TY - JOUR A1 - Hochleitner, Gernot A1 - Jüngst, Tomasz A1 - Brown, Toby D A1 - Hahn, Kathrin A1 - Moseke, Claus A1 - Jakob, Franz A1 - Dalton, Paul D A1 - Groll, Jürgen T1 - Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing JF - Biofabrication N2 - The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro. KW - additive manufacturing KW - 3D printing KW - biodegradable polymers KW - microstructures KW - nanostructures Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254053 VL - 7 IS - 3 ER - TY - JOUR A1 - Fuchs, Konrad F. A1 - Heilig, Philipp A1 - McDonogh, Miriam A1 - Boelch, Sebastian A1 - Gbureck, Uwe A1 - Meffert, Rainer H. A1 - Hoelscher-Doht, Stefanie A1 - Jordan, Martin C. T1 - Cement-augmented screw fixation for calcaneal fracture treatment: a biomechanical study comparing two injectable bone substitutes JF - Journal of Orthopaedic Surgery and Research N2 - Background The role of cement-augmented screw fixation for calcaneal fracture treatment remains unclear. Therefore, this study was performed to biomechanically analyze screw osteosynthesis by reinforcement with either a calcium phosphate (CP)-based or polymethylmethacrylate (PMMA)-based injectable bone cement. Methods A calcaneal fracture (Sanders type IIA) including a central cancellous bone defect was generated in 27 synthetic bones, and the specimens were assigned to 3 groups. The first group was fixed with four screws (3.5 mm and 6.5 mm), the second group with screws and CP-based cement (Graftys (R) QuickSet; Graftys, Aix-en-Provence, France), and the third group with screws and PMMA-based cement (Traumacem (TM) V+; DePuy Synthes, Warsaw, IN, USA). Biomechanical testing was conducted to analyze peak-to-peak displacement, total displacement, and stiffness in following a standardized protocol. Results The peak-to-peak displacement under a 200-N load was not significantly different among the groups; however, peak-to-peak displacement under a 600- and 1000-N load as well as total displacement exhibited better stability in PMMA-augmented screw osteosynthesis compared to screw fixation without augmentation. The stiffness of the construct was increased by both CP- and PMMA-based cements. Conclusion Addition of an injectable bone cement to screw osteosynthesis is able to increase fixation strength in a biomechanical calcaneal fracture model with synthetic bones. In such cases, PMMA-based cements are more effective than CP-based cements because of their inherently higher compressive strength. However, whether this high strength is required in the clinical setting for early weight-bearing remains controversial, and the non-degradable properties of PMMA might cause difficulties during subsequent interventions in younger patients. KW - arthritis KW - bone KW - calcaneus KW - cement KW - fracture KW - fixation KW - osteoporosis KW - sanders KW - screw Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230336 VL - 15 ER - TY - JOUR A1 - Weissenberger, Manuel A1 - Weissenberger, Manuela H. A1 - Wagenbrenner, Mike A1 - Heinz, Tizian A1 - Reboredo, Jenny A1 - Holzapfel, Boris M. A1 - Rudert, Maximilian A1 - Groll, Jürgen A1 - Evans, Christopher H. A1 - Steinert, Andre F. T1 - Different types of cartilage neotissue fabricated from collagen hydrogels and mesenchymal stromal cells via SOX9, TGFB1 or BMP2 gene transfer JF - PLoS One N2 - Objective As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. Design Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX)9,transforming growth factor beta (TGFB) 1or bone morphogenetic protein (BMP) 2cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. Results Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenesSOX9,TGFB1andBMP2as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). Conclusions Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factorsSOX9,TGFB1andBMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage. KW - stem cells KW - in vitro KW - chondrogenic differentiation KW - repair KW - chondrocytes KW - transplantation KW - stimulation KW - scaffolds KW - defects KW - therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230494 VL - 15 IS - 8 ER - TY - JOUR A1 - Eidmann, Annette A1 - Ewald, Andrea A1 - Boelch, Sebastian P. A1 - Rudert, Maximilian A1 - Holzapfel, Boris M. A1 - Stratos, Ioannis T1 - In vitro evaluation of antibacterial efficacy of vancomycin-loaded suture tapes and cerclage wires JF - Journal of Materials Science: Materials in Medicine N2 - Usage of implants containing antibiotic agents has been a common strategy to prevent implant related infections in orthopedic surgery. Unfortunately, most implants with microbial repellent properties are characterized by accessibility limitations during daily clinical practice. Aim of this in vitro study was to investigate whether suture tapes and cerclage wires, which were treated with vancomycin, show a sustainable antibacterial activity. For this purpose, we used 24 stainless steel wire cerclages and 24 ultra-high molecular weight polyethylene and polyester suture tape test bodies. The test bodies were incubated for 30 min. in 100 mg/ml vancomycin solution or equivalent volumes of 0.9% NaCl. After measuring the initial solution uptake of the test bodies, antibacterial efficacy via agar diffusion test with Staphylococcus aureus and vancomycin elution tests were performed 1, 2, 3, and 6 days after incubation. Vancomycin-loaded tapes as well as vancomycin-loaded cerclage wires demonstrated increased bacterial growth inhibition when compared to NaCl-treated controls. Vancomycin-loaded tapes showed an additional twofold and eightfold increase of bacterial growth inhibition compared to vancomycin-loaded wires at day 1 and 2, respectively. Elution tests at day 1 revealed high levels of vancomycin concentration in vancomycin loaded tapes and wires. Additionally, the concentration in vancomycin loaded tapes was 14-fold higher when compared to vancomycin loaded wires. Incubating suture tapes and cerclage wires in vancomycin solution showed a good short-term antibacterial activity compared to controls. Considering the ease of vancomycin application on suture tapes or wires, our method could represent an attractive therapeutic strategy in biofilm prevention in orthopedic surgery. KW - anti-bacterial agents / administration & dosage KW - anti-bacterial agents / chemistry KW - bone wires KW - drug liberation KW - materials testing KW - anti-bacterial agents / pharmacology KW - biocompatible Materials KW - prostheses and implants KW - Staphylococcus aureus / drug effects KW - sutures KW - Vancomycin / administration & dosage KW - Vancomycin / chemistry KW - Vancomycin / pharmacology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260089 VL - 32 IS - 4 ER - TY - JOUR A1 - Lüdemann, Martin A1 - Jakuscheit, Axel A1 - Ewald, Andrea A1 - Frühmann, Leena A1 - Hölscher-Doht, Stefanie A1 - Rudert, Maximilian A1 - von Hertzberg-Boelch, Sebastian Philipp T1 - Influence of Tranexamic Acid on Elution Characteristics and Compressive Strength of Antibiotic-Loaded PMMA-Bone Cement with Gentamicin JF - Materials N2 - Purpose: The topical application of tranexamic acid (TXA) into the joint space during total joint arthroplasty (TJA) with no increase of complications, has been widely reported. We investigated the influence of TXA on antibiotic release, activity of the released antibiotic against a clinical isolate of S. aureus, and compressive strength of a widely used commercially prepared gentamicin-loaded cement brand (PALACOS R + G). Method: 12 bone cement cylinders (diameter and height = 6 and 12 mm, respectively) were molded. After curing in air for at least 1 h, six of the cylinders were completely immersed in 5 mL of fetal calf serum (FCS) and the other six were completely immersed in a solution consisting of 4.9 mL of FCS and 0.1 mL (10 mg) of TXA. Gentamicin elution tests were performed over 7 d. Four hundred µL of the gentamicin eluate were taken every 24 h for the first 7 d without renewing the immersion fluid. The gentamicin concentration was determined in a clinical analyzer using a homogeny enzyme immuno-assay. The antimicrobial activity of the eluate, obtained after day 7, was tested. An agar diffusion test regime was used with Staphylococcus aureus. Bacteria were grown in a LB medium and plated on LB agar plates to get a bacterial lawn. Fifty µL of each eluate were pipetted on 12-mm diameter filter discs, which were placed in the middle of the agar gel. After 24 h of cultivation at 37 °C, the zone of inhibition (ZOI) for each specimen was measured. The compressive strength of the cements was determined per ISO 5833. Results: At each time point in the gentamicin release test, the difference in gentamicin concentration, obtained from specimens immersed in the FCS solution only and those immersed in the FCS + TXA solution was not significant (p = 0.055–0.522). The same trend was seen in each of the following parameters, after 7 d of immersion: (1) Cumulative gentamicin concentration (p < 0.297); (2) gentamicin activity against S. aureus (strongly visible); (3) ZOI size (mostly > 20 mm) (p = 0.631); and (4) compressive strength (p = 0.262). Conclusions: For the PALACOS R + G specimens, the addition of TXA to FCS does not produce significant decreases in gentamicin concentration, in the activity of the gentamicin eluate against a clinical isolate of S. aureus, the zone of inhibition of S. aureus, and in the compressive strength of the cement, after 7 d of immersion in the test solution. KW - gentamicin-loaded poly (methyl methacrylate) bone cement KW - total joint arthroplasty KW - total knee arthroplasty KW - tranexamic acid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246236 SN - 1996-1944 VL - 14 IS - 19 ER - TY - JOUR A1 - Weissenberger, M. A1 - Weissenberger, M. H. A1 - Gilbert, F. A1 - Groll, J. A1 - Evans, C. H. A1 - Steinert, A. F. T1 - Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery JF - BMC Musculoskeletal Disorders N2 - Background Mesenchymal stem cell (MSC) based-treatments of cartilage injury are promising but impaired by high levels of hypertrophy after chondrogenic induction with several bone morphogenetic protein superfamily members (BMPs). As an alternative, this study investigates the chondrogenic induction of MSCs via adenoviral gene-delivery of the transcription factor SOX9 alone or in combination with other inducers, and comparatively explores the levels of hypertrophy and end stage differentiation in a pellet culture system in vitro. Methods First generation adenoviral vectors encoding SOX9, TGFB1 or IGF1 were used alone or in combination to transduce human bone marrow-derived MSCs at 5 x 10\(^2\) infectious particles/cell. Thereafter cells were placed in aggregates and maintained for three weeks in chondrogenic medium. Transgene expression was determined at the protein level (ELISA/Western blot), and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results SOX9 cDNA was superior to that encoding TGFB1, the typical gold standard, as an inducer of chondrogenesis in primary MSCs as evidenced by improved lacuna formation, proteoglycan and collagen type II staining, increased levels of GAG synthesis, and expression of mRNAs associated with chondrogenesis. Moreover, SOX9 modified aggregates showed a markedly lower tendency to progress towards hypertrophy, as judged by expression of the hypertrophy markers alkaline phosphatase, and collagen type X at the mRNA and protein levels. Conclusion Adenoviral SOX9 gene transfer induces chondrogenic differentiation of human primary MSCs in pellet culture more effectively than TGFB1 gene transfer with lower levels of chondrocyte hypertrophy after 3 weeks of in vitro culture. Such technology might enable the formation of more stable hyaline cartilage repair tissues in vivo. KW - Mesenchymal stem cell KW - Cartilage KW - SOX9 KW - Gene therapy KW - Chondrogenesis KW - Hypertrophy KW - Adenovirus KW - Bone marrow Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229232 VL - 20 ER -