TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Winking, Heinz T1 - Multicolor Spectral Analyses of Mitotic and Meiotic Mouse Chromosomes Involved in Multiple Robertsonian Translocations. I. The CD/Cremona Hybrid Strain JF - Cytogenetic and Genome Research N2 - Multicolor spectral analysis (spectral karyotyping) was applied to mitotic and male diakinetic chromosomes of hybrid mice carrying a unique system of 18 autosomal Robertsonian translocation chromosomes with alternating arm homologies. Only the autosomes 19 and the XY sex chromosomes are excluded from these Robertsonian translocations. The translocations, previously identified by conventional banding analyses, could be verified by spectral karyotyping. Besides the Robertsonian translocations, no other interchromosomal rearrangements were detected. In diakineses of male meiosis, the 18 metacentric Robertsonian translocation chromosomes form a very large meiotic ‘superring'. The predictable, specific order of the chromosomes along this ‘superring' was completely confirmed by multicolor spectral analysis. In the majority of diakineses analyzed, the free autosomal bivalent 19 and the XY sex bivalent form a conspicuous complex which tightly associates with the 12;14 Robertsonian translocation chromosome in the ‘superring'. KW - meiotic ‘superring’ KW - mouse KW - Robertsonian translocation chromosomes KW - spectral karyotyping Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199013 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 147 IS - 4 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus T1 - Chromosome Banding in Amphibia. XXXIII. Demonstration of 5-Methylcytosine-Rich Heterochromatin in Anura JF - Cytogenetic and Genome Research N2 - An experimental approach using monoclonal anti-5-methylcytosine (5-MeC) antibodies and indirect immunofluorescence was elaborated for detecting 5-MeC-rich chromosome regions in anuran chromosomes. This technique was applied to mitotic metaphases of 6 neotropical frog species belonging to 6 genera and 4 families. The hypermethylation patterns were compared with a variety of banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and located exclusively in constitutive heterochromatin. They are found in centromeric, pericentromeric, telomeric, and interstitial positions of the chromosomes and adjacent to nucleolus organizer regions. 5-MeC-rich DNA sequences can be embedded both in AT- and GC-rich repetitive DNA. The experimental parameters that have major influence on the reproducibility and quality of the anti-5-MeC antibody labeling are discussed. KW - Anura KW - heterochromatin KW - hypermethylated DNA KW - immunofluorescence KW - 5-Methylcytosine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199022 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 148 IS - 1 ER - TY - JOUR A1 - Almanzar, Giovanni A1 - Klein, Matthias A1 - Schmalzing, Marc A1 - Hilligardt, Deborah A1 - El Hajj, Nady A1 - Kneitz, Hermann A1 - Wild, Vanessa A1 - Rosenwald, Andreas A1 - Benoit, Sandrine A1 - Hamm, Henning A1 - Tony, Hans-Peter A1 - Haaf, Thomas A1 - Goebeler, Matthias A1 - Prelog, Martina T1 - Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis JF - International Archives of Allergy and Immunology N2 - Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype. KW - methylation KW - systemic sclerosis KW - suppression KW - Tregs KW - Th17 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196577 SN - 1018-2438 SN - 1423-0097 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 171 IS - 2 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus T1 - Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura JF - Cytogenetic and Genome Research N2 - The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)\(_n\) repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed. KW - heterochromatin KW - intrachromosomal telomeric sequences KW - Anura KW - euchromatin KW - evolutionary fixation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196693 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 148 IS - 2-3 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Lomb, Christian A1 - Sperling, Karl A1 - Neitzel, Heidemarie T1 - 5-Methylcytosine-Rich Heterochromatin in the Indian Muntjac JF - Cytogenetic and Genome Research N2 - Two 5-methylcytosine (5-MeC)-rich heterochromatic regions were demonstrated in metaphase chromosomes of the Indian muntjac by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. The metaphases were obtained from diploid and triploid cell lines. A major region is located in the ‘neck' of the 3;X fusion chromosome and can be detected after denaturation of the chromosomal DNA with UV-light irradiation for 1 h. It is located exactly at the border of the X chromosome and the translocated autosome 3. A minor region is found in the centromeric region of the free autosome 3 after denaturing the chromosomal DNA for 3 h or longer. The structure and possible function of the major hypermethylated region as barrier against spreading of the X-inactivation process into the autosome 3 is discussed. KW - heterochromatin KW - immunofluorescence KW - Indian muntjac KW - 5-Methylcytosine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196701 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 147 IS - 4 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Yano, Cassia F. A1 - Cioffi, Marcelo B. T1 - Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes JF - Cytogenetic and Genome Research N2 - Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes. KW - heterochromatin KW - heteromorphic sex chromosomes KW - hypermethylation KW - immunofluorescence KW - 5-Methylcytosine KW - fish Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196710 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 147 IS - 2-3 ER - TY - JOUR A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Kraus, Theo F. J. A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - Schneider, Eberhard A1 - Haaf, Thomas T1 - Epigenetic dysregulation in the developing Down syndrome cortex JF - Epigenetics N2 - Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions. KW - trisomy 21 KW - DNA methylation KW - Down syndrome KW - fetal brain development KW - frontal cortex KW - protocadherin gamma cluster Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191239 VL - 11 IS - 8 ER - TY - JOUR A1 - Schneider, Eberhard A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development JF - Gene N2 - Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. KW - Autism spectrum disorders KW - DNA methylation KW - Genome KW - Autism KW - Frontal cortex KW - Human prefrontal cortex KW - Gene-expression KW - Schizophrenia KW - Patterns KW - Transcription KW - Epigenetics KW - Environment KW - Fetal brain development KW - DNA methylation dynamics KW - Methylome Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186936 VL - 592 IS - 1 ER - TY - JOUR A1 - Vigorito, Elena A1 - Kuchenbaecker, Karoline B. A1 - Beesley, Jonathan A1 - Adlard, Julian A1 - Agnarsson, Bjarni A. A1 - Andrulis, Irene L. A1 - Arun, Banu K. A1 - Barjhoux, Laure A1 - Belotti, Muriel A1 - Benitez, Javier A1 - Berger, Andreas A1 - Bojesen, Anders A1 - Bonanni, Bernardo A1 - Brewer, Carole A1 - Caldes, Trinidad A1 - Caligo, Maria A. A1 - Campbell, Ian A1 - Chan, Salina B. A1 - Claes, Kathleen B. M. A1 - Cohn, David E. A1 - Cook, Jackie A1 - Daly, Mary B. A1 - Damiola, Francesca A1 - Davidson, Rosemarie A1 - de Pauw, Antoine A1 - Delnatte, Capucine A1 - Diez, Orland A1 - Domchek, Susan M. A1 - Dumont, Martine A1 - Durda, Katarzyna A1 - Dworniczak, Bernd A1 - Easton, Douglas F. A1 - Eccles, Diana A1 - Ardnor, Christina Edwinsdotter A1 - Eeles, Ros A1 - Ejlertsen, Bent A1 - Ellis, Steve A1 - Evans, D. Gareth A1 - Feliubadalo, Lidia A1 - Fostira, Florentia A1 - Foulkes, William D. A1 - Friedman, Eitan A1 - Frost, Debra A1 - Gaddam, Pragna A1 - Ganz, Patricia A. A1 - Garber, Judy A1 - Garcia-Barberan, Vanesa A1 - Gauthier-Villars, Marion A1 - Gehrig, Andrea A1 - Gerdes, Anne-Marie A1 - Giraud, Sophie A1 - Godwin, Andrew K. A1 - Goldgar, David E. A1 - Hake, Christopher R. A1 - Hansen, Thomas V. O. A1 - Healey, Sue A1 - Hodgson, Shirley A1 - Hogervorst, Frans B. L. A1 - Houdayer, Claude A1 - Hulick, Peter J. A1 - Imyanitov, Evgeny N. A1 - Isaacs, Claudine A1 - Izatt, Louise A1 - Izquierdo, Angel A1 - Jacobs, Lauren A1 - Jakubowska, Anna A1 - Janavicius, Ramunas A1 - Jaworska-Bieniek, Katarzyna A1 - Jensen, Uffe Birk A1 - John, Esther M. A1 - Vijai, Joseph A1 - Karlan, Beth Y. A1 - Kast, Karin A1 - Khan, Sofia A1 - Kwong, Ava A1 - Laitman, Yael A1 - Lester, Jenny A1 - Lesueur, Fabienne A1 - Liljegren, Annelie A1 - Lubinski, Jan A1 - Mai, Phuong L. A1 - Manoukian, Siranoush A1 - Mazoyer, Sylvie A1 - Meindl, Alfons A1 - Mensenkamp, Arjen R. A1 - Montagna, Marco A1 - Nathanson, Katherine L. A1 - Neuhausen, Susan L. A1 - Nevanlinna, Heli A1 - Niederacher, Dieter A1 - Olah, Edith A1 - Olopade, Olufunmilayo I. A1 - Ong, Kai-ren A1 - Osorio, Ana A1 - Park, Sue Kyung A1 - Paulsson-Karlsson, Ylva A1 - Pedersen, Inge Sokilde A1 - Peissel, Bernard A1 - Peterlongo, Paolo A1 - Pfeiler, Georg A1 - Phelan, Catherine M. A1 - Piedmonte, Marion A1 - Poppe, Bruce A1 - Pujana, Miquel Angel A1 - Radice, Paolo A1 - Rennert, Gad A1 - Rodriguez, Gustavo C. A1 - Rookus, Matti A. A1 - Ross, Eric A. A1 - Schmutzler, Rita Katharina A1 - Simard, Jacques A1 - Singer, Christian F. A1 - Slavin, Thomas P. A1 - Soucy, Penny A1 - Southey, Melissa A1 - Steinemann, Doris A1 - Stoppa-Lyonnet, Dominique A1 - Sukiennicki, Grzegorz A1 - Sutter, Christian A1 - Szabo, Csilla I. A1 - Tea, Muy-Kheng A1 - Teixeira, Manuel R. A1 - Teo, Soo-Hwang A1 - Terry, Mary Beth A1 - Thomassen, Mads A1 - Tibiletti, Maria Grazia A1 - Tihomirova, Laima A1 - Tognazzo, Silvia A1 - van Rensburg, Elizabeth J. A1 - Varesco, Liliana A1 - Varon-Mateeva, Raymonda A1 - Vratimos, Athanassios A1 - Weitzel, Jeffrey N. A1 - McGuffog, Lesley A1 - Kirk, Judy A1 - Toland, Amanda Ewart A1 - Hamann, Ute A1 - Lindor, Noralane A1 - Ramus, Susan J. A1 - Greene, Mark H. A1 - Couch, Fergus J. A1 - Offit, Kenneth A1 - Pharoah, Paul D. P. A1 - Chenevix-Trench, Georgia A1 - Antoniou, Antonis C. T1 - Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers JF - PLoS ONE N2 - Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. KW - fine-scale mapping KW - ovarian cancer KW - genetics KW - BRCA1 KW - BRCA2 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166869 VL - 11 IS - 7 ER -