TY - JOUR A1 - Walsh, J. Bernard A1 - Lems, Willem F. A1 - Karras, Dimitrios A1 - Langdahl, Bente L. A1 - Ljunggren, Osten A1 - Fahrleitner-Pammer, Astrid A1 - Barrett, Annabel A1 - Rajzbaum, Gerald A1 - Jakob, Franz A1 - Marin, Fernando T1 - Effectiveness of Teriparatide in Women Over 75 Years of Age with Severe Osteoporosis: 36-Month Results from the European Forsteo Observational Study (EFOS) JF - Calcified Tissue International N2 - This predefined analysis of the European Forsteo Observational Study (EFOS) aimed to describe clinical fracture incidence, back pain, and health-related quality of life (HRQoL) during 18 months of teriparatide treatment and 18 months post-teriparatide in the subgroup of 589 postmenopausal women with osteoporosis aged ≥75 years. Data on clinical fractures, back pain (visual analogue scale, VAS), and HRQoL (EQ-5D) were collected over 36 months. Fracture data were summarized in 6-month intervals and analyzed using logistic regression with repeated measures. A repeated-measures model analyzed changes from baseline in back pain VAS and EQ-VAS. During the 36-month observation period, 87 (14.8 %) women aged ≥75 years sustained a total of 111 new fractures: 37 (33.3 %) vertebral fractures and 74 (66.7 %) nonvertebral fractures. Adjusted odds of fracture was decreased by 80 % in the 30 to <36–month interval compared with the first 6-month interval (P < 0.009). Although the older subgroup had higher back pain scores and poorer HRQoL at baseline than the younger subgroup, both age groups showed significant reductions in back pain and improvements in HRQoL postbaseline. In conclusion, women aged ≥75 years with severe postmenopausal osteoporosis treated with teriparatide in normal clinical practice showed a reduced clinical fracture incidence by 30 months compared with baseline. An improvement in HRQoL and, possibly, an early and significant reduction in back pain were also observed, which lasted for at least 18 months after teriparatide discontinuation when patients were taking other osteoporosis medication. The results should be interpreted in the context of an uncontrolled observational study. KW - teriparatide KW - osteoporosis KW - health-related quality of life KW - fracture KW - back pain KW - age Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124746 VL - 90 IS - 5 ER - TY - JOUR A1 - Rackwitz, Lars A1 - Eden, Lars A1 - Reppenhagen, Stephan A1 - Reichert, Johannes C. A1 - Jakob, Franz A1 - Walles, Heike A1 - Pullig, Oliver A1 - Tuan, Rocky S. A1 - Rudert, Maximilian A1 - Nöth, Ulrich T1 - Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head JF - Stem Cell Research & Therapy N2 - Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN. KW - osteochondral allografts KW - autologous chondrocyte implantation KW - osteogenesis imperfecta KW - segmental collapse KW - mesenchymal cells KW - progenitor cells KW - stromal cells KW - sheep model KW - colony-stimulating factor KW - core depression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135413 VL - 3 IS - 7 ER - TY - JOUR A1 - Benisch, Peggy A1 - Schilling, Tatjana A1 - Klein-Hitpass, Ludger A1 - Frey, Sönke P. A1 - Seefried, Lothar A1 - Raaijmakers, Nadja A1 - Krug, Melanie A1 - Regensburger, Martina A1 - Zeck, Sabine A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ebert, Amling A1 - Jakob, Franz T1 - The Transcriptional Profile of Mesenchymal Stem Cell Populations in Primary Osteoporosis Is Distinct and Shows Overexpression of Osteogenic Inhibitors JF - PLoS One N2 - Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79-94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of similar to 30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP. Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process. KW - alkaline-phosphatase KW - in vitro KW - bone-mineral density KW - age-related osteoporosis KW - WNT signaling pathway KW - replicative senescence KW - morphogenetic protein KW - parathyroid-hormone KW - growth factor KW - skeletal overexpression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133379 VL - 7 IS - 9 ER - TY - JOUR A1 - Klotz, Barbara A1 - Mentrup, Birgit A1 - Regensburger, Martina A1 - Zeck, Sabine A1 - Schneidereit, Jutta A1 - Schupp, Nicole A1 - Linden, Christian A1 - Merz, Cornelia A1 - Ebert, Regina A1 - Jakob, Franz T1 - 1,25-Dihydroxyvitamin D3 Treatment Delays Cellular Aging in Human Mesenchymal Stem Cells while Maintaining Their Multipotent Capacity JF - PLoS ONE N2 - 1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, beta-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence-and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to beta-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging. KW - perspectives KW - bone marrow KW - mutant mice KW - oxidative stress KW - transcription factors KW - vitamin-D-receptor KW - differentiation KW - tissue KW - 2',7'-dichlorofluorescin KW - homeostasis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133392 VL - 7 IS - 1 ER - TY - JOUR A1 - Liedert, Astrid A1 - Röntgen, Viktoria A1 - Schinke, Thorsten A1 - Benisch, Peggy A1 - Ebert, Regina A1 - Jakob, Franz A1 - Klein-Hitpass, Ludger A1 - Lennerz, Jochen K. A1 - Amling, Michael A1 - Ignatius, Anita T1 - Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice JF - PLOS ONE N2 - The canonical Wnt/beta-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5(-/-)) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5(-/-) mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5(-/-) mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active beta-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. KW - autosomal-dominant osteopetrosis KW - receptor related protein KW - high-bone-mass KW - WNT pathway KW - in-vitro KW - cells KW - gene KW - proliferation KW - osteoclasts KW - mutations Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115782 SN - 1932-6203 VL - 9 IS - 7 ER - TY - JOUR A1 - Ebert, Regina A1 - Dotterweich, Julia A1 - Kraus, Sabrina A1 - Tower, Robert J. A1 - Jakob, Franz A1 - Schütze, Norbert T1 - Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells N2 - CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease. KW - CCN1 KW - Multiple myeloma KW - Mesenchymal stem cells KW - Splicing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110497 ER - TY - JOUR A1 - Steinert, Andre F. A1 - Weissenberger, Manuel A1 - Kunz, Manuela A1 - Gilbert, Fabian A1 - Ghivizzani, Steven C. A1 - Goebel, Sascha A1 - Jakob, Franz A1 - Nöth, Ulrich A1 - Rudert, Maximilian T1 - Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells N2 - Introduction: To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods: First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP- 2), or transforming growth factor beta-1 (Ad.TGF-b1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serumfree medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results: IHH, TGF-b1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion: As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75425 ER - TY - JOUR A1 - Hochleitner, Gernot A1 - Jüngst, Tomasz A1 - Brown, Toby D A1 - Hahn, Kathrin A1 - Moseke, Claus A1 - Jakob, Franz A1 - Dalton, Paul D A1 - Groll, Jürgen T1 - Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing JF - Biofabrication N2 - The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro. KW - additive manufacturing KW - 3D printing KW - biodegradable polymers KW - microstructures KW - nanostructures Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254053 VL - 7 IS - 3 ER - TY - JOUR A1 - Ebert, Regina A1 - Benisch, Peggy A1 - Krug, Melanie A1 - Zeck, Sabine A1 - Meißner-Weigl, Jutta A1 - Steinert, Andre A1 - Rauner, Martina A1 - Hofbauer, Lorenz A1 - Jakob, Franz T1 - Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells JF - Stem Cell Research N2 - The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation andmineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1\(\beta\), CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis. KW - human atherosclerotic lesions KW - senescence KW - expression KW - toll-like receptor KW - mineralization KW - osteogenic differentiation KW - serum amyloid A KW - inflammation KW - mesenchymal stem cells KW - WNT5A KW - model KW - lines KW - stromal cells KW - RT-PCR Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148491 VL - 15 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Breitenbach, Tim A1 - Karl, Stefan A1 - Fuchs, Maximilian A1 - Kessie, David Komla A1 - Psota, Eric A1 - Prelog, Martina A1 - Sarukhanyan, Edita A1 - Ebert, Regina A1 - Jakob, Franz A1 - Dandekar, Gudrun A1 - Naseem, Muhammad A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis JF - Scientific Reports N2 - The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors. KW - cellular signalling networks KW - computer modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313303 VL - 13 ER -