TY - JOUR A1 - Benisch, Peggy A1 - Schilling, Tatjana A1 - Klein-Hitpass, Ludger A1 - Frey, Sönke P. A1 - Seefried, Lothar A1 - Raaijmakers, Nadja A1 - Krug, Melanie A1 - Regensburger, Martina A1 - Zeck, Sabine A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ebert, Amling A1 - Jakob, Franz T1 - The Transcriptional Profile of Mesenchymal Stem Cell Populations in Primary Osteoporosis Is Distinct and Shows Overexpression of Osteogenic Inhibitors JF - PLoS One N2 - Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79-94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of similar to 30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP. Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process. KW - alkaline-phosphatase KW - in vitro KW - bone-mineral density KW - age-related osteoporosis KW - WNT signaling pathway KW - replicative senescence KW - morphogenetic protein KW - parathyroid-hormone KW - growth factor KW - skeletal overexpression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133379 VL - 7 IS - 9 ER - TY - JOUR A1 - Klotz, Barbara A1 - Mentrup, Birgit A1 - Regensburger, Martina A1 - Zeck, Sabine A1 - Schneidereit, Jutta A1 - Schupp, Nicole A1 - Linden, Christian A1 - Merz, Cornelia A1 - Ebert, Regina A1 - Jakob, Franz T1 - 1,25-Dihydroxyvitamin D3 Treatment Delays Cellular Aging in Human Mesenchymal Stem Cells while Maintaining Their Multipotent Capacity JF - PLoS ONE N2 - 1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, beta-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence-and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to beta-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging. KW - perspectives KW - bone marrow KW - mutant mice KW - oxidative stress KW - transcription factors KW - vitamin-D-receptor KW - differentiation KW - tissue KW - 2',7'-dichlorofluorescin KW - homeostasis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133392 VL - 7 IS - 1 ER - TY - JOUR A1 - Rudert, Maximilian A1 - Holzapfel, Boris Michael A1 - Jakubietz, Michael T1 - Adjuvant Radiotherapy JF - Deutsches Ärzteblatt International N2 - No abstract available. KW - Soft-tissue sarcoma Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133571 VL - 108 IS - 33 ER - TY - JOUR A1 - Holzapfel, Boris Michael A1 - Chhaya, Mohit Prashant A1 - Melchels, Ferry Petrus Wilhelmus A1 - Holzapfel, Nina Pauline A1 - Prodinger, Peter Michael A1 - von Eisenhart-Rothe, Rüdiger A1 - Griensven, Martijn van A1 - Schantz, Jan-Thorsten A1 - Rudert, Maximilian A1 - Hutmacher, Dietmar Werner T1 - Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma? JF - Sarcoma N2 - Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology. KW - musculoskeletal sarcoma Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132465 VL - 2013 IS - Article ID 153640 ER - TY - JOUR A1 - Werner, Birgit S. A1 - Boehm, Dorota A1 - Gohlke, Frank T1 - Revision to reverse shoulder arthroplasty with retention of the humeral component Good outcome in 14 patients followed for a mean of 2.5 years JF - Acta Orthopaedica N2 - Background: Revision in failed shoulder arthroplasty often requires removal of the humeral component with a significant risk of fracture and bone loss. Newer modular systems allow conversion from anatomic to reverse shoulder arthroplasty with retention of a well-fixed humeral stem. We report on a prospectively evaluated series of conversions from hemiarthroplasty to reverse shoulder arthroplasty. Methods: In 14 cases of failed hemiarthroplasty due to rotator cuff deficiency and painful pseudoparalysis (in 13 women), revision to reverse shoulder arthroplasty was performed between October 2006 and 2010, with retention of the humeral component using modular systems. Mean age at the time of operation was 70 (56-80) years. Pre- and postoperative evaluation followed a standardized protocol including Constant score, range of motion, and radiographic analysis. Mean follow-up time was 2.5 (2-5.5) years. Results: Mean Constant score improved from 9 (2-16) to 41 (17-74) points. Mean lengthening of the arm was 2.6 (0.9-4.7) cm without any neurological complications. One patient required revision due to infection. Interpretation Modular systems allow retainment of a well-fixed humeral stem with good outcome. There is a risk of excessive humeral lengthening. KW - cultures KW - etiology KW - fractures KW - prothesis KW - proximal humerus KW - failed hemiarthroplasty Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131621 VL - 84 IS - 5 ER - TY - JOUR A1 - Liedert, Astrid A1 - Röntgen, Viktoria A1 - Schinke, Thorsten A1 - Benisch, Peggy A1 - Ebert, Regina A1 - Jakob, Franz A1 - Klein-Hitpass, Ludger A1 - Lennerz, Jochen K. A1 - Amling, Michael A1 - Ignatius, Anita T1 - Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice JF - PLOS ONE N2 - The canonical Wnt/beta-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5(-/-)) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5(-/-) mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5(-/-) mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active beta-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. KW - autosomal-dominant osteopetrosis KW - receptor related protein KW - high-bone-mass KW - WNT pathway KW - in-vitro KW - cells KW - gene KW - proliferation KW - osteoclasts KW - mutations Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115782 SN - 1932-6203 VL - 9 IS - 7 ER - TY - JOUR A1 - Staab, Wieland A1 - Hottowitz, Ralf A1 - Sohns, Christian A1 - Sohns, Jan Martin A1 - Gilbert, Fabian A1 - Menke, Jan A1 - Niklas, Andree A1 - Lotz, Joachim T1 - Accelerometer and Gyroscope Based Gait Analysis Using Spectral Analysis of Patients with Osteoarthritis of the Knee JF - Journal of Physical Therapy Science N2 - [Purpose] A wide variety of accelerometer tools are used to estimate human movement, but there are no adequate data relating to gait symmetry parameters in the context of knee osteoarthritis. This study's purpose was to evaluate a 3D-kinematic system using body-mounted sensors (gyroscopes and accelerometers) on the trunk and limbs. This is the first study to use spectral analysis for data post processing. [Subjects] Twelve patients with unilateral knee osteoarthritis (OA) (10 male) and seven age-matched controls (6 male) were studied. [Methods] Measurements with 3-D accelerometers and gyroscopes were compared to video analysis with marker positions tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). Data were recorded using the 3D-kinematic system. [Results] The results of both gait analysis systems were significantly correlated. Five parameters were significantly different between the knee OA and control groups. To overcome time spent in expensive post-processing routines, spectral analysis was performed for fast differentiation between normal gait and pathological gait signals using the 3D-kinematic system. [Conclusions] The 3D-kinematic system is objective, inexpensive, accurate and portable, and allows long-term recordings in clinical, sport as well as ergonomic or functional capacity evaluation (FCE) settings. For fast post-processing, spectral analysis of the recorded data is recommended. KW - gait KW - accelerometer KW - gyroscope KW - HIP osteoarthritis KW - kinematic analysis KW - human movement KW - in-vivo KW - artifact KW - systems KW - people Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115907 VL - 26 IS - 7 ER - TY - JOUR A1 - Thibaudeau, Laure A1 - Taubenberger, Anna V. A1 - Holzapfel, Boris M. A1 - Quent, Verena M. A1 - Fuehrmann, Tobias A1 - Hesami, Parisa A1 - Brown, Toby D. A1 - Dalton, Paul D. A1 - Power, Carl A. A1 - Hollier, Brett G. A1 - Hutmacher, Dietmar W. T1 - A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone JF - Disease Models & Mechanisms N2 - The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. KW - breast cancer KW - bone metastasis KW - humanized xenograft model KW - melt electrospinning KW - tissue engineering KW - osteotropism KW - in vivo KW - stem-cell niche KW - human prostate-cancer KW - morphogenetic protein KW - osteoprogenitor cells KW - endochondral ossification KW - mouse model KW - trabecular bone KW - calcium phosphate KW - skeletal metastases Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117466 VL - 7 IS - 2 ER - TY - JOUR A1 - Wirtz, Dieter C. A1 - Gravius, Sascha A1 - Ascherl, Rudolf A1 - Thorweihe, Miguel A1 - Forst, Raimund A1 - Noeth, Ulrich A1 - Maus, Uwe M. A1 - Wimmer, Matthias D. A1 - Zeiler, Guenther A1 - Deml, Moritz C. T1 - Uncemented femoral revision arthroplasty using a modular tapered, fluted titanium stem 5-to 16-year results of 163 cases JF - Acta Orthopaedica N2 - Background and purpose - Due to the relative lack of reports on the medium- to long-term clinical and radiographic results of modular femoral cementless revision, we conducted this study to evaluate the medium- to long-term results of uncemented femoral stem revisions using the modular MRP-TITAN stem with distal diaphyseal fixation in a consecutive patient series. Patients and methods - We retrospectively analyzed 163 femoral stem revisions performed between 1993 and 2001 with a mean follow-up of 10 (5-16) years. Clinical assessment included the Harris hip score (HHS) with reference to comorbidities and femoral defect sizes classified by Charnley and Paprosky. Intraoperative and postoperative complications were analyzed and the failure rate of the MRP stem for any reason was examined. Results - Mean HHS improved up to the last follow-up (37 (SD 24) vs. 79 (SD 19); p < 0.001). 99 cases (61%) had extensive bone defects (Paprosky IIB-III). Radiographic evaluation showed stable stem anchorage in 151 cases (93%) at the last follow-up. 10 implants (6%) failed for various reasons. Neither a breakage of a stem nor loosening of the morse taper junction was recorded. Kaplan-Meier survival analysis revealed a 10-year survival probability of 97% (95% CI: 95-100). Interpretation - This is one of the largest medium- to longterm analyses of cementless modular revision stems with distal diaphyseal anchorage. The modular MRP-TITAN was reliable, with a Kaplan-Meier survival probability of 97% at 10 years. KW - follow-up KW - distal fixation KW - bone loss KW - replacement KW - register KW - junction KW - cement KW - prosthesis KW - roentgenographic assessment KW - total HIP-arthroplasty Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114555 SN - 1745-3674 VL - 85 IS - 6 ER - TY - JOUR A1 - Reichert, Johannes A1 - Schmalzl, Jonas A1 - Prager, Patrick A1 - Gilbert, Fabian A1 - Quent, Verena M. C. A1 - Steinert, Andre F. A1 - Rudert, Maximilian A1 - Nöth, Ulrich T1 - Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells JF - Stem Cell Research & Therapy N2 - Introduction To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). Methods In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or Indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and nontransduced MSCs served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase (ALP) activity, mineralization in cell culture, and osteogenic marker gene expression was investigated. Results Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH + BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenically induced BMP-2 and IHH + BMP-2 transduced cells when compared with the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH + BMP-2 transduced cells cultured in osteogenic media. Conclusions In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects. KW - Medizin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97010 UR - http://stemcellres.com/content/4/5/105 ER -