TY - JOUR A1 - Seefried, L. A1 - Rak, D. A1 - Petryk, A. A1 - Genest, F. T1 - Bone turnover and mineral metabolism in adult patients with hypophosphatasia treated with asfotase alfa JF - Osteoporosis International N2 - Summary There is limited understanding of how asfotase alfa affects mineral metabolism and bone turnover in adults with pediatric-onset hypophosphatasia. This study showed that adults with hypophosphatasia treated with asfotase alfa experienced significant changes in biochemical markers of bone and mineral metabolism, possibly reflecting enhanced bone remodeling of previously osteomalacic bone. Introduction Hypophosphatasia (HPP), due to a tissue nonspecific alkaline phosphatase (TNSALP) deficiency, can cause impaired bone mineralization and turnover. Although HPP may be treated with asfotase alfa, an enzyme replacement therapy, limited data are available on how treatment with asfotase alfa affects mineral metabolism and bone turnover in adults with HPP. Methods ALP substrates, bone turnover and mineral metabolism markers, and bone mineral density (BMD) data from EmPATHY, a single-center, observational study of adults (≥ 18 years) with pediatric-onset HPP treated with asfotase alfa (NCT03418389), were collected during routine clinical care and analyzed from baseline through 24 months of treatment. Results Data from 21 patients showed significantly increased ALP activity and reduced urine phosphoethanolamine (PEA)/creatinine (Cr) ratios after baseline through 24 months of asfotase alfa treatment. There were significant transient increases in parathyroid hormone 1-84 (PTH), osteocalcin, and procollagen type 1 N-propeptide (P1NP) levels at 3 and 6 months and in tartrate-resistant acid phosphatase 5b (TRAP5b) levels at 3 months, with a significant decrease in N-terminal telopeptide of type 1 collagen (NTX) levels at 24 months. Lumbar spine BMD T scores continuously increased during treatment. Conclusion Significant changes in bone turnover and mineral metabolism markers after asfotase alfa treatment suggest that treatment-mediated mineralization may enable remodeling and bone turnover on previously unmineralized surfaces. Urine PEA/Cr ratios may be a useful parameter in monitoring treatment during routine care. KW - bone mineral density KW - bone turnover KW - hypophosphatasia KW - enzyme replacement therapy KW - alkaline phosphatase Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265310 VL - 32 IS - 12 ER - TY - JOUR A1 - Genest, F. A1 - Claußen, L. A1 - Rak, D. A1 - Seefried, L. T1 - Bone mineral density and fracture risk in adult patients with hypophosphatasia JF - Osteoporosis International N2 - Summary In adult hypophosphatasia (HPP) patients, elevated lumbar spine dual X-ray absorptiometry (DXA) values are associated with markers of disease severity and disease-specific fracture risk while femoral bone mineral density (BMD), being largely unaffected by the disease severity, may still be useful to monitor other causes of increased fracture risk due to low BMD. Introduction Hypophosphatasia (HPP) is a rare inherited metabolic disorder due to deficient activity of the tissue-nonspecific alkaline phosphatase (TNAP). Clinical manifestation in adult HPP patients is manifold including an increased risk for fractures, but data regarding clinical significance of DXA measurement and associations with fracture risk and disease severity is scarce. Methods Retrospective single-center analysis of DXA scans in patients with confirmed HPP (documented mutation, clinical symptoms, low alkaline phosphatase activity). Further data evaluation included disease-related fractures, laboratory results (alkaline phosphatase, pyridoxalphosphate, phosphoethanolamine), and medical history. Results Analysis included 110 patients (84 female, mean age of 46.2 years) of whom 37.3% (n = 41) were harboring two mutations. Average T-Score level at the lumbar spine was − 0.1 (SD 1.9), and mean total hip T-Score was − 1.07 (SD 0.15). Both lower ALP activity and higher substrate levels (pyridoxalphosphate and phosphoethanolamine) were significantly correlated with increased lumbar spine T-Score levels (p < 0.001) while BMD at the hip was not affected by indicators of disease severity. Increased lumbar spine BMD was significantly associated with an increased risk for HPP-related fractures, prevalent in 22 (20%) patients (p < 0.001) with 21 of them having biallelic mutations. Conclusion BMD in adult HPP patients is not systematically reduced. Conversely, increased lumbar spine BMD appears to be associated with severely compromised mineralization and increased risk for HPP-related fractures while BMD at the hip appears unaffected by indicators of disease severity, suggesting suitability of this anatomic location for assessing and discerning disorders with increased fracture risk owing to reduced BMD like osteoporosis. Trial registration number German register for clinical studies (DRKS00014022) Date of registration 02/10/2018 – retrospectively registered KW - bone mineral density KW - fracture risk KW - hypophosphatasia KW - osteoporosis KW - pseudofracture Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235793 SN - 0937-941X VL - 32 ER - TY - JOUR A1 - Stratos, Ioannis A1 - Behrendt, Ann-Kathrin A1 - Anselm, Christian A1 - Gonzalez, Aldebarani A1 - Mittlmeier, Thomas A1 - Vollmar, Brigitte T1 - Inhibition of TNF-α restores muscle force, inhibits inflammation, and reduces apoptosis of traumatized skeletal muscles JF - Cells N2 - Background: Muscle injuries are common in humans and are often associated with irrecoverable damage and disability. Upon muscle injury, TNF-α signaling pathways modulate the healing process and are predominantly associated with tissue degradation. In this study we assumed that TNF-α inhibition could reduce the TNF-α-associated tissue degradation after muscle injury. Materials and methods: Therefore, the left soleus muscle of 42 male Wistar rats was injured using a standardized open muscle injury model. All rats were treated immediately after injury either with infliximab (single i.p. injection; 10 mg/kg b.w.) or saline solution i.p. Final measurements were conducted at day one, four, and 14 post injury. The muscle force, the muscle cell proliferation, the muscle cell coverage as well as the myofiber diameter served as read out parameters of our experiment. Results: Systemic application of infliximab could significantly reduce the TNF-α levels in the injured muscle at day four upon trauma compared to saline treated animals. The ratio of muscle weight to body weight was increased and the twitch muscle force showed a significant rise 14 days after trauma and TNF-α inhibition. Quantification of myofiber diameter in the penumbra zone showed a significant difference between both groups at day one and four after injury, indicated by muscle hypertrophy in the infliximab group. Planimetric analysis of the injured muscle at day 14 revealed increased muscle tissue fraction in the infliximab group compared to the control animals. Muscle cell proliferation did not differ between both groups. Conclusions: These data provide evidence that the TNF-α blockade positively regulates the restauration of skeletal muscles upon injury. KW - muscle injury KW - regeneration KW - infliximab KW - tumor necrosis factor alpha Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286094 SN - 2073-4409 VL - 11 IS - 15 ER - TY - THES A1 - Altmann, Stephan T1 - Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks T1 - Charakterisierung von Metabolic Glycoengineering in mesenchymalen Stromazellen für die Anwendung in thermoresponsiven Biotinten N2 - This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 ‘From the Fundamentals of Biofabrication toward functional Tissue Models’ and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. Jürgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. Jürgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed. N2 - Diese Arbeit entstand aus dem Projekt B05 während der ersten Förderperiode im Rahmen des interdisziplinären Sonderforschungsbereiches TRR 225 „Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“ und beinhaltete eine Kooperation zwischen dem Lehrstuhl für Orthopädie repräsentiert durch Prof. Dr. Regina Ebert und dem Institut für Organische Chemie repräsentiert durch Prof. Dr. Jürgen Seibel. Das Projekt beschäftigte sich mit den Auswirkungen des 3D Drucks auf Zellen während und nach dem Druck mit thermoresponsiven Biotinten. Hierbei lag der Fokus auf Scherkräften, die Zellen während des Drucks erfahren, und der Möglichkeit, deren nachteilige Auswirkungen durch gezielte Erhöhung der Zellsteifigkeit via Metabolic Glycoengineering zu minimieren. Zur Etablierung dieser Methode wurden vier azetylierte sowie vier nicht-azetylierte modifizierte Einfachzucker (zwei Mannosen und zwei Sialinsäuren) hinsichtlich ihrer Zellkompatibilität und Einbaurate in primären humanen mesenchymalen Stromazellen (hMSC) und Telomerase-immortalisierten hMSC (hMSC-TERT) charakterisiert. Bei der Viabilität zeigte sich für alle untersuchten Zucker ein konzentrationsabhängiges Verhalten, wobei die hMSC-TERT generell empfindlicher reagierten. Eine Untersuchung von verschiedenen Zielgenen nach Zuckerinkubation gab keine Hinweise auf biologisch veränderte Expressionsmuster und auch das phänotypische Differenzierungspotenzial (adipogen und osteogen) blieb erhalten. Der Einbau der modifizierten Zucker in Proteoglykane sowie Glykoproteine der Glykokalyx wurde mikroskopisch mittels Fluoreszenzfarbstoffen charakterisiert. Dabei zeigte sich ebenfalls ein konzentrationsabhängiges Verhalten für alle Mannosen und Sialinsäuren, wohingegen die Glukose- und Galaktosevarianten nicht nachgewiesen werden konnten. Die Mannosezucker zeigten die höchsten Einbauraten, welche in primären hMSC noch stärker ausfielen als in hMSC-TERT. Ein Langzeitversuch zur Beurteilung der zeitlichen Stabilität der Glykokalyxmodifikation konnte für die azetylierte Azidomannose ein abnehmendes Fluoreszenzsignal bis zum sechsten Tag nach der Klickreaktion ermitteln. Im Gegensatz dazu konnte die azetylierte Alkinmannose bereits ab dem zweiten Tag nicht mehr nachgewiesen werden. Nach der erfolgreichen Optimierung der Methodik wurde der Effekt eines Kumarinderivates oder eines künstlichen Galektin 1 Liganden auf die Zellsteifigkeit sowie die -fluidität mit Hilfe der Deformationszytometrie untersucht. Die Modifikation der Glykokalyx mit beiden untersuchten Molekülen führte zu einer leichten Erhöhung der Steifigkeit in Kombination mit einer leicht erniedrigten Fluidität. In einem weiteren Teil des Projekts sollte die Lektin-vermittelte Adhäsion von Zellen an Polymerstränge initiiert werden, indem sie mit künstlichen Galektin 1 Liganden modifiziert werden. Da diese Hypothese in der Forschungsgruppe von Prof. Dr. Jürgen Seibel bearbeitet wurde, unterstützte diese Arbeit mit einer anfänglichen Charakterisierung von Galektin 1 als Teil der hMSC Zellbiologie. In hMSC und hMSC-TERT konnte eine VI stabile Expression auf Gen- und Proteinebene nachwiesen werden, wobei das Lektin in der Glykokalyx lokalisiert war. Ein Inkubationsversuch mit einem spezifischen Liganden zeigte in hMSC-TERT unabhängig von der Konzentration keine veränderte Galektin 1 Genexpression. In Verbindung mit den Steifigkeitsuntersuchungen bestätigt diese anfängliche Charakterisierung die Anwendbarkeit von künstlichen Galektin 1 Liganden in der Biofabrikation um hMSC zu modifizieren. Somit konnte gezeigt werden, dass Metabolic Glycoengineering sich für die gezielte Einbringung von Molekülen in die Zellglykokalyx von primären hMSC sowie der entsprechenden TERT-Zelllinie zur mittelfristigen Modifikation eignet. Dies wurde durch einen funktionellen Ansatz bestätigt, indem die Zellsteifigkeit und -fluidität durch den Einsatz zwei verschiedener Moleküle erwartungsgemäß beeinflusst wurden. Für die Charakterisierung der Scherstressauswirkungen auf Zellen nach 3D Druck in thermoresponsiven Biotinten wurden hMSC und hMSC-TERT in Pluronic F127 oder Polyoxazolin-Polyoxazin (POx-POzi) Polymerlösung prozessiert (gemischt oder zusätzlich verdruckt) und direkt danach analysiert. Während letztere die Viabilität nicht verschlechterte, zeigten hMSC-TERT nach Verarbeitung in Pluronic F127 eine leicht erniedrigte Viabilität sowie leicht erhöhte Apoptoseraten. Im Zuge von Analysen der Mechanotransduktion und deren Auswirkungen konnte unabhängig von der Biotinte sowie der Behandlung kein Umbau des Zytoskeletts immunzytochemisch nachgewiesen werden. Im Gegensatz dazu zeigten Genexpressionsanalysen eine starke Hochregulierung des mechanoresponsiven Proto-Onkogens c Fos unter allen Bedingungen, wobei diese stärker ausfiel bei Verwendung der Pluronic F127 Biotinte und nur nach Mischen (gilt für beide Biotinten). Um den Scherstress quantitativ zu beurteilen, wurde die Reporterzelllinie hMSC-TERT-AP1 verwendet, welche das Auslesen der Mechanotransduktion durch eine gekoppelte Luziferase-Proteinexpression ermöglicht. Interessanterweise zeigte sich eine leicht erhöhte Luziferaseaktivität nur nach Verarbeitung mit der POx-POzi Polymerlösung, welche stärker ausfiel wenn die Zellen mit der Biotinte lediglich gemischt wurden. Zusammengenommen bestätigten die Ergebnisse die zelluläre Wahrnehmung von Scherstress in thermoresponsiven Biotinten, allerdings scheint dieser nur schwache Auswirkungen auf die Zellen zu haben, was auf die rheologischen Eigenschaften beider untersuchten Biotinten zurückgeführt werden kann. Die Druckergebnisse legten außerdem nahe, dass die Zellen nicht mehr Scherstress erfahren, wenn sie zusätzlich verdruckt wurden. KW - Glykobiologie KW - Glykokalyx KW - Tissue Engineering KW - Galectine KW - Metabolic Glycoengineering KW - Biofabrication KW - Galectin 1 KW - Glycocalyx KW - Shear Stress KW - Scherstress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291003 ER - TY - JOUR A1 - Rak, Dominik A1 - Nedopil, Alexander J. A1 - Sayre, Eric C. A1 - Masri, Bassam A. A1 - Rudert, Maximilian T1 - Postoperative inpatient rehabilitation does not increase knee function after primary total knee arthroplasty JF - Journal of Personalized Medicine N2 - Inpatient rehabilitation (IR) is a common postoperative protocol after total knee replacement (TKA). Because IR is expensive and should therefore be justified, this study determined the difference in knee function one year after TKA in patients treated with IR or outpatient rehabilitation, fast-track rehabilitation (FTR) in particular, which also entails a reduced hospital length of stay. A total of 205 patients were included in this multi-center prospective cohort study. Of the patients, 104 had primary TKA at a German university hospital and received IR, while 101 had primary TKA at a Canadian university hospital and received FTR. Patients receiving IR or FTR were matched by pre-operative demographics and knee function. Oxford Knee Score (OKS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and EuroQol visual analogue scale (EQ-VAS) determined knee function one year after surgery. Patients receiving IR had a 2.8-point lower improvement in OKS (p = 0.001), a 6.7-point lower improvement in WOMAC (p = 0.063), and a 12.3-point higher improvement in EQ-VAS (p = 0.281) than patients receiving FTR. IR does not provide long-term benefits to patient recovery after primary uncomplicated TKA under the current rehabilitation regime. KW - total knee arthroplasty KW - fast track rehabilitation KW - inpatient rehabilitation KW - postoperative rehabilitation KW - patient reported outcome measures Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297322 SN - 2075-4426 VL - 12 IS - 11 ER - TY - JOUR A1 - Seiler, Jonas A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Herrmann, Marietta A1 - Leich, Ellen A1 - Weißenberger, Manuela A1 - Horas, Konstantin T1 - Bone metastases of diverse primary origin frequently express the VDR (vitamin D receptor) and CYP24A1 JF - Journal of Clinical Medicine N2 - Active vitamin D (1,25(OH)2D3) is known to exert direct anti-cancer actions on various malignant tissues through binding to the vitamin D receptor (VDR). These effects have been demonstrated in breast, prostate, renal and thyroid cancers, which all have a high propensity to metastasise to bone. In addition, there is evidence that vitamin D catabolism via 24-hydroxylase (CYP24A1) is altered in tumour cells, thus, reducing local active vitamin D levels in cancer cells. The aim of this study was to assess VDR and CYP24A1 expression in various types of bone metastases by using immunohistochemistry. Overall, a high total VDR protein expression was detected in 59% of cases (39/66). There was a non-significant trend of high-grade tumours towards the low nuclear VDR expression (p = 0.07). Notably, patients with further distant metastases had a reduced nuclear VDR expression (p = 0.03). Furthermore, a high CYP24A1 expression was detected in 59% (39/66) of bone metastases. There was a significant positive correlation between nuclear VDR and CYP24A1 expression (p = 0.001). Collectively, the VDR and CYP24A1 were widely expressed in a multitude of bone metastases, pointing to a potential role of vitamin D signalling in cancer progression. This is of high clinical relevance, as vitamin D deficiency is frequent in patients with bone metastases. KW - vitamin D receptor KW - VDR KW - CYP24A1 KW - bone metastasis KW - vitamin D Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297377 SN - 2077-0383 VL - 11 IS - 21 ER - TY - JOUR A1 - Kippnich, Maximilian A1 - Duempert, Maximilian A1 - Schorscher, Nora A1 - Jordan, Martin C. A1 - Kunz, Andreas S. A1 - Meybohm, Patrick A1 - Wurmb, Thomas T1 - Simultaneous treatment of trauma patients in a dual room trauma suite with integrated movable sliding gantry CT system: an observational study JF - Scientific Reports N2 - The trauma center of the University Hospital Wuerzburg has developed an advanced trauma pathway based on a dual-room trauma suite with an integrated movable sliding gantry CT-system. This enables simultaneous CT-diagnostics and treatment of two trauma patients. The focus of this study was to investigate the quality of the concept based on defined outcome criteria in this specific setting (time from arrival to initiation of CT scan: tCT; time from arrival to initiation of emergency surgery: tES). We analyzed all trauma patients admitted to the hospital’s trauma suite from 1st May 2019 through 29th April 2020. Two subgroups were defined: trauma patients, who were treated without a second trauma patient present (group 1) and patients, who were treated simultaneously with another trauma patient (group 2). Simultaneous treatment was defined as parallel arrival within a period of 20 min. Of 423 included trauma patients, 46 patients (10.9%) were treated simultaneously. Car accidents were the predominant trauma mechanism in this group (19.6% vs. 47.8%, p < 0.05). Prehospital life-saving procedures were performed with comparable frequency in both groups (intubation 43.5% vs. 39%, p = 0.572); pleural drainage 3.2% vs. 2.2%, p = 0.708; cardiopulmonary resuscitation 5% vs. 2.2%, p = 0.387). At hospital admission, patients in group 2 suffered significantly more pain (E-problem according to Advanced Trauma Life Support principles©; 29.2% vs. 45.7%, p < 0.05). There were no significant differences in the clinical treatment (emergency procedures, vasopressor and coagulant therapy, and transfusion of red blood cells). tCT was 6 (4–10) minutes (median and IQR) in group 1 and 8 (5–15.5) minutes in group 2 (p = 0.280). tES was 90 (78–106) minutes in group 1 and 99 (97–108) minutes in group 2 (p = 0.081). The simultaneous treatment of two trauma patients in a dual-room trauma suite with an integrated movable sliding gantry CT-system requires a medical, organizational, and technical concept adapted to this special setting. Despite the oftentimes serious and life-threatening injuries, optimal diagnostic and therapeutic procedures can be guaranteed for two simultaneous trauma patients at an individual medical level in consistent quality. KW - dual-room trauma suite KW - movable sliding gantry KW - CT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299695 VL - 12 IS - 1 ER - TY - JOUR A1 - Pereira, Ana Rita A1 - Trivanović, Drenka A1 - Stahlhut, Philipp A1 - Rudert, Maximilian A1 - Groll, Jürgen A1 - Herrmann, Marietta T1 - Preservation of the naïve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix JF - Journal of Tissue Engineering N2 - The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the naïve features of BM-MSC. KW - decellularization KW - bone model KW - stem cell niche KW - stemness KW - osteogenesis KW - 3D models Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268835 VL - 13 ER - TY - JOUR A1 - von Hertzberg-Boelch, Sebastian Philipp A1 - Luedemann, Martin A1 - Rudert, Maximilian A1 - Steinert, Andre F. T1 - PMMA bone cement: antibiotic elution and mechanical properties in the context of clinical use JF - Biomedicines N2 - This literature review discusses the use of antibiotic loaded polymethylmethacrylate bone cements in arthroplasty. The clinically relevant differences that have to be considered when antibiotic loaded bone cements (ALBC) are used either for long-term implant fixation or as spacers for the treatment of periprosthetic joint infections are outlined. In this context, in vitro findings for antibiotic elution and material properties are summarized and transferred to clinical use. KW - spacer KW - bone cement KW - PMMA KW - polymethylmethacrylate KW - periprosthetic infection KW - antibiotic elution Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281708 SN - 2227-9059 VL - 10 IS - 8 ER - TY - JOUR A1 - Stratos, Ioannis A1 - Rinas, Ingmar A1 - Schröpfer, Konrad A1 - Hink, Katharina A1 - Herlyn, Philipp A1 - Bäumler, Mario A1 - Histing, Tina A1 - Bruhn, Sven A1 - Müller-Hilke, Brigitte A1 - Menger, Michael D. A1 - Vollmar, Brigitte A1 - Mittlmeier, Thomas T1 - Effects on bone and muscle upon treadmill interval training in hypogonadal male rats JF - Biomedicines N2 - Testosterone deficiency in males is linked to various pathological conditions, including muscle and bone loss. This study evaluated the potential of different training modalities to counteract these losses in hypogonadal male rats. A total of 54 male Wistar rats underwent either castration (ORX, n = 18) or sham castration (n = 18), with 18 castrated rats engaging in uphill, level, or downhill interval treadmill training. Analyses were conducted at 4, 8, and 12 weeks postsurgery. Muscle force of the soleus muscle, muscle tissue samples, and bone characteristics were analyzed. No significant differences were observed in cortical bone characteristics. Castrated rats experienced decreased trabecular bone mineral density compared to sham-operated rats. However, 12 weeks of training increased trabecular bone mineral density, with no significant differences among groups. Muscle force measurements revealed decreased tetanic force in castrated rats at week 12, while uphill and downhill interval training restored force to sham group levels and led to muscle hypertrophy compared to ORX animals. Linear regression analyses showed a positive correlation between bone biomechanical characteristics and muscle force. The findings suggest that running exercise can prevent bone loss in osteoporosis, with similar bone restoration effects observed across different training modalities. KW - osteoporosis KW - muscle KW - force KW - bone KW - micro-CT KW - training Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319266 SN - 2227-9059 VL - 11 IS - 5 ER - TY - JOUR A1 - Wang, Chenglong A1 - Stöckl, Sabine A1 - Li, Shushan A1 - Herrmann, Marietta A1 - Lukas, Christoph A1 - Reinders, Yvonne A1 - Sickmann, Albert A1 - Grässel, Susanne T1 - Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of naïve human BMSCs JF - Cells N2 - Osteoporosis, or steroid-induced osteonecrosis of the hip, is accompanied by increased bone marrow adipogenesis. Such a disorder of adipogenic/osteogenic differentiation, affecting bone-marrow-derived mesenchymal stem cells (BMSCs), contributes to bone loss during aging. Here, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on the osteogenic and adipogenic differentiation capacity of naïve (undifferentiated) hBMSCs. We observed that all EV groups increased viability and proliferation capacity and suppressed the apoptosis of naïve hBMSCs. In particular, EVs derived from hBMSCs at late-stage osteogenic differentiation promoted the osteogenic potential of naïve hBMSCs more effectively than EVs derived from naïve hBMSCs (naïve EVs), as indicated by the increased gene expression of COL1A1 and OPN. In contrast, the adipogenic differentiation capacity of naïve hBMSCs was inhibited by treatment with EVs from osteogenic differentiated hBMSCs. Proteomic analysis revealed that osteogenic EVs and naïve EVs contained distinct protein profiles, with pro-osteogenic and anti-adipogenic proteins encapsulated in osteogenic EVs. We speculate that osteogenic EVs could serve as an intercellular communication system between bone- and bone-marrow adipose tissue, for transporting osteogenic factors and thus favoring pro-osteogenic processes. Our data may support the theory of an endocrine circuit with the skeleton functioning as a ductless gland. KW - extracellular vesicles KW - mesenchymal stem cells KW - osteogenic potential KW - osteogenic differentiation KW - adipogenic differentiation KW - ECM remodeling KW - bone regeneration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286112 SN - 2073-4409 VL - 11 IS - 16 ER - TY - JOUR A1 - Nedopil, Alexander J. A1 - Howell, Stephen M. A1 - Hull, Maury L. T1 - A TKA insert with a lateral flat articular surface maximizes external and internal tibial orientations without anterior lift-off relative to low- and ultracongruent surfaces JF - Journal of Personalized Medicine N2 - Background: In total knee arthroplasty (TKA), inserts can have different levels of medial and lateral congruency determined by the acuteness of the upslopes of the anterior and posterior articular surfaces. The present study evaluated an insert with different levels of lateral congruency and a medial ball-in-socket congruency to test the hypothesis that a lateral flat (F) insert maximizes external tibial orientation at extension and internal orientation at 90° flexion and lowers the incidence of anterior lift-off relative to low-congruent (LC) and ultracongruent (UC) lateral inserts. Methods: Two surgeons treated 23 patients with unrestricted caliper-verified kinematic alignment (KA) and posterior cruciate ligament (PCL) retention. They randomly trialed inserts with a medial radial dial that functioned as a built-in goniometer by measuring the tibial orientation relative to a sagittal line on the femoral trial component. Anterior lift-off of the insert from the baseplate indicated PCL tightness. Results: The F insert’s mean of 9° of external tibial orientation was higher than that of the LC (5°, p < 0.0001) and UC inserts (2°, p < 0.0001). The −13° of internal tibial orientation at 90° flexion was higher than that of the LC (−9°, p < 0.0001) and UC inserts (−7°, p < 0.0001). The 0% incidence of anterior lift-off was less than that of the LC (26%) and UC inserts (57%) (p < 0.0001). Conclusions: Surgeons and implant manufacturers should know that adding congruency to the lateral articular surface limits external tibial orientation in extension and internal tibial orientation at 90° flexion and overtightens the PCL. These rotational limitations and flexion space tightness can adversely affect patellofemoral tracking and knee flexion. KW - total knee arthroplasty KW - kinematic alignment KW - implant design KW - PCL retention KW - congruency Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286142 SN - 2075-4426 VL - 12 IS - 8 ER - TY - JOUR A1 - Nedopil, Alexander J. A1 - Howell, Stephen M. A1 - Hull, Maury L. T1 - Measurement of tibial orientation helps select the optimal insert thickness to personalize PCL tension in a medial ball-in-socket TKA JF - Journal of Personalized Medicine N2 - As the conformity of a medial ball-in-socket total knee arthroplasty (TKA) provides intrinsic anterior-posterior (A-P) stability, surgeons cannot rely on the manual examination of sagittal laxity to identify the optimal insert thickness. Instead, the present study determined whether measuring tibial axial orientation in extension and 90° flexion with an insert goniometer could identify the optimal thickness that, when implanted, provides high postoperative function. In twenty-two patients that underwent unrestricted caliper-verified kinematic alignment (KA) with a PCL retaining implant, two surgeons measured tibial orientation in extension and 90° flexion with 10, 11, 12, and 13 mm thick insert goniometers. Each TKA had one insert thickness that restored either the maximum external tibial orientation in extension, the maximum internal tibial orientation at 90° flexion, or both relative to 1 mm thinner and thicker inserts. In addition, the 6-month median [interquartile range] Forgotten Joint Score of 73 (54–87) and Oxford Knee Score of 42 (38–45) indicated high satisfaction and function. In conclusion, surgeons using a medial ball-in-socket TKA design can measure external tibial orientation in extension and internal tibial orientation at 90° flexion with an insert goniometer. Furthermore, implanting an insert with the thickness that provided the maximum orientation values resulted in high postoperative function, thereby personalizing PCL tension. KW - posterior cruciate ligament KW - tibial rotation KW - medial pivot KW - total knee arthroplasty KW - kinematic alignment Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286232 SN - 2075-4426 VL - 12 IS - 9 ER - TY - JOUR A1 - Dhaliwal, Anand A1 - Zamora, Tomas A1 - Nedopil, Alexander J. A1 - Howell, Stephen M. A1 - Hull, Maury L. T1 - Six commonly used postoperative radiographic alignment parameters do not predict clinical outcome scores after unrestricted caliper-verified kinematically aligned TKA JF - Journal of Personalized Medicine N2 - Background: Unrestricted caliper-verified kinematically aligned (KA) TKA restores patient’s prearthritic coronal and sagittal alignments, which have a wide range containing outliers that concern the surgeon practicing mechanical alignment (MA). Therefore, knowing which radiographic parameters are associated with dissatisfaction could help a surgeon decide whether to rely on them as criteria for revising an unhappy patient with a primary KA TKA using MA principles. Hence, we determined whether the femoral mechanical angle (FMA), hip–knee–ankle angle (HKAA), tibial mechanical angle (TMA), tibial slope angle (TSA), and the indicators of patellofemoral tracking, including patella tilt angle (PTA) and the lateral undercoverage of the trochlear resection (LUCTR), are associated with clinical outcome scores. Methods: Forty-three patients with a CT scan and skyline radiograph after a KA TKA with PCL retention and medial stabilized design were analyzed. Linear regression determined the strength of the association between the FMA, HKA angle, PTS, PTA, and LUCTR and the forgotten joint score (FJS), Oxford knee score (OKS), and KOOS Jr score obtained at a mean of 23 months. Results: There was no correlation between the FMA (range 2° varus to −10° valgus), HKAA (range 10° varus to −9° valgus), TMA (range 10° varus to −0° valgus), TSA (range 14° posterior to −4° anterior), PTA (range, −10° medial to 14° lateral), and the LUCTR resection (range 2 to 9 mm) and the FJS (median 83), the OKS (median 44), and the KOOS Jr (median 85) (r = 0.000 to 0.079). Conclusions: Surgeons should be cautious about using postoperative FMA, HKAA, TMA, TSA, PTA, and LUCTR values within the present study’s reported ranges to explain success and dissatisfaction after KA TKA. KW - total knee arthroplasty KW - kinematic alignment KW - reoperation KW - revision KW - phenotype Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288186 SN - 2075-4426 VL - 12 IS - 9 ER - TY - JOUR A1 - Sappey-Marinier, Elliot A1 - Howell, Stephen M. A1 - Nedopil, Alexander J. A1 - Hull, Maury L. T1 - The trochlear groove of a femoral component designed for kinematic alignment is lateral to the quadriceps line of force and better laterally covers the anterior femoral resection than a mechanical alignment design JF - Journal of Personalized Medicine N2 - Background: A concern about kinematically aligned (KA) total knee arthroplasty (TKA) is that it relies on femoral components designed for mechanical alignment (MAd-FC) that could affect patellar tracking, in part, because of a trochlear groove orientation that is typically 6° from vertical. KA sets the femoral component coincident to the patient’s pre-arthritic distal and posterior femoral joint lines and restores the Q-angle, which varies widely. Relative to KA and the native knee, aligning the femoral component with MA changes most distal joint lines and Q-angles, and rotates the posterior joint line externally laterally covering the anterior femoral resection. Whether switching from a MAd- to a KAd-FC with a wider trochlear groove orientation of 20.5° from vertical results in radiographic measures known to promote patellar tracking is unknown. The primary aim was to determine whether a KAd-FC sets the trochlear groove lateral to the quadriceps line of force (QLF), better laterally covers the anterior femoral resection, and reduces lateral patella tilt relative to a MAd-FC. The secondary objective was to determine at six weeks whether the KAd-FC resulted in a higher complication rate, less knee extension and flexion, and lower clinical outcomes. Methods: Between April 2019 and July 2022, two surgeons performed sequential bilateral unrestricted caliper-verified KA TKA with manual instruments on thirty-six patients with a KAd- and MAd-FC in opposite knees. An observer measured the angle between a line best-fit to the deepest valley of the trochlea and a line representing the QLF that indicated the patient’s Q-angle. When the trochlear groove was lateral or medial relative to the QLF, the angle is denoted + or −, and the femoral component included or excluded the patient’s Q-angle, respectively. Software measured the lateral undercoverage of the anterior femoral resection on a Computed Tomography (CT) scan, and the patella tilt angle (PTA) on a skyline radiograph. Complications, knee extension and flexion measurements, Oxford Knee Score, KOOS Jr, and Forgotten Joint Score were recorded pre- and post-operatively (at 6 weeks). A paired Student’s T-test determined the difference between the KA TKAs with a KAd-FC and MAd-FC with a significance set at p < 0.05. Results: The final analysis included thirty-five patients. The 20.5° trochlear groove of the KAd-FC was lateral to the QLF in 100% (15 ± 3°) of TKAs, which was greater than the 69% (1 ± 3°) lateral to the QLF with the 6° trochlear groove of the MAd-FC (p < 0.001). The KAd-FC’s 2 ± 1.9 mm lateral undercoverage of the anterior femoral resection was less than the 4.4 ± 1.5 mm for the MAd-FC (p < 0.001). The PTA, complication rate, knee extension and flexion, and clinical outcome measures did not differ between component designs. Conclusions: The KA TKA with a KAd-FC resulted in a trochlear groove lateral to the QLF that included the Q-angle in all patients, and negligible lateral undercoverage of the anterior femoral resection. These newly described radiographic parameters could be helpful when investigating femoral components designed for KA with the intent of promoting patellofemoral kinematics. KW - total knee arthroplasty KW - lateral trochlear undercoverage KW - prosthetic design KW - kinematic alignment KW - patellofemoral relationship Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290482 SN - 2075-4426 VL - 12 IS - 10 ER - TY - JOUR A1 - Eidmann, Annette A1 - Eisert, Marius A1 - Rudert, Maximilian A1 - Stratos, Ioannis T1 - Influence of Vitamin D and C on bone marrow edema syndrome — A scoping review of the literature JF - Journal of Clinical Medicine N2 - Bone marrow edema syndrome (BMES) is a rare disease with a largely unknown etiology. The aim of this scoping review is to systematically evaluate and combine the available evidence about vitamin D and C and BMES. The analysis of the manuscripts was based on country of origin, number of patients, gender, study type, epidemiology, localization, bone mineral density measurements, vitamin status and therapy. Sixty studies were included. The overall number of patients was 823 with a male-to-female ratio of 1.55:1 and a mean age of 40.9 years. Studies were very heterogeneous and of diverging scientific scope with a weak level of evidence. The hip was the most affected joint, followed by the foot and ankle and the knee; 18.3% of patients suffered from multifocal BMES. Sixteen studies reported on vitamin D levels, resulting in a high prevalence of vitamin D deficiency (47%) and insufficiency (17.9%) among BMES patients. Three BME manuscripts were associated with vitamin C deficiency. Current therapeutic interventions include conservative measures (mainly unloading), various osteoactive drugs and iloprost. In summary, data about BMES in association with vitamin status is limited. A causal relationship between vitamin D or vitamin C status, osteopenia, and BMES cannot be determined from the existing literature. KW - lower extremity KW - regional transient osteoporosis KW - bone marrow edema KW - vitamin D KW - vitamin C KW - scoping review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297356 SN - 2077-0383 VL - 11 IS - 22 ER - TY - BOOK A1 - Wang, Wen T1 - Validation of shRNA clones for gene silencing in 293FT cells N2 - ... N2 - The goal of the project was to establish knock down of mRNA in human mesenchymal stem cells. Since these cells are difficult to transfect, a viral approach is needed to achieve sufficient expression of e. g. shRNA in a high percentage of cells to allow for an efficient silencing of corresponding mRNAs. For this purpose for every gene product of interest, a number of shRNA clones have to be tested to detect an individual shRNA with sufficient efficacy. Lentiviral systems for shRNA approaches have recently become available. The principal advantage of the lentiviral system is that it allows gene silencing in nondividing cells and therefore expands the usefulness of the RNAi-based gene silencing system. Lentivirus-delivered shRNAs are capable of specific, highly stable and functional silencing of gene expression in a variety of cell types. Since the viral transfection of MSCs is a time consuming process that involves transfection of 293 FT cells plus transduction of target cells, for this thesis the following approach was chosen: genes of interest were checked for expression in 293FT cells by RT-PCR. These gene products can be silenced in 293FT cells simply by transfection of shRNA clones and efficacy was subsequently tested by RT-PCR. Beyond this thesis then the project can proceed with effective clones to transduce primary MSCs with individual shRNA clones identified as effective silencing tool in this thesis. KW - shRNA KW - RNAi KW - .................................................................... KW - shRNA KW - RNAi Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25955 N1 - Aus rechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. ER - TY - JOUR A1 - Rak, Dominik A1 - Klann, Lukas A1 - Heinz, Tizian A1 - Anderson, Philip A1 - Stratos, Ioannis A1 - Nedopil, Alexander J. A1 - Rudert, Maximilian T1 - Influence of mechanical alignment on functional knee phenotypes and clinical outcomes in primary TKA: a 1-year prospective analysis JF - Journal of Personalized Medicine N2 - In total knee arthroplasty (TKA), functional knee phenotypes are of interest regarding surgical alignment strategies. Functional knee phenotypes were introduced in 2019 and consist of limb, femoral, and tibial phenotypes. The hypothesis of this study was that mechanically aligned (MA) TKA changes preoperative functional phenotypes, which decreases the 1-year Forgotten Joint (FJS) and Oxford Knee Score (OKS) and increases the 1-year WOMAC. All patients included in this study had end-stage osteoarthritis and were treated with a primary MA TKA, which was supervised by four academic knee arthroplasty specialists. To determine the limb, femoral, and tibial phenotype, a long-leg radiograph (LLR) was imaged preoperatively and two to three days after TKA. FJS, OKS, and WOMAC were obtained 1 year after TKA. Patients were categorized using the change in functional limb, femoral, and tibial phenotype measured on LLR, and the scores were compared between the different categories. A complete dataset of preoperative and postoperative scores and radiographic images could be obtained for 59 patients. 42% of these patients had a change of limb phenotype, 41% a change of femoral phenotype, and 24% a change of tibial phenotype of more than ±1 relative to the preoperative phenotype. Patients with more than ±1 change of limb phenotype had significantly lower median FJS (27 points) and OKS (31 points) and higher WOMAC scores (30 points) relative to the 59-, 41-, and 4-point scores of those with a 0 ± 1 change (p < 0.0001 to 0.0048). Patients with a more than ±1 change of femoral phenotype had significantly lower median FJS (28 points) and OKS (32 points) and higher WOMAC scores (24 points) relative to the 69-, 40-, and 8-point scores of those with a 0 ± 1 change (p < 0.0001). A change in tibial phenotype had no effect on the FJS, OKS, and WOMAC scores. Surgeons performing MA TKA could consider limiting coronal alignment corrections of the limb and femoral joint line to within one phenotype to reduce the risk of low patient-reported satisfaction and function at 1-year. KW - knee arthroplasty KW - mechanical alignment KW - clinical outcome KW - phenotype KW - level of evidence III KW - prospective study Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313646 SN - 2075-4426 VL - 13 IS - 5 ER - TY - JOUR A1 - Weber, Patrick A1 - Beck, Melina A1 - Klug, Michael A1 - Klug, Andreas A1 - Klug, Alexander A1 - Glowalla, Claudio A1 - Gollwitzer, Hans T1 - Survival of patient-specific unicondylar knee replacement JF - Journal of Personalized Medicine N2 - Unicompartmental knee arthroplasty (UKA) in isolated medial or lateral osteoarthritis leads to good clinical results. However, revision rates are higher in comparison to total knee arthroplasty (TKA). One reason is suboptimal fitting of conventional off-the-shelf prostheses, and major overhang of the tibial component over the bone has been reported in up to 20% of cases. In this retrospective study, a total of 537 patient-specific UKAs (507 medial prostheses and 30 lateral prostheses) that had been implanted in 3 centers over a period of 10 years were analyzed for survival, with a minimal follow-up of 1 year (range 12 to 129 months). Furthermore, fitting of the UKAs was analyzed on postoperative X-rays, and tibial overhang was quantified. A total of 512 prostheses were available for follow-up (95.3%). Overall survival rate (medial and lateral) of the prostheses after 5 years was 96%. The 30 lateral UKAs showed a survival rate of 100% at 5 years. The tibial overhang of the prosthesis was smaller than 1 mm in 99% of cases. In comparison to the reported results in the literature, our data suggest that the patient-specific implant design used in this study is associated with an excellent midterm survival rate, particularly in the lateral knee compartment, and confirms excellent fitting. KW - unicompartmental knee arthroplasty KW - osteoarthritis KW - patient-specific implant KW - partial knee arthroplasty KW - patient-specific instruments Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313650 SN - 2075-4426 VL - 13 IS - 4 ER - TY - JOUR A1 - Trivanovic, Drenka A1 - Volkmann, Noah A1 - Stoeckl, Magdalena A1 - Tertel, Tobias A1 - Rudert, Maximilian A1 - Giebel, Bernd A1 - Herrmann, Marietta T1 - Enhancement of immunosuppressive activity of mesenchymal stromal cells by platelet-derived factors is accompanied by apoptotic priming JF - Stem Cell Reviews and Reports N2 - The pro-inflammatory phase of bone healing, initiated by platelet activation and eventually hematoma formation, impacts bone marrow mesenchymal stromal cells (MSCs) in unknown ways. Here, we created platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of encapsulated MSCs in comparison to a non-inflammatory fibrin (FBR) hydrogel environment. MSCs were isolated from human bone marrow, while PRP was collected from pooled apheresis thrombocyte concentrates and used for hydrogel preparation. After their encapsulation in hydrogels for 72 h, retrieved MSCs were analyzed for immunomodulatory activities, apoptosis, stem cell properties, senescence, CD9\(^+\), CD63\(^+\) and CD81\(^+\) extracellular vesicle (EV) release, and metabolism-related changes. PRP-hydrogels stimulated immunosuppressive functions of MSCs, along with their upregulated susceptibility to cell death in communication with PBMCs and augmented caspase 3/7 activity. We found impaired clonal growth and cell cycle progression, and more pronounced β-galactosidase activity as well as accumulation of LC3-II-positive vacuoles in PRP-MSCs. Stimuli derived from PRP-hydrogels upregulated AKT and reduced mTOR phosphorylation in MSCs, which suggests an initiation of survival-related processes. Our results showed that PRP-hydrogels might represent a metabolically stressful environment, inducing acidification of MSCs, reducing polarization of the mitochondrial membrane and increasing lipid accumulation. These features were not detected in FBR-MSCs, which showed reduced CD63\(^+\) and CD81\(^+\) EV production and maintained clonogenicity. Our data revealed that PRP-derived hematoma components cause metabolic adaptation of MSCs followed by increased immune regulatory functions. For the first time, we showed that PRP stimuli represent a survival challenge and “apoptotic priming” that are detrimental for stem cell-like growth of MSCs and important for their therapeutic consideration. KW - hematoma KW - platelet-rich plasma KW - fibrin KW - mesenchymal stromal cells KW - immunomodulation KW - apoptosis KW - autophagy KW - senescence KW - extracellular vesicles KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324669 VL - 19 IS - 3 ER -