TY - JOUR A1 - Hartke, Juliane A1 - Sprenger, Philipp P. A1 - Sahm, Jacqueline A1 - Winterberg, Helena A1 - Orivel, Jérôme A1 - Baur, Hannes A1 - Beuerle, Till A1 - Schmitt, Thomas A1 - Feldmeyer, Barbara A1 - Menzel, Florian T1 - Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association JF - Ecology and Evolution N2 - Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations. KW - environmental association KW - integrative taxonomy KW - niche differentiation KW - population structure KW - sexual selection KW - speciation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227857 VL - 9 ER - TY - JOUR A1 - König, Kerstin A1 - Zundel, Petra A1 - Krimmer, Elena A1 - König, Christian A1 - Pollmann, Marie A1 - Gottlieb, Yuval A1 - Steidle, Johannes L. M. T1 - Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps JF - Ecology and Evolution N2 - The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species-rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum (“DB-lineage”), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host (“GW-lineage”). Between two populations of the DB-lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans. KW - cytoplasmic incompatibility KW - endosymbiotic bacteria KW - Lariophagus distinguendus KW - parasitoid wasps KW - sexual isolation KW - speciation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222796 VL - 9 ER - TY - JOUR A1 - Kendall, Liam K. A1 - Rader, Romina A1 - Gagic, Vesna A1 - Cariveau, Daniel P. A1 - Albrecht, Matthias A1 - Baldock, Katherine C. R. A1 - Freitas, Breno M. A1 - Hall, Mark A1 - Holzschuh, Andrea A1 - Molina, Francisco P. A1 - Morten, Joanne M. A1 - Pereira, Janaely S. A1 - Portman, Zachary M. A1 - Roberts, Stuart P. M. A1 - Rodriguez, Juanita A1 - Russo, Laura A1 - Sutter, Louis A1 - Vereecken, Nicolas J. A1 - Bartomeus, Ignasi T1 - Pollinator size and its consequences: Robust estimates of body size in pollinating insects JF - Ecology and Evolution N2 - Body size is an integral functional trait that underlies pollination-related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non-bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed-model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co-variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co-variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, “pollimetry,” which provides a comprehensive resource for allometric pollination research worldwide. KW - Apoidea KW - biogeography KW - body size KW - dry weight KW - pollimetry KW - pollination KW - predictive models KW - R package KW - Syrphidae Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325705 VL - 9 ER - TY - JOUR A1 - Hillaert, Jasmijn A1 - Hovestadt, Thomas A1 - Vandegehuchte, Martijn L. A1 - Bonte, Dries T1 - Size-dependent movement explains why bigger is better in fragmented landscapes JF - Ecology and Evolution N2 - Body size is a fundamental trait known to allometrically scale with metabolic rate and therefore a key determinant of individual development, life history, and consequently fitness. In spatially structured environments, movement is an equally important driver of fitness. Because movement is tightly coupled with body size, we expect habitat fragmentation to induce a strong selection pressure on size variation across and within species. Changes in body size distributions are then, in turn, expected to alter food web dynamics. However, no consensus has been reached on how spatial isolation and resource growth affect consumer body size distributions. Our aim was to investigate how these two factors shape the body size distribution of consumers under scenarios of size-dependent and size-independent consumer movement by applying a mechanistic, individual-based resource–consumer model. We also assessed the consequences of altered body size distributions for important ecosystem traits such as resource abundance and consumer stability. Finally, we determined those factors that explain most variation in size distributions. We demonstrate that decreasing connectivity and resource growth select for communities (or populations) consisting of larger species (or individuals) due to strong selection for the ability to move over longer distances if the movement is size-dependent. When including size-dependent movement, intermediate levels of connectivity result in increases in local size diversity. Due to this elevated functional diversity, resource uptake is maximized at the metapopulation or metacommunity level. At these intermediate levels of connectivity, size-dependent movement explains most of the observed variation in size distributions. Interestingly, local and spatial stability of consumer biomass is lowest when isolation and resource growth are high. Finally, we highlight that size-dependent movement is of vital importance for the survival of populations or communities within highly fragmented landscapes. Our results demonstrate that considering size-dependent movement is essential to understand how habitat fragmentation and resource growth shape body size distributions—and the resulting metapopulation or metacommunity dynamics—of consumers. KW - allometric scaling KW - body size distributions; KW - eco-evolutionary dynamics KW - habitat fragmentation KW - isolation KW - metabolic theory KW - optimal size KW - size-dependent movement Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320322 VL - 8 ER - TY - JOUR A1 - Moll, Julia A1 - Kellner, Harald A1 - Leonhardt, Sabrina A1 - Stengel, Elisa A1 - Dahl, Andreas A1 - Bässler, Claus A1 - Buscot, François A1 - Hofrichter, Martin A1 - Hoppe, Björn T1 - Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood JF - Environmental Microbiology N2 - Deadwood represents an important structural component of forest ecosystems, where it provides diverse niches for saproxylic biota. Although wood-inhabiting prokaryotes are involved in its degradation, knowledge about their diversity and the drivers of community structure is scarce. To explore the effect of deadwood substrate on microbial distribution, the present study focuses on the microbial communities of deadwood logs from 13 different tree species investigated using an amplicon based deep-sequencing analysis. Sapwood and heartwood communities were analysed separately and linked to various relevant wood physico-chemical parameters. Overall, Proteobacteria, Acidobacteria and Actinobacteria represented the most dominant phyla. Microbial OTU richness and community structure differed significantly between tree species and between sapwood and heartwood. These differences were more pronounced for heartwood than for sapwood. The pH value and water content were the most important drivers in both wood compartments. Overall, investigating numerous tree species and two compartments provided a remarkably comprehensive view of microbial diversity in deadwood. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224168 VL - 20 ER - TY - JOUR A1 - Hilmers, Torben A1 - Friess, Nicolas A1 - Bässler, Claus A1 - Heurich, Marco A1 - Brandl, Roland A1 - Pretzsch, Hans A1 - Seidl, Rupert A1 - Müller, Jörg T1 - Biodiversity along temperate forest succession JF - Journal of Applied Ecology N2 - 1. The successional dynamics of forests—from canopy openings to regeneration, maturation, and decay—influence the amount and heterogeneity of resources available for forest-dwelling organisms. Conservation has largely focused only on selected stages of forest succession (e.g., late-seral stages). However, to develop comprehensive conservation strategies and to understand the impact of forest management on biodiversity, a quantitative understanding of how different trophic groups vary over the course of succession is needed. 2. We classified mixed mountain forests in Central Europe into nine successional stages using airborne LiDAR. We analysed α- and β-diversity of six trophic groups encompassing approximately 3,000 species from three kingdoms. We quantified the effect of successional stage on the number of species with and without controlling for species abundances and tested whether the data fit the more-individuals hypothesis or the habitat heterogeneity hypothesis. Furthermore, we analysed the similarity of assemblages along successional development. 3. The abundance of producers, first-order consumers, and saprotrophic species showed a U-shaped response to forest succession. The number of species of producer and consumer groups generally followed this U-shaped pattern. In contrast to our expectation, the number of saprotrophic species did not change along succession. When we controlled for the effect of abundance, the number of producer and saproxylic beetle species increased linearly with forest succession, whereas the U-shaped response of the number of consumer species persisted. The analysis of assemblages indicated a large contribution of succession-mediated β-diversity to regional γ-diversity. 4. Synthesis and applications. Depending on the species group, our data supported both the more-individuals hypothesis and the habitat heterogeneity hypothesis. Our results highlight the strong influence of forest succession on biodiversity and underline the importance of controlling for successional dynamics when assessing biodiversity change in response to external drivers such as climate change. The successional stages with highest diversity (early and late successional stages) are currently strongly underrepresented in the forests of Central Europe. We thus recommend that conservation strategies aim at a more balanced representation of all successional stages. KW - biodiversity KW - forest dynamics KW - forest succession KW - habitat heterogeneity KW - LiDAR KW - species density KW - temperate forests KW - β-diversity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320632 VL - 55 ER - TY - JOUR A1 - Bahram, Mohammad A1 - Anslan, Sten A1 - Hildebrand, Falk A1 - Bork, Peer A1 - Tedersoo, Leho T1 - Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment JF - Environmental Microbiology Reports N2 - High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming commonly used primers. Based on comparing the resulting long 16S rRNA gene fragments with public databases from all habitats, we found several novel family- to phylum-level archaeal taxa from topsoil and surface water. Our results suggest that archaeal diversity has been largely overlooked due to the limitations of available primers, and that improved primer pairs enable to estimate archaeal diversity more accurately. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221380 VL - 11 ER - TY - JOUR A1 - Müller, Jörg A1 - Noss, Reed F. A1 - Thorn, Simon A1 - Bässler, Claus A1 - Leverkus, Alexandro B. A1 - Lindenmayer, David T1 - Increasing disturbance demands new policies to conserve intact forest JF - Conservation Letters N2 - Ongoing controversy over logging the ancient Białowieża Forest in Poland symbolizes a global problem for policies and management of the increasing proportion of the earth's intact forest that is subject to postdisturbance logging. We review the extent of, and motivations for, postdisturbance logging in protected and unprotected forests globally. An unprecedented level of logging in protected areas and other places where green-tree harvest would not normally occur is driven by economic interests and a desire for pest control. To avoid failure of global initiatives dedicated to reducing the loss of species, five key policy reforms are necessary: (1) salvage logging must be banned from protected areas; (2) forest planning should address altered disturbance regimes for all intact forests to ensure that significant areas remain undisturbed by logging; (3) new kinds of integrated analyses are needed to assess the potential economic benefits of salvage logging against its ecological, economic, and social costs; (4) global and regional maps of natural disturbance regimes should be created to guide better spatiotemporal planning of protected areas and undisturbed forests outside reserves; and (5) improved education and communication programs are needed to correct widely held misconceptions about natural disturbances. KW - anthropogenic disturbance KW - forestry KW - FSC KW - natural disturbance KW - protected area management KW - sanitary logging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224256 VL - 12 ER -