TY - THES A1 - Hell, Dennis T1 - Development of self-adjusting cytokine neutralizer cells as a closed-loop delivery system of anti-inflammatory biologicals T1 - Entwicklung von selbstregulierenden Zytokin-Neutralisierer-Zellen als Closed-Loop Abgabesystem von anti-inflammatorischen Biologikals N2 - The current treatment strategies for diseases are assessed on the basis of diagnosed phenotypic changes due to an accumulation of asymptomatic events in physiological processes. Since a diagnosis can only be established at advanced stages of the disease, mainly due to insufficient early detection possibilities of physiological disorders, doctors are forced to treat diseases rather than prevent them. Therefore, it is desirable to link future therapeutic interventions to the early detection of physiological changes. So-called sensor-effector systems are designed to recognise disease-specific biomarkers and coordinate the production and delivery of therapeutic factors in an autonomous and automated manner. Such approaches and their development are being researched and promoted by the discipline of synthetic biology, among others. Against this background, this paper focuses on the in vitro design of cytokine-neutralizing sensor-effector cells designed for the potential treatment of recurrent autoimmune diseases, especially rheumatoid arthritis. The precise control of inducible gene expression was successfully generated in human cells. At first, a NF-κB-dependent promoter was developed, based on HIV-1 derived DNA-binding motives. The activation of this triggerable promoter was investigated using several inducers including the physiologically important NF-κB inducers tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β). The activation strength of the NF-κB-triggered promoter was doubled by integrating a non-coding RNA. The latter combined expressed RNA structures, which mimic DNA by double stranded RNAs and have been demonstrated to bind to p50 or p65 by previous publications. The sensitivity was investigated for TNFα and IL-1β. The detection limit and the EC50 values were in in the lower picomolar range. Besides the sensitivity, the reversibility and dynamic of the inducible system were characterized. Hereby a close correlation between pulse times and expression profile was shown. The optimized NF-κB-dependent promoter was then coupled to established TNFα- and IL-1-blocking biologicals to develop sensor-effector systems with anti-inflammatory activity, and thus potential use against autoimmune diseases such as rheumatoid arthritis. The biologicals were differentiated between ligand-blocking and receptor-blocking biologicals and different variants were selected: Adalimumab, etanercept and anakinra. The non-coding RNA improved again the activation strength of NF-κB-dependent expressed biologicals, indicating its universal benefit. Furthermore, it was shown that the TNFα-induced expression of NF-κB-regulated TNFα-blocking biologics led to an extracellular negative feedback loop. Interestingly, the integration of the non-coding RNA and this negative feedback loop has increased the dynamics and reversibility of the NF-κB-regulated gene expression. The controllability of drug release can also be extended by the use of inhibitors of classical NF-κB signalling such as TPCA-1. The efficacy of the expressed biologicals was detected through neutralization of the cytokines using different experiments. For future in vivo trials, first alginate encapsulations of the cells were performed. Furthermore, the activation of NF-κB-dependent promoter was demonstrated using co-cultures with human plasma samples or using synovial liquids. With this generated sensor-effector system we have developed self-adjusting cytokine neutralizer cells as a closed-loop delivery system for anit-inflammatory biologics. N2 - Die derzeitig üblichen Behandlungsstrategien von Krankheiten werden auf Basis diagnostizierter phänotypischer Veränderungen erhoben, die auf eine Ansammlung asymptomatischer Ereignisse in physiologischen Vorgängen zurückzuführen sind. Da die Feststellung einer Diagnose bislang erst in fortgeschrittenen Krankheitsstadien, vor allem aufgrund unzureichender Früherkennungsmöglichkeiten von physiologischen Störungen, erfolgen kann, sehen sich Ärzte gezwungen, Krankheiten vornehmlich zu behandeln anstatt ihnen vorzubeugen. Daher ist es erstrebenswert, wenn zukünftige therapeutische Interventionen bereits an die Früherkennung von physiologischen Veränderungen gekoppelt werden könnten. Sogenannte Sensor-Effektor Systeme sollen krankheitsspezifische Biomarker erkennen und die Produktion und Bereitstellung von therapeutischen Faktoren in einer selbstständigen und automatisierten Art und Weise koordinieren. Solche Ansätze und deren Entwicklung werden unter anderem durch die Disziplin der synthetischen Biologie erforscht und vorangetrieben. Die vorliegende Arbeit konzentriert sich vor diesem Hintergrund auf das in vitro Design von Zytokin-neutralisierenden Sensor-Effektor Zellen, die für die potentielle Behandlung wiederkehrender Autoimmunerkrankungen, insbesondere der rheumatoiden Arthritis, konstruiert wurden. Die gezielte Ansteuerung zur induzierbaren Genexpression konnte in humanen Zellen erfolgreich generiert werden. In der vorliegenden Arbeit wurde zunächst ein NF-κB abhängiger Promoter zur induzierbaren Genexpression auf der Grundlage von HIV-1 abgleitenden DNA-Bindemotiven entwickelt. Die Aktivierbarkeit dieses Promoters wurde durch verschiedene Induktoren, insbesondere auch durch die physiologisch wichtigen NF-κB Aktivatoren Tumornekrosefaktor alpha (TNFα) und Interleukin 1 beta (IL-1β) überprüft. Die Aktivierungsstärke des NF-κB abhängigen Promoters wurde durch die Integration einer nicht-kodierenden RNA verdoppelt. Diese RNA kombiniert Strukturelemente, die im RNA-Doppelstrang DNA-Strukturen imitieren, und für die in Vorarbeiten die Bindung an p50 oder p65 nachgewiesen werden konnten. Für TNFα und IL-1β lagen das Detektionslimit und die EC50 Werte der NF-κB getriggerten Genexpression im unteren pikomolaren Bereich. Neben der Sensitivität wurde das induzierbare System bezüglich seiner Reversibilität und Dynamik charakterisiert. Dabei konnte eine enge Korrelation zwischen Pulszeiten und Expressionsmustern aufgezeigt werden. Ferner wurde der NF-κB abhängige Promoter an etablierte TNFα- und IL-1-blockierende Biologicals gekoppelt, um Sensor-Effektor Systeme mit anti-entzündlicher Aktivität zu erhalten, die potentiell zur Behandlung von Autoimmunerkrankungen, wie beispielsweise der rheumatoiden Arthritis, eingesetzt werden könnten. Bei den Biologicals wurde zwischen Ligand-blockierenden und Rezeptor-blockierenden Biologicals differenziert und unterschiedliche Varianten ausgewählt: Adalimumab, Etanercept und Anakinra. Erneut verbesserte die zusätzliche Integration der nicht-kodierenden RNA die Aktivierungsstärke der NF-κB abhängig exprimierten Biologicals, das die universelle Nutzbarkeit des hier entwickelten optimierten NF-κB-Promoters unterstreicht. Ferner wurde gezeigt, dass die TNFα-induzierte Expression von NF-κB-regulierten TNFα-blockierenden Biologika zu einem extrazellulären negativen Feedback Loop führte. Interessanterweise hat die Integration der nicht-kodierender RNA und dieser negative Feedback Loop die Dynamik und Reversibilität der NF-κB-regulierten Genexpression erhöht. Die Kontrollierbarkeit der Wirkstoffabgabe kann zudem durch den Einsatz von Inhibitoren der klassischen NF-κB-Signalisierung wie z.B. TPCA-1 erweitert werden. Die Wirksamkeit der exprimierten Biologicals wurde durch Neutralisation der Zytokine in verschiedenen Experimenten nachgewiesen. Für zukünftige in vivo Versuche konnten erste Alginat-Verkapselungen der Zellen durchgeführt werden. Die Aktivierbarkeit des NF-κB abhängigen Promoters wurde ferner durch Ko-Kultivierung mit humanen Plasmaproben und Synovialflüssigkeiten nachgewiesen. Mit diesem generierten Sensor-Effektor-System haben wir selbstregulierende Zytokin-Neutralisierer-Zellen als Closed-Loop Abgabesystem von anit-inflammatorischen Biologikals entwickelt. KW - cell therapy KW - synthetic biology KW - designer cell KW - suppressor cells KW - closed-loop systems KW - autoimmune disease KW - rheumatoid arthritis KW - gene network KW - adalimumab KW - enbrel KW - etanercept KW - anakinra KW - Biologika KW - Autoaggressionskrankheit KW - Cytokine KW - in vitro Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175381 ER - TY - JOUR A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer JF - Frontiers in Immunology N2 - An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation. KW - GVHD KW - graft vs. host disease KW - cancer KW - Tregs (regulatory T cells) KW - TNFR family costimulatory receptors KW - TNFR2 agonists KW - TNFR2 antagonism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201578 VL - 10 IS - 2040 ER - TY - JOUR A1 - Wajant, Harald T1 - Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation JF - Cancers N2 - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application. KW - antibody KW - antibody fusion proteins KW - apoptosis KW - cancer therapy KW - cell death KW - death receptors KW - TNF superfamily KW - TNF receptor superfamily KW - TRAIL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202416 VL - 11 IS - 7 ER - TY - JOUR A1 - Wajant, Harald T1 - Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation JF - Cancers N2 - Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application. KW - antibody KW - antibody fusion proteins KW - apoptosis KW - cancer therapy KW - cell death KW - death receptors KW - TNF superfamily KW - TNF receptor superfamily KW - TRAIL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201833 N1 - Zugriff gesperrt. Zugriff auf den Volltext erhalten Sie unter https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-202416 VL - 11 IS - 7 ER - TY - JOUR A1 - Kreckel, Jennifer A1 - Anany, Mohammed A. A1 - Siegmund, Daniela A1 - Wajant, Harald T1 - TRAF2 controls death receptor-induced caspase-8 processing and facilitates proinflammatory signaling JF - Frontiers in Immunology N2 - Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity. KW - caspase-8 KW - death receptors KW - CD95 KW - TNFR1 KW - TRAF1 KW - TRAF2 KW - TRAILR1 KW - TRAILR2 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201822 VL - 10 IS - 2024 ER - TY - JOUR A1 - Wajant, Harald A1 - Siegmund, Daniela T1 - TNFR1 and TNFR2 in the control of the life and death balance of macrophages JF - Frontiers in Cell and Developmental Biology N2 - Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling. KW - apoptosis KW - necroptosis KW - TNF KW - TNFR1 KW - TNFR2 KW - ripk1 KW - ripk3 KW - caspase-8 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201551 VL - 7 IS - 91 ER - TY - JOUR A1 - El-Hawary, Seham S. A1 - Sayed, Ahmed M. A1 - Mohammed, Rabab A1 - Hassan, Hossam M. A1 - Rateb, Mostafa E. A1 - Amin, Elham A1 - Mohammed, Tarek A. A1 - El-Mesery, Mohamed A1 - Bin Muhsinah, Abdullatif A1 - Alsayari, Abdulrhman A1 - Wajant, Harald A1 - Anany, Mohamed A. A1 - Abdelmohsen, Usama Ramadan T1 - Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella JF - Marine Drugs N2 - In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents. KW - Callyspongia siphonella KW - LC-HRESIMS KW - metabolomic profiling KW - oxindole alkaloids KW - tisindoline KW - antibacterial KW - antibiofilm KW - antitrypanosomal KW - anticancer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201485 VL - 17 IS - 8 ER -