TY - THES A1 - Sauer, Mark T1 - Die microRNA-26 Familie kontrolliert über den REST-Komplex ein für die Neurogenese essentielles regulatorisches RNA Netzwerk T1 - The microRNA-26 family controls a regulatory RNA network which is essential for neurogenesis via the REST-complex N2 - In einem sich entwickelnden multizellulären Organismus ist die räumlich-zeitliche Regulation der Genexpression von entscheidender Bedeutung für die Bildung, Identität und Funktion von Zellen. Der REST (repressor element silencing transcription factor) Komplex spielt bei der neuronalen Differenzierung und bei der Aufrechterhaltung des neuronalen Status eine essentielle Rolle, indem er in nicht neuronalen Zellen und neuralen Vorläufern die Expression neuronaler Gene unterdrückt, in deren Promotorregion eine RE1 (repressor element 1) Erkennungssequenz vorhanden ist. Während der neuronalen Differenzierung wird der REST-Komplex schrittweise inaktiviert, was zur Einleitung eines neuronalen Genexpression-Programms führt. Es wird daher angenommen, dass die Inhibierung des REST-Komplexes ein essentieller Vorgang der Neurogenese ist. Wichtige Bestandteile für die transkriptionell repressive Funktion des REST-Komplexes sind kleine Phosphatasen (CTDSP = C-terminal domain small phosphatases), welche die Polymerase-II-Aktivität an Zielgenen inhibieren. Im Zebrafisch wurde gezeigt, dass ctdsp2 durch die miR-26b negativ reguliert wird. Alle miR-26 Familienmitglieder sind in Vertebraten evolutionär konserviert und in Introns von Ctdsp Genen kodiert. Sie sind in der Lage, die Expression ihres eigenen Wirtsgens mittels einer autoregulatorischen Rückkopplungsschleife zu regulieren. Im Rahmen dieser Dissertation wurde als Modellsystem für die Neurogenese ein neurales Differenzierungssystem, welches auf murinen, embryonalen Stammzellen (ESCs) aufbaut, eingesetzt. Zur funktionellen Analyse der miR-26 Familie wurden mit Hilfe der CRISPR/Cas9-Methode verschiedene miR-26 Knockout (KO) ESC-Linien hergestellt. Hierbei wurden die Sequenzen der einzelnen Familienmitglieder und der gesamten miR-26 Familie im Genom von Wildtyp (Wt) ESCs deletiert. Diese miR-26-defizienten ESCLinien behielten ihre Pluripotenz und zeigten keinen Phänotyp hinsichtlich Proliferation, Morphologie und Identität der Zellen während der Differenzierung bis zum neuralen Vorläuferzellstadium (NPCs, engl.: neural progenitor cells). Jedoch führte die Deletion sowohl der gesamten miR-26 Familie als auch einzelner Mitglieder bei der terminalen Differenzierung zu einem spezifischen Entwicklungsstillstand im NPC Stadium und infolgedessen zu einer starken Reduktion der Anzahl von Neuronen und Astroglia. Die Transkriptom-Analyse der differenzierten miR-26-KO ESCs mittels RNA-Seq zeigte, dass die Expression von Genen die mit der Neurogenese und der neuronalen Differenzierung, aber auch der Gliogenese assoziert sind, herunterreguliert war. Die Abwesenheit der miR-26 Familie führte außerdem zu einer selektiven Reduzierung bestimmter miRNAs (REST-miRs), die einerseits die Expression von REST-Komplex Komponenten unterdrücken können, und andererseits selbst unter dessen transkriptioneller Kontrolle stehen. Zu diesem REST-miR Netzwerk gehören einige miRNAs (miR-9, miR-124, miR-132 und miR-218), die wichtige Funktionen bei verschiedenen Prozessen der neuronalen Entwicklung haben. Weiterhin führte der miR-26-KO zu einer Derepression der Proteinlevel von REST und CTDSP2 während der terminalen Differenzierung. Funktionelle Analysen mit miRNA mimics zeigten, dass erhöhte miR-26 Level zu einer Hochregulation von REST-miRs führen. Weitere Experimente, die darauf zielten, die Hierarchie des REST-miR Netwerks aufzuklären zeigten, dass die miR-26 Familie stromaufwärts die REST-miR Expression reguliert. Zusammengefasst weisen die in dieser Arbeit gezeigten Daten darauf hin, dass die miR-26 Familie als Initiator der schrittweisen Inaktivierung des REST-Komplexes eine zentrale Rolle bei der Differenzierung von neuralen Vorläuferzellen zu postmitotischen Neuronen spielt. N2 - The spatio-temporal control of gene expression in a developing multicellular organism is a key determinant for the formation, cellular identity and function of cells. The REST (repressor element silencing transcription factor) complex plays a crucial role in the process of neuronal differentiation and the maintenance of the neuronal status by suppressing neuronal genes which contain a RE1 (repressor element 1) recognition sequence within their promotor region in non-neuronal cells or in neural progenitors. During neuronal differentiation, the REST complex is gradually inactivated, leading to the initiation of a neuronal gene expression program. It is therefore assumed that the regulation of the REST complex is an essential component for the initiation of neurogenesis. Critical effector proteins of the REST complex are small phosphatases (CTDSPs = C-terminal domain small phosphatases), which reduces the polymerase II activity on target genes. In zebrafish it was shown that the REST complex-associated phosphatase ctdsp2 is negatively regulated by miR-26b. All miR-26 family members are evolutionarily conserved in vertebrates and located in introns of Ctdsp genes. Furthermore the miR-26 family members repress their own host genes through an intrinsic autoregulatory negative feedback loop. In this study, a murine embryonic stem cell (ESC) -based neural differentiation paradigm was used as a model system for neurogenesis. To analyze the function of the miR-26 family, the CRISPR/Cas9 technology was employed to generate various miR-26 knockout (KO) ESC lines, with deletions of individual family members and the entire miR-26 family in the genome of ESCs. These miR-26-deficient ESCs retained their pluripotency and did not show altered proliferation, morphology, or cell identity during neural differentiation up to the neural progenitor cell (NPC) stage. However, deletion of the entire miR-26 family as well as of single members disrupted the terminal differentiation and led to a specific developmental arrest at the NPC stage and consequently a strong reduction of neuron and astroglia cell frequencies. Global gene expression analyses in differentiated miR-26-KO ESCs further revealed that genes, which are associated with neurogenesis, neuronal differentiation, but also gliogenesis, were downregulated. The absence of the miR-26 familiy resulted in the selective reduction of a specific set of miRNAs (REST-miRs), which on the one hand suppress the expression of REST complex components and on the other hand are themselves under the transcriptional control of the REST complex. Among others, several miRNAs (miR-9, miR-124, miR-132 and miR-218), which play an important role in various processes of neuronal development, belong to this REST-miR network. Moreover, the miR-26-KO led to the derepression of REST and CTDSP2 protein levels during terminal differentiation. Functional analyses with miRNA mimics showed that increased miR-26 levels resulted in an upregulation of REST-miRs. Further experiments aimed at elucidating the hierarchy of REST-miR regulation revealed that the miR-26 family act upstream to regulate RESTmiR expression and presumably has an initial function in the regulation of this network. Taken together, the data presented in this work suggest that the miR-26 family act as an initiator for the stepwise inactivation of the REST complex during neural differentiation. Therefore, these findings are consistent with the notion that the miR-26 family represents a central regulator for neural progenitor cell differentiation into postmitotic neurons. KW - Neurogenese KW - miR-26 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184008 ER - TY - THES A1 - Grieß-Porsch, Simone Margot T1 - Analyse der Beteiligung parthenogenetischer Zellen an der Gehirnentwicklung in chimären Mausembryonen T1 - Analyzing the developmental potential of parthenogenetic embryonic mouse stem cells for brain development and regenerative medicine N2 - In der vorliegenden Arbeit wurden die Verteilungsmuster von PG-Donorzellen in Gehirnen von Mäusechimären, die nach dem Aggregations- und dem ESC-Verfahren generiert wurden, im Embryonalstadium E14.5 untersucht und miteinander verglichen. Während in Aggregations-Chimären eine Präferenz von PG-Donorzellen für eine Besiedelung des Cortex und des Striatum zu beobachten ist, zeigen Gehirnbereiche in ESC-Chimären eine gleichmäßige Verteilung der PG-Donorzellen. Um die unterschiedliche Besiedelung von PG-Stammzellen in den Chimären erklären zu können, wurden neuronale und gliale Zellfrequenzanalysen durchgeführt. Sowohl bei der relativen Neuronen- als auch bei der relativen Astrozytenhäufigkeit ist kein signifikanter Unterschied zwischen den Aggregations- und den ESC-Chimären festzustellen. Beide Chimärtypen unterscheiden sich nicht in der Zahl der aus PG-Donorzellen differenzierten Nerven- und Stützzellen. Das Potenzial von PG-Stammzellen, funktionsfähige dopaminerge Neuronen zu bilden, wurde in den beiden Chimärtypen vergleichend analysiert. In beiden Chimärtypen wurden von PG-Donorzellen abstammende dopaminerge Neuronen nachgewiesen. Sowie für die Neuronen- und die Astrozytenzahl konnte auch für die Anzahl dopaminerger Neuronen kein signifikanter Unterschied zwischen Aggregations- und ESC-Chimären beobachtet werden. N2 - Uniparental stem cells such as parthenogenetic stem cells (PGSCs) have attracted attention as an alternative way to derive pluripotent stem cell lines with histocompatibility and ethical advantages. Therefore, uniparental stem cell are considered as a suitabel source for future clinical applications and replacement therapy. To further characterize the development potential of murine PGSC, we analyzed the contribution of donor-derived cells in PG aggregation chimeras (PG-ICM) as compred to parthenogentic embryonic stem cells chimeras 8PG-ESC) in E14.5 mice brains. Donor- derived cells were quantified within 4 brain regions: medulla, cortex, striatum, and hypothalamus. The medulla was used as a control area against which PG donor cell distribution was compared (Keverne et al., 1995). Histological analyses showed that PG-ICM chimeras have a restricted cell contribution of donor-derived cells. The donor cells showed a preference for telencephatic structures like cortex 114% and straitum 150% and are less frequently detected in diencephalic strructures like hypothalamus 92,4%. In contrast, the frequency of donor-derived cells in PG-ESC chimeras was found to be cortex/striatum 52% and hypothalamus 75%. Our findings indicate that PG-ES cells and PG-ICM differ in their contribution tob rain development, which establishes a basic for studying the molecular processes and the nature of ICM and ESCs. KW - Stammzellen KW - Stammzellen Chimär Maus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155703 ER - TY - THES A1 - Serfling, Sebastian T1 - Funktion der Histon-Demethylase Kdm6a während der Teratombildung T1 - Function of the histone demethylase KDM6A during teratoma formation N2 - Pluripotente Zellen sind sowohl in der Stammzellforschung als auch für regenerative Therapieansätze von großer Bedeutung. Erste Stammzelltherapien sind bereits erfolgreich am Menschen durchgeführt worden. Besonders wichtig ist die Sicherheit der Therapie, um Risiken, wie die „Entartung“ von Stammzellen zu Tumorzellen, zu minimieren. Als Ansatzpunkt für einheitliche Therapie-Standards, sind z.B. genaue Angaben zur Anzahl injizierter Zellen, dem Injektionsort und Biomarker (wie Pluripotenz- und Differenzierungs-Marker) zur Kategorisierung der Stammzellen zu nennen. Während der Embryonalentwicklung spielen die Polycomb-Proteinkomplexe PCR1 und PCR2 eine maßgebliche Rolle beim Aufrechterhalten der Pluripotenz, weil sie Chromatin-Modifikationen, wie z.B. Histonmethylierungen vermitteln und so die Genexpression kontrollieren können. Lange Zeit wurde angenommen, dass Histon-Methylierungen irreversibel sind, doch mit Entdeckung der Lysin-spezifischen Demethylase 1 (LSD1) wurde diese Sichtweise revidiert. Ein Mitglied der derzeit bekannten 32 Histon-Demethylasen ist Kdm6a (UTX), die die Histon-Demethylierung des Lysins an der Aminosäure-Position 27 von Histon H3 (H3K27me2/3) katalysiert. Kdm6a spielt eine wichtige Rolle bei der Embryogenese und wurde in der hier vorgestellten Arbeit am Teratommodell, einem benignen Keimzelltumor, untersucht. In dieser Arbeit wurden Teratome von Mäusen untersucht, die aus embryonalen Stammzellen (ESC) mit Wildtyp- und shRNA vermittelter reduzierter Expression oder durch genetisch kontrollierten Knockdown sowie Knockout entstand sind. Diese wurden anschließend nach histologischen (H&E-Färbungen), histochemischen (PCNA-, SSEA-1- und TUNEL-Färbungen) sowie Analyse der Genexpressionsmuster aller drei Keimblätter mittels RT-PCR untersucht und ausgewertet. Sowohl Wildtyp als auch Kdm6a-Knockdown und Knockout-Teratome bildeten Gewebe der drei Keimblätter aus. In Teratomen mit supprimierter Kdm6a-Expression gab es jedoch Unterschiede in der Bildung mesodermaler und endodermaler Gewebe mit einer signifikanten Abnahme von Knorpel- und Muskelgewebe. Da sich Kdm6a-defiziente Teratome zu wesentlich größeren Tumoren als Wildtyp-Teratome entwickelten, wurde deren Proliferations-, Pluripotenz- und Apoptose-Verhalten mittels PCNA und SSEA-1 und TUNEL histochemischen Färbungen untersucht. Wir beobachteten in Knockout-Teratomen eine höhere Anzahl von PCNA- und SSEA-1-positiven Zellen. Daraus folgt, dass Kdm6a-defiziente ESCs - im Gegensatz zu Wildtyp ESCs - zur Bildung von Teratomen mit einer höheren Anzahl von proliferierenden und pluripotenten Zellen neigen. In der Fraktion apoptotischer Zellen (TUNEL positiver Zellen) der Kdm6a-defizienten Teratome gab es keinen signifikanten Unterschied zu Teratomen, die aus Wildtyp-ESCs entstanden. Nach Analyse der Genexpressionsmuster fanden wir in Zellen, in denen Kdm6a reprimiert bzw. deaktiviert wurde, einen Verlust der Pluripotenz und folglich eine starke Reduzierung der Pluripotenzmarker Oct4, Sox2 und Nanog. Die Analyse des Genexpressionsmusters läßt vermuten, dass der Verlust bzw. die Abnahme der Kdm6a-Aktivität in direkten Zusammenhang mit einer Abnahme der Pluripotenz durch Methylierung von H3K27 steht. Weitere Analysen, z.B. durch ChIP (Chromatin Immun-Präzipitations-) Assays mit H3K27me2/3 spezifischen Antikörpern, sind nötig, um dies endgültig zu beweisen. Unsere Arbeiten zeigten, dass die Kdm6-Demethylase-Aktivität essentiell für den Erhalt der Pluripotenz von embryonalen Stammzellen ist. N2 - The histone demethylase KDM6A is essential to maintain pluripotency in teratoma cells and for mesodermal differentiation. Also the KDM6A knockout teratomas are bigger and exhibit an increased cell proliferation rate KW - Histon-Demethylase Kdm6a KW - kdm6a KW - UTX KW - Histon-Demethylase Kdm6a Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140473 ER - TY - JOUR A1 - Cate, Marie-Sophie A1 - Gajendra, Sangeetha A1 - Alsbury, Samantha A1 - Raabe, Thomas A1 - Tear, Guy A1 - Mitchell, Kevin J. T1 - Mushroom body defect is required in parallel to Netrin for midline axon guidance in Drosophila JF - Development N2 - The outgrowth of many neurons within the central nervous system is initially directed towards or away from the cells lying at the midline. Recent genetic evidence suggests that a simple model of differential sensitivity to the conserved Netrin attractants and Slit repellents is insufficient to explain the guidance of all axons at the midline. In the Drosophila embryonic ventral nerve cord, many axons still cross the midline in the absence of the Netrin genes (NetA and NetB) or their receptor frazzled. Here we show that mutation of mushroom body defect (mud) dramatically enhances the phenotype of Netrin or frazzled mutants, resulting in many more axons failing to cross the midline, although mutations in mud alone have little effect. This suggests that mud, which encodes a microtubule-binding coiled-coil protein homologous to NuMA and LIN-5, is an essential component of a Netrin-independent pathway that acts in parallel to promote midline crossing. We demonstrate that this novel role of Mud in axon guidance is independent of its previously described role in neural precursor development. These studies identify a parallel pathway controlling midline guidance in Drosophila and highlight a novel role for Mud potentially acting downstream of Frizzled to aid axon guidance. KW - Drosophila KW - Axon guidance KW - Midline KW - Mud KW - NuMA KW - LIN-5 KW - Netrin Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189770 VL - 143 IS - 6 ER - TY - JOUR A1 - Petritsch, B. A1 - Köstler, H. A1 - Weng, A. M. A1 - Horn, M. A1 - Gassenmaier, T. A1 - Kunz, A. S. A1 - Weidemann, F. A1 - Wanner, C. A1 - Bley, T. A. A1 - Beer, M. T1 - Myocardial lipid content in Fabry disease: a combined \(^1\)H-MR spectroscopy and MR imaging study at 3 Tesla JF - BMC Cardiovascular Disorders N2 - Background Fabry disease is characterized by a progressive deposition of sphingolipids in different organ systems, whereby cardiac involvement leads to death. We hypothesize that lysosomal storage of sphingolipids in the heart as occurring in Fabry disease does not reflect in higher cardiac lipid concentrations detectable by \(^1\)H magnetic resonance spectroscopy (MRS) at 3 Tesla. Methods Myocardial lipid content was quantified in vivo by \(^1\)H-MRS in 30 patients (12 male, 18 female; 18 patients treated with enzyme replacement therapy) with genetically proven Fabry disease and in 30 healthy controls. The study protocol combined \(^1\)H-MRS with cardiac cine imaging and LGE MRI in a single examination. Results Myocardial lipid content was not significantly elevated in Fabry disease (p = 0.225). Left ventricular (LV) mass was significantly higher in patients suffering from Fabry disease compared to controls (p = 0.019). Comparison of patients without signs of myocardial fibrosis in MRI (LGE negative; n = 12) to patients with signs of fibrosis (LGE positive; n = 18) revealed similar myocardial lipid content in both groups (p > 0.05), while the latter showed a trend towards elevated LV mass (p = 0.076). Conclusions This study demonstrates the potential of lipid metabolic investigation embedded in a comprehensive examination of cardiac morphology and function in Fabry disease. There was no evidence that lysosomal storage of sphingolipids influences cardiac lipid content as measured by \(^1\)H-MRS. Finally, the authors share the opinion that a comprehensive cardiac examination including three subsections (LGE; \(^1\)H-MRS; T\(_1\) mapping), could hold the highest potential for the final assessment of early and late myocardial changes in Fabry disease. KW - late gadolinium enhancement KW - myocardial lipid content KW - magnetic resonance spectroscopy KW - Morbus Fabry KW - rare diseases KW - lysosomal storage disease Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146693 VL - 16 IS - 205 ER - TY - JOUR A1 - Varagnolo, Linda A1 - Lin, Quiong A1 - Obier, Nadine A1 - Plass, Christoph A1 - Dietl, Johannes A1 - Zenke, Martin A1 - Claus, Rainer A1 - Müller, Albrecht M. T1 - PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells JF - Scientific Reports N2 - Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different HK4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs. KW - ex vivo expansion KW - epigenomic landscapes KW - in vivo polycomb KW - transplantation states genes KW - EZH2 differentiation trichostatin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148374 VL - 5 IS - 12319 ER - TY - JOUR A1 - Beck, Katherina A1 - Ehmann, Nadine A1 - Andlauer, Till F. M. A1 - Ljaschenko, Dmitrij A1 - Strecker, Katrin A1 - Fischer, Matthias A1 - Kittel, Robert J. A1 - Raabe, Thomas T1 - Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons JF - Disease Models & Mechanisms N2 - Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. KW - mrsk2 KO mouse KW - S6KII RSK KW - transmission KW - neuromuscular junction KW - synapse KW - MAPK signaling KW - axonal transport KW - motoneuron KW - RSK KW - Drosophila KW - mechanisms KW - plasticity KW - protein kinase KW - signal transduction pathway KW - mitochondrial transport KW - glutamate receptor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145185 VL - 8 ER - TY - THES A1 - Pleiser, Sandra T1 - Mouse genetic analyses of Spir functions T1 - Maus-genetische Analysen zur Funktion von Spir N2 - Das Aktin-Zytoskelett ist für viele zelluläre Funktionen unerlässlich, dazu gehören der strukturelle Aufbau von Zellen, die Zellwanderung und Vesikeltransportprozesse. Die funktionelle Vielfalt der Aktinstrukturen spiegelt sich in einer Vielzahl verschiedener molekularer Mechanismen wieder, welche die Polymerisierung von Aktinfilamenten regulieren. Die sponante Aktinpolymerisierung wird jedoch verhindert aufgrund der Instabilität von kleinen Aktin Oligomeren und durch Aktin Monomer bindende Proteine, welche die Bildung solcher Oligomere unterbinden. Aktinnukleationsfaktoren helfen diese kinetische Barriere der Filamentbildung zu überwinden und sind wesentlich für die Erzeugung von neuen Aktinfilamenten an bestimmten subzellulären Kompartimenten. Spir Proteine sind die ersten beschriebenen Mitglieder der neuen Klasse von WH2 Domänen Aktinnukleationsfaktoren. Sie leiten die Polymerisierung von Aktin ein, indem sie Aktinmonomere an die vier WH2 Domänen im Zentrum des Proteins binden. Trotz ihrer Eigenschaft Aktinpolymerisation in vitro selber zu nukleieren, bilden Spir Proteine einen regulatorischen Komplex mit anderen Aktinnukleatoren der formin Untergruppe von forminen. Spir hat eine Funktion bei der Regulierung von vesikulär erzeugten filamentösen Aktinstrukturen, Vesikeltransportprozessen und der Bildung der Teilungsfurche während der asymmetrischen meiotischen Zellteilung. Das Säugetiergenom kodiert zwei spir Gene, spir-1 und spir-2. Die entsprechenden Proteine haben einen identischen strukturellen Aufbau und sind zu einem großen Teil homolog zueinander. Um die Spir Funktion im sich entwickelnden und adulten Nervensystem zu untersuchen, wurde die bisher unbekannte Expression des Maus spir-2 Gens analysiert. Real-time PCR Analysen haben ergeben, dass spir-2 in adulten Mäusen in Oozyten, dem Gehirn, im Gastrointestinaltrakt, den Hoden und der Niere exprimiert wird. In situ Hybridisierungen wurden durchgeführt um die zelluläre Natur der spir Expression nachzuweisen. Während der Embryogenese haben in situ Hybridisierungen gezeigt, dass spir-2 im sich entwickelnden Nervensytem und Darmtrakt exprimiert wird. In adulten Mausgeweben, wurde die höchste Expression von spir-2 in Epithelzellen des Verdauungstraktes, in neuronalen Zellen des Nervensystems und in Spermatocyten gefunden. Im Gegensatz zur eher begrenzten Expression des Maus spir-1 Gens, welches überwiegend im Nervensystem, den Oozyten und Hoden zu finden ist, zeigen die hier aufgeführten Daten ein breiteres Expressionsmuster des spir-2 Gens und unterstützen damit eine allgemeinere zellbiologische Funktion der neuen Aktinnukleatoren. Um die Funktion des Spir Proteins im sich entwickelnden und adulten Nervensystem zu untersuchen, wurden Spir-1 defiziente Mäuse mit Hilfe der gene trap Methode generiert. Spir-1 defiziente Mäuse sind lebensfähig und eignen sich daher perfekt um die Neurobiologie des Spir-1 Aktinnukleators zu untersuchen. Die Analyse von primären kortikalen Neuronen von Spir-1 defizienten Mäusen zeigte eine Reduktion dendritischer Verzweigungen und ist die erste Beschreibung einer neuronalen Funktion von Spir-1. Desweiteren wurde eine transgene Mauslinie (thy1-GFP-M) eingesetzt, die das grüne Fluoreszenzprotein (GFP) unter der Kontrolle von Neuronen-spezifischen Elementen des thy1 Promoters exprimiert. GFP ist dabei nur in einer Teilmenge von Neuronen exprimiert, färbt diese Neuronen jedoch in ihrer Gesamtheit an. Spir-1 defiziente Mäuse, die das GFP Transgen exprimieren wurden generiert und analysiert. Es wurde herausgefunden, dass Spir-1 defiziente Mäuse eine reduzierte Anzahl an dendritischen Dornen im entorhinalen Kortex im Vergleich zu Wildtyp- Geschwistertieren aufweisen. Zusammengefasst gibt diese Studie neue Erkenntnisse über die zellbiologische Funktion von Spir und liefert Einsichten wie das neuronale Netzwerk sturkturiert wird. N2 - The actin cytoskeleton is essential for many cellular functions, such as the regulation of cell morphology, cell migration and vesicle transport processes. The functional diversity of actin structures is reflected in a variety of distinct molecular mechanisms regulating the polymerization of actin filaments. The spontaneous polymerization of actin however is inhibited, by both the instability of small actin oligomers and by actin monomer binding proteins, which prevent the formation of such oligomers. Actin nucleation factors help to overcome this kinetic barrier of filament initiation and are essential for the generation of novel actin filaments at specified subcellular compartments. Spir proteins are the founding members of the novel class of WH2 domain containing actin nucleation factors. They initiate actin polymerization by binding of actin monomers to four WH2 domains in the central part of the protein. Despite their ability to nucleate actin polymerization in vitro by themselves, Spir proteins form a regulatory complex with the distinct actin nucleators of the formin subgroup of formins. Spir functions in the regulation of vesicular originated filamentous actin structures, vesicle transport processes and the assembly of the cleavage furrow during asymmetric meiotic cell divisions. The mammalian genome encodes two spir genes, spir-1 and spir-2. The corresponding proteins have an identical structural array and share a high degree of homology. In order to elucidate the Spir function in developing and adult mouse tissues, the yet unknown expression of the mouse spir-2 gene was addressed. Real-time PCR analysis revealed highest expression of spir-2 in oocytes, the brain, throughout the gastrointestinal tract, testis and kidney of adult mice. In situ hybridizations were performed to substantiate the cellular nature of spir gene expression. During embryogenesis in situ hybridizations show spir-2 to be expressed in the developing nervous system and intestine. In adult mouse tissues highest expression of spir-2 was detected in the epithelial cells of the digestive tract, in neuronal cells of the nervous system and in spermatocytes. In contrast to the more restricted expression of the mouse spir-1 gene, which is mainly found in the nervous system, oocytes and testis, the data presented here show a distinct and broader expression pattern of the spir-2 gene and by this support a more general cell biological function of the novel actin nucleators. In order to address the function of Spir proteins in the developing and adult nervous system, Spir-1 deficient mice were generated by a gene trap method. Spir-1 deficient mice are viable and provide a perfect tool to address the neurobiological function of the Spir-1 protein. Analyses of primary cortical neurons from Spir-1 deficient mice revealed a specific reduction of dendritic branchpoints and are the first description of a neuronal Spir-1 function. Further, a transgenic mouse line (thy1-GFP-M) was employed that expresses the green fluorescent protein (GFP) under the control of neuron specific elements from the thy1 promoter. GFP is thereby expressed in only a subset of neurons and labels the neurons in their entirety. Spir-1 deficient mice carrying the GFP transgene were generated and analyzed. It was found that Spir-1 deficient mice exhibit a reduced number of dendritic spines in the entorhinal cortex compared to wildtype littermates. All together this study gives novel information about the cell biological function of Spir and provides insights how cytoskeletal functions structure the mammalian neuronal network. KW - Actin-bindende Proteine KW - Knockout KW - Spir KW - Aktinnukleation KW - neuronale Differenzierung KW - Spir KW - Actin nucleation KW - knock-out mouse KW - neuronal differentiation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73634 N1 - Die Dissertation wurde an der Uni Regensburg geschrieben (externe Promotion) ER - TY - THES A1 - Brousos, Nikos Alexander T1 - Mesenchymale Stammzellen: Analyse der Auswirkungen des Einsatzes von humanem Serum in der Langzeitkultur sowie des Entwicklungspotentials im Blastozystenmodell T1 - Mesenchymal stem cells: The effect of human serum in long term culture and the developmental potential in the blastocyst model N2 - Mesenchymale Stammzellen (MSCs) sind multipotente adulte Stammzellen. Sie können aus einer Vielzahl verschiedener Gewebe isoliert werden, z.B. aus Knochenmark (BM), Fettgewebe (AT) und Nabelschnurblut (CB). Besondere Bedeutung haben MSCs als mögliche Zellquelle für neuartige klinische Stammzelltherapien, da sie relativ einfach aus adulten Patienten isoliert und in vitro expandiert werden können. Grundlage für die erforschten Therapieansätze ist häufig das Entwicklungspotential der MSCs. Es umfasst mesenchymale Zelltypen wie Adipozyten, Chondrozyten und Osteoblasten, aber auch nicht-mesenchymale Zelltypen wie z.B. Hepatozyten oder Nervenzellen. Das Entwick-lungspotential von MSCs zu nicht-mesenchymalen Zelltypen ist jedoch umstritten und viele Differenzierungswege sind bisher nur in vitro gezeigt. Außerdem ist unklar, ob MSCs aus verschiedenen Ursprungsgeweben dasselbe Entwicklungspotential besitzen. Ein Ziel dieser Arbeit war deshalb das in vivo Differenzierungspotential von CB-, AT- und BM-MSCs vergleichend zu untersuchen. Dazu wurden die MSCs in murine Tag-3-Blastozysten injiziert. Diese wurden dann in Foster-Mäuse transferiert und die daraus entstandenen Embryonen am Tag 16 der Embryonalentwicklung (E16.5) analysiert. Dazu wurde gDNA aus verschiedenen embryonalen Geweben isoliert und mittels humanspezifischer quantitativer real-time PCR (qPCR) die Verteilung sowie das Ausmaß der humanen Donorkontribution bestimmt. Außerdem sollte der Differenzierungsstatus der humanen Zellen mittels in situ Hybridisierung und Antikörperfärbung analysiert werden... N2 - Mesenchymal stem cells (MSCs) are multipotent adult stem cells. They can be isolated from a multitude of tissues including bone marrow (BM), adipose tissue (AT) and cord blood (CB). MSCs gained special importance as potential cell source for novel stem cell-based therapies, because their isolation is relatively easy from patients and they can be expanded in vitro. Current attempts to use MSCs as therapeutic are based on their developmental potential, which includes mesenchymal cell types, for example adipocytes, chondrocytes and osteoblasts as well as the non-mesenchymal cell types like hepatocytes and neural cell types. The developmental potential of MSCs towards non-mesenchymal cell types is controversial and so far often only showed in vitro. Further, it is not clear whether MSCs from different tissue origins have the same developmental potential. Hence the aim of this thesis was to evaluate and compare the in vivo differentiation potential of human MSCs from CB, BM and AT. Therefore MSCs were injected in murine embryonic day 3.5 blastocysts. Then the blastocysts were transferred into foster mice and the developing E 16.5 embryos were analyzed. For this analysis gDNA from a variety of embryonic tissues was isolated. Distribution and degree of human donor contribution was determined by quantification of the human gDNA sequences in the samples with human specific quantitative real-time polymerase chain reaction (qPCR). In addition it was planned to analyze the differentiation status of the human cells by immunhistochemistry and in situ hybridization ... KW - Stammzelle KW - Mesenchym KW - Zelldifferenzierung KW - mesenchymale Stammzellen KW - MSC KW - Blastozysteninjektion KW - Seneszenz KW - humanes Serum KW - Entwicklungspotential KW - mesenchymal stem cells KW - blastocyst injection KW - senescence KW - human serum KW - developmental potential Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70401 ER - TY - THES A1 - Ahmad, Ruhel T1 - Neurogenesis from parthenogenetic human embryonic stem cells T1 - Neurogenese von parthenogenetischen humanen embryonalen Stammzellen N2 - Imprinted genes play important roles in brain development. As the neural developmental capabilities of human parthenogenetic embryonic stem cells (hpESCs) with only a maternal genome were not assessed in great detail, hence here the potential of hpESCs to differentiate into various neural subtypes was determined. In addition DNA methylation and expression of imprinted genes upon neural differentiation was also investigated. The results demonstrated that hpESC-derived neural stem cells (hpNSCs) showed expression of NSC markers Sox1, Nestin, Pax6, and Musashi1 (MS1), the silencing of pluripotency genes (Oct4, Nanog) and the absence of activation of neural crest (Snai2, FoxD3) and mesodermal (Acta1) markers. Moreover, confocal images of hpNSC cultures exhibited ubiquitous expression of NSC markers Nestin, Sox1, Sox2 and Vimentin. Differentiating hpNSCs for 28 days generated neural subtypes with neural cell type-specific morphology and expression of neuronal and glial markers, including Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 and GABA. hpNSCs also responded to region-specific differentiation signals and differentiated into regional phenotypes such as midbrain dopaminergic- and motoneuron-type cells. hpESC-derived neurons showed typical neuronal Na+/K+ currents in voltage clamp mode, elicited multiple action potentials with a maximum frequency of 30 Hz. Cell depicted a typical neuron-like current pattern that responded to selective pharmacological blockers of sodium (tetrodotoxin) and potassium (tetraethylammonium) channels. Furthermore, in hpESCs and hpNSCs the majority of CpGs of the differentially methylated regions (DMRs) KvDMR1 were methylated whereas DMR1 (H19/Igf2 locus) showed partial or complete absence of CpG methylation, which is consistent with a parthenogenetic (PG) origin. Upon differentiation parent-of-origin-specific gene expression was maintained in hpESCs and hpNSCs as demonstrated by imprinted gene expression analyses. Together this shows that despite the lack of a paternal genome, hpNSCs are proficient in differentiating into glial- and neuron-type cells, which exhibit electrical activity similar to newly formed neurons. Moreover, maternal-specific gene expression and imprinting-specific DNA-methylation are largely maintained upon neural differentiation. hpESCs are a means to generate histocompatible and disease allele-free ESCs. Additionally, hpESCs are a unique model to study the influence of imprinting on neurogenesis. N2 - Imprinted Gene spielen eine wichtige Rolle bei der Gehirnentwicklung. Da das neurale Entwicklungspotenzial von hpESCs bisher noch nicht ausführlich untersucht wurde, war das Ziel dieser Arbeit das Differenzierungspotenzial von hpESCs zu verschiedenen neuralen Subtypen zu untersuchen. Außerdem wurden die DNA-Methylierung und Expression imprinted Gene in hpESCs während der neuralen Differenzierung analysiert. Die Ergebnisse zeigten, dass von hpESCs abgeleitete neurale Stammzellen (hpNSCs) die NSC-Marker Sox1, Nestin, Pax6 und Musashi1 (MS1) exprimierten, Pluripotenzmarker-Gene (Oct4, Nanog) abschalteten und keine Aktivierung von Markern der Neuralleistenzellen (Snai2, FoxD3) sowie dem mesodermalen Marker Acta1 stattfand. Immunfärbungen zeigten weiterhin, dass aus hpESCs abgeleitete Stammzellen die NSC-Marker Nestin, Sox1, Sox2 und Vimentin auf Proteinebene exprimierten. Durch gerichtete neurale Differenzierung für 28 Tage konnten aus hpESCs neurale Subtypen abgeleitet werden, die eine neurale Zelltyp-spezifische Morphologie aufweisen und positiv für neuronale und gliale Marker wie Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 und GABA sind. Um aus hpNSCs dopaminerge und Motoneuronen abzuleiten, wurden während der Differenzierung Morphogene und trophische Faktoren zugegeben. Elektrophysiologische Analysen konnten zeigen, dass die in vitro differenzierten Neuronen, die von hpESCs abgeleitet wurden, für Neurone typische Na+/K+ Ströme sowie Aktionspotentiale (30 Hz) vorweisen ausbilden und auf ausgewählte pharmakologische Natrium- (Tetrodotoxin) und Kalium- (Tetraethylammonium) Kanal-Blocker reagierten. Desweiteren war der Großteil der CpGs von differentiell methylierten Regionen (DMRs) KvDMR1 in hpESCs und hpNSCs methyliert, während DMR1 (H19/Igf2 Locus) eine partiell oder komplett abwesende CpG-Methylierung zeigte, was dem parthenogenetischen Ursprung entspricht. Während der Differenzierung wurde die elternabhängige (parent-of-origin) spezifische Genexpression in hpESCs und hpNSCs aufrechterhalten, wie mit Genexpressionsanalysen imprinted Gene gezeigt werden konnte. In der Summe zeigen die hier dargestellten Ergebnisse, dass hpESCs, die kein paternales Genom besitzen, keine Beeinträchtigung im neuralen Differenzierungspotential zeigten und zu Gliazellen und Neurone differenziert werden konnten. Elektrophysiologische Analysen zeigten ferner, dass von hpESCs abgeleitete Neurone funktionell sind. Zudem wird die Expression maternal-spezifischer Gene und die Imprinting-spezifische DNA-Methylierung während der Differenzierung größtenteils aufrechterhalten. In der Summe stellen hpESCs ein einzigartiges Modell dar, um den Einfluss des Imprintings auf die Neurogenese zu untersuchen. KW - Embryonale Stammzelle KW - Neurogenese KW - Zelldifferenzierung KW - Stammzelle KW - human parthenogenetic stem cells KW - in vitro neural differentiation KW - human parthenogenetic neural stem cells KW - PG neurons KW - imprinting. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75935 ER -