MRI technique offers the possibility to interpret perfusion maps without any radiation exposure or application of contrast agents. The measurement in SENCEFUL MRI can be performed during conditions of free breathing and without electrocardiogram triggering. The purpose of this study was to determine whether PE can be diagnosed on the basis of visible perfusion defects in the perfusion maps of SENCEFUL MRI and in the iodine-coded maps of DECT and to compare the diagnostic performance of these methods. Both SENCEFUL-MRI and iodine distribution maps from DECT have been compared with the CTPA of ten patients with PE. Additionally, the functional images were compared with each other on a per-patient basis. The iodine perfusion maps of DECT had a sensitivity of 84.2 % and specificity of 65.2 % for the diagnosis of PE. The SENCEFUL technique in MRI showed a sensitivity of 78.9 % and a specificity of 26.1 %. When comparing the whole lung depicted in both series of functional images, the main perfusion defect location matched in four of ten patients (40 %). In conclusion, this work found that DECT iodine maps have higher sensitivity and specificity in the diagnosis of pulmonary embolism compared with SENCEFUL MRI. N2 - Die Lungenembolie (LE) ist eine häufige Erkrankung und eine noch häufigere Verdachtsdiagnose. Die Computertomographie der Pulmonalarterien (CTPA) ist die Bildgebung erster Wahl für die Diagnose einer LE. Für eine bessere Darstellung der Folgen einer LE dienen Perfusionskarten. Eine existierende Bildgebungstechnik mit ionisierender Strahlung sind die Iodkarten der Dual-Energy-Computertomographie (DECT), welche bei einer LE Perfusionsdefekte im Lungenparenchym wiedergeben. Eine weitere strahlungsfreie und kontrastmittelfreie Methode ist die „SElf-gated Non-Contrast-Enhanced FUnctional Lung” (SENCEFUL) Magnet-Resonanz-Tomographie (MRT). Diese Technik kann ohne Atemhaltemanöver und ohne EKG-Monitoring stattfinden. Ziel der Arbeit war es zu bestimmen, ob eine LE aufgrund eines Perfusionsdefekts in den Iodkarten des DECT und SENCEFUL MRT diagnostiziert werden kann. Beide Bildgebungstechniken wurden mit der CTPA von zehn Patienten mit LE verglichen. Außerdem wurden die Perfusionsbilder untereinander verglichen. Die Iodkarten hatten eine Sensitivität von 84.2 % und eine Spezifizität von 65.2 %. Die SENCEFUL MRT Bilder zeigten eine Sensitivität von 78.9 % und eine Spezifizität von 26.1 %. Der Vergleich beider funktioneller Bildgebungstechniken bezogen auf die gesamte Lunge ergab, dass in vier von zehn Patienten die prädominierende Lokalisation der Minderperfusion übereinstimmte. Zusammenfassend konnte in dieser Arbeit festgestellt werden, dass die Iodkarten des DECTs im Vergleich zum SENCEFUL MRT eine höhere Sensitivität und Spezifizität in der Diagnose einer Lungenembolie aufweisen. KW - Lungenembolie KW - pulmonary embolism KW - perfusion map Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313034 ER - TY - JOUR A1 - Diessner, Joachim A1 - Anders, Laura A1 - Herbert, Saskia A1 - Kiesel, Matthias A1 - Bley, Thorsten A1 - Schlaiss, Tanja A1 - Sauer, Stephanie A1 - Wöckel, Achim A1 - Bartmann, Catharina T1 - Evaluation of different imaging modalities for axillary lymph node staging in breast cancer patients to provide a personalized and optimized therapy algorithm JF - Journal of Cancer Research and Clinical Oncology N2 - Purpose The reliable detection of tumor-infiltrated axillary lymph nodes for breast cancer [BC] patients plays a decisive role in further therapy. We aimed to find out whether cross-sectional imaging techniques could improve sensitivity for pretherapeutic axillary staging in nodal-positive BC patients compared to conventional imaging such as mammography and sonography. Methods Data for breast cancer patients with tumor-infiltrated axillary lymph nodes having received surgery between 2014 and 2020 were included in this study. All examinations (sonography, mammography, computed tomography [CT] and magnetic resonance imaging [MRI]) were interpreted by board-certified specialists in radiology. The sensitivity of different imaging modalities was calculated, and binary logistic regression analyses were performed to detect variables influencing the detection of positive lymph nodes. Results All included 382 breast cancer patients had received conventional imaging, while 52.61% of the patients had received cross-sectional imaging. The sensitivity of the combination of all imaging modalities was 68.89%. The combination of MRI and CT showed 63.83% and the combination of sonography and mammography showed 36.11% sensitivity. Conclusion We could demonstrate that cross-sectional imaging can improve the sensitivity of the detection of tumor-infiltrated axillary lymph nodes in breast cancer patients. Only the safe detection of these lymph nodes at the time of diagnosis enables the evaluation of the response to neoadjuvant therapy, thereby allowing access to prognosis and improving new post-neoadjuvant therapies. KW - breast cancer imaging KW - positive nodal status KW - cross-sectional imaging KW - conventional imaging KW - post-neoadjuvant therapies KW - neoadjuvant therapies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324047 VL - 149 IS - 7 ER - TY - JOUR A1 - Conrads, Nora A1 - Grunz, Jan-Peter A1 - Huflage, Henner A1 - Luetkens, Karsten Sebastian A1 - Feldle, Philipp A1 - Grunz, Katharina A1 - Köhler, Stefan A1 - Westermaier, Thomas T1 - Accuracy of pedicle screw placement using neuronavigation based on intraoperative 3D rotational fluoroscopy in the thoracic and lumbar spine JF - Archives of Orthopaedic and Trauma Surgery N2 - Introduction In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities. Materials and methods Posterior instrumentation procedures between 2010 and 2015 were retrospectively analyzed. Pedicle screws were placed using 3D rotational fluoroscopy and neuronavigation. Accuracy of screw placement was assessed using a 6-grade scoring system. In addition, screw length was analyzed in relation to the vertebral body diameter. Intra- and postoperative revision rates were recorded. Results Thoracic and lumbar spine surgery was performed in 285 patients. Of 1704 pedicle screws, 1621 (95.1%) showed excellent positioning in 3D rotational fluoroscopy imaging. The lateral rim of either pedicle or vertebral body was protruded in 25 (1.5%) and 28 screws (1.6%), while the midline of the vertebral body was crossed in 8 screws (0.5%). Furthermore, 11 screws each (0.6%) fulfilled the criteria of full lateral and medial displacement. The median relative screw length was 92.6%. Intraoperative revision resulted in excellent positioning in 58 of 71 screws. Follow-up surgery due to missed primary malposition had to be performed for two screws in the same patient. Postsurgical symptom relief was reported in 82.1% of patients, whereas neurological deterioration occurred in 8.9% of cases with neurological follow-up. Conclusions Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required. KW - pedicle screws KW - vertebral pedicles KW - fluoroscopy KW - neuronavigation KW - spine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324966 VL - 143 IS - 6 ER - TY - JOUR A1 - Guggenberger, Konstanze V. A1 - Vogt, Marius L. A1 - Song, Jae W. A1 - Weng, Andreas M. A1 - Fröhlich, Matthias A1 - Schmalzing, Marc A1 - Venhoff, Nils A1 - Hillenkamp, Jost A1 - Pham, Mirko A1 - Meckel, Stephan A1 - Bley, Thorsten A. T1 - Intraorbital findings in giant cell arteritis on black blood MRI JF - European Radiology N2 - Objective Blindness is a feared complication of giant cell arteritis (GCA). However, the spectrum of pathologic orbital imaging findings on magnetic resonance imaging (MRI) in GCA is not well understood. In this study, we assess inflammatory changes of intraorbital structures on black blood MRI (BB-MRI) in patients with GCA compared to age-matched controls. Methods In this multicenter case-control study, 106 subjects underwent BB-MRI. Fifty-six patients with clinically or histologically diagnosed GCA and 50 age-matched controls without clinical or laboratory evidence of vasculitis were included. All individuals were imaged on a 3-T MR scanner with a post-contrast compressed-sensing (CS) T1-weighted sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) BB-MRI sequence. Imaging results were correlated with available clinical symptoms. Results Eighteen of 56 GCA patients (32%) showed inflammatory changes of at least one of the intraorbital structures. The most common finding was enhancement of at least one of the optic nerve sheaths (N = 13, 72%). Vessel wall enhancement of the ophthalmic artery was unilateral in 8 and bilateral in 3 patients. Enhancement of the optic nerve was observed in one patient. There was no significant correlation between imaging features of inflammation and clinically reported orbital symptoms (p = 0.10). None of the age-matched control patients showed any inflammatory changes of intraorbital structures. Conclusions BB-MRI revealed inflammatory findings in the orbits in up to 32% of patients with GCA. Optic nerve sheath enhancement was the most common intraorbital inflammatory change on BB-MRI. MRI findings were independent of clinically reported orbital symptoms. Key Points • Up to 32% of GCA patients shows signs of inflammation of intraorbital structures on BB-MRI. • Enhancement of the optic nerve sheath is the most common intraorbital finding in GCA patients on BB-MRI. • Features of inflammation of intraorbital structures are independent of clinically reported symptoms. KW - giant cell arteritis KW - magnetic resonance imaging KW - orbit KW - ophthalmic artery KW - optic nerve Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324978 VL - 33 IS - 4 ER - TY - JOUR A1 - Laqua, Fabian Christopher A1 - Woznicki, Piotr A1 - Bley, Thorsten A. A1 - Schöneck, Mirjam A1 - Rinneburger, Miriam A1 - Weisthoff, Mathilda A1 - Schmidt, Matthias A1 - Persigehl, Thorsten A1 - Iuga, Andra-Iza A1 - Baeßler, Bettina T1 - Transfer-learning deep radiomics and hand-crafted radiomics for classifying lymph nodes from contrast-enhanced computed tomography in lung cancer JF - Cancers N2 - Objectives: Positron emission tomography (PET) is currently considered the non-invasive reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo this diagnostic procedure due to high costs, limited availability, and additional radiation exposure. The purpose of this study was to predict the PET result from traditional contrast-enhanced computed tomography (CT) and to test different feature extraction strategies. Methods: In this study, 100 lung cancer patients underwent a contrast-enhanced \(^{18}\)F-fluorodeoxyglucose (FDG) PET/CT scan between August 2012 and December 2019. We trained machine learning models to predict FDG uptake in the subsequent PET scan. Model inputs were composed of (i) traditional “hand-crafted” radiomics features from the segmented lymph nodes, (ii) deep features derived from a pretrained EfficientNet-CNN, and (iii) a hybrid approach combining (i) and (ii). Results: In total, 2734 lymph nodes [555 (20.3%) PET-positive] from 100 patients [49% female; mean age 65, SD: 14] with lung cancer (60% adenocarcinoma, 21% plate epithelial carcinoma, 8% small-cell lung cancer) were included in this study. The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). Conclusion: Both traditional radiomics features and transfer-learning deep radiomics features provide relevant and complementary information for non-invasive N-staging in lung cancer. KW - computed tomography KW - computational neural networks KW - lymphatic metastasis KW - carcinoma KW - non-small-cell lung KW - small-cell lung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319231 SN - 2072-6694 VL - 15 IS - 10 ER - TY - JOUR A1 - Vogel, P. A1 - Rückert, M. A. A1 - Greiner, C. A1 - Günther, J. A1 - Reichl, T. A1 - Kampf, T. A1 - Bley, T. A. A1 - Behr, V. C. A1 - Herz, S. T1 - iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions JF - Scientific Reports N2 - Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model. KW - biomedical engineering KW - electrical and electronic engineering KW - imaging KW - three-dimensional imaging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357794 VL - 13 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Kleefeldt, Florian A1 - Ergün, Süleyman A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Hendel, Robin A1 - Kunz, Andreas Steven A1 - Pannenbecker, Pauline A1 - Kuhl, Philipp Josef A1 - Augustin, Anne Marie A1 - Bley, Thorsten Alexander A1 - Petritsch, Bernhard A1 - Grunz, Jan-Peter T1 - Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model JF - Scientific Reports N2 - This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall’s concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability. KW - experimental models of disease KW - preclinical research KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357912 VL - 13 ER - TY - JOUR A1 - Patzer, Theresa Sophie A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Conrads, Nora A1 - Luetkens, Karsten Sebastian A1 - Pannenbecker, Pauline A1 - Paul, Mila Marie A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything JF - Diagnostics N2 - In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1–3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732–0.848; p < 0.001) and fracture assessability (0.880; 0.842–0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0–3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise. KW - photon-counting KW - tomography KW - X-ray computed KW - fracture KW - cancellous bone KW - convolution kernel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319281 SN - 2075-4418 VL - 13 IS - 10 ER - TY - JOUR A1 - Huflage, Henner A1 - Kunz, Andreas Steven A1 - Hendel, Robin A1 - Kraft, Johannes A1 - Weick, Stefan A1 - Razinskas, Gary A1 - Sauer, Stephanie Tina A1 - Pennig, Lenhard A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients JF - Diagnostics N2 - Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25–29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). Conclusion: DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients. KW - dual-energy CT KW - dual-source CT KW - virtual non-contrast KW - radiation dose KW - spectral CT KW - obesity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313519 SN - 2075-4418 VL - 13 IS - 9 ER -