TY - JOUR A1 - Wölfel, Angela A1 - Sättele, Mathias A1 - Zechmeister, Christina A1 - Nikolaev, Viacheslov O. A1 - Lohse, Martin J. A1 - Boege, Fritz A1 - Jahns, Roland A1 - Boivin-Jahns, Valérie T1 - Unmasking features of the auto-epitope essential for β\(_1\)-adrenoceptor activation by autoantibodies in chronic heart failure JF - ESC Heart Failure N2 - Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β\(_1\)-adrenoceptor (β1ECII) that is targeted by stimulating β\(_1\)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. Methods and results Non-conserved amino acids within the β\(_1\)EC\(_{II}\) loop (compared with the amino acids constituting the ECII loop of the β\(_2\)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine–serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β\(_1\)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β\(_1\)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β\(_1\)EC\(_{II}\) loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK\(^{211–214}\) motif and (ii) the intra-loop disulfide bond C\(^{209}\)↔C\(^{215}\). Of note, aberrant intra-loop disulfide bond C\(^{209}\)↔C\(^{216}\) almost fully disrupted the functional auto-epitope in cyclopeptides. Conclusions The conformational auto-epitope targeted by cardio-pathogenic β\(_1\)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β\(_1\)EC\(_{II}\) loop bearing the NDPK\(^{211–214}\) motif and the C\(^{209}\)↔C\(^{215}\) bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β\(_1\)-autoantibodypositive CHF. KW - antibody/autoantibody KW - β1-adrenoceptor/β1-adrenergic receptor KW - chronic heart failure KW - conformational auto-epitope KW - cyclic peptides/cyclopeptides KW - cyclopeptide therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235974 VL - 7 IS - 4 ER - TY - JOUR A1 - Goos, Carina A1 - Dejung, Mario A1 - Wehman, Ann M. A1 - M-Natus, Elisabeth A1 - Schmidt, Johannes A1 - Sunter, Jack A1 - Engstler, Markus A1 - Butter, Falk A1 - Kramer, Susanne T1 - Trypanosomes can initiate nuclear export co-transcriptionally JF - Nucleic Acids Research N2 - The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes. KW - molecular biology KW - nuclear export KW - trypanosomes KW - mRNA KW - nuclear envelope Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177709 VL - 47 IS - 1 ER - TY - JOUR A1 - Scholz, Nicole A1 - Guan, Chonglin A1 - Nieberler, Matthias A1 - Grotmeyer, Alexander A1 - Maiellaro, Isabella A1 - Gao, Shiqiang A1 - Beck, Sebastian A1 - Pawlak, Matthias A1 - Sauer, Markus A1 - Asan, Esther A1 - Rothemund, Sven A1 - Winkler, Jana A1 - Prömel, Simone A1 - Nagel, Georg A1 - Langenhan, Tobias A1 - Kittel, Robert J T1 - Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons JF - eLife N2 - Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response. KW - Latrophilin KW - adhesion GPCR KW - dCIRL KW - sensory physiology KW - metabotropic signalling KW - mechanotransduction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170520 VL - 6 IS - e28360 ER - TY - JOUR A1 - Khayenko, Vladimir A1 - Maric, Hans Michael T1 - Targeting GABA\(_A\)R-associated proteins: new modulators, labels and concepts JF - Frontiers in Molecular Neuroscience N2 - γ-aminobutyric acid type A receptors (GABA\(_A\)Rs) are the major mediators of synaptic inhibition in the brain. Aberrant GABA\(_A\)R activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABA\(_A\)Rs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABA\(_A\)R subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABA\(_A\)R-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABA\(_A\)R numbers and clustering, modifying neuronal transmission. Interference with GABA\(_A\)R trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABA\(_A\)R to AP2 increase the surface concentration of GABA\(_A\)R clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABA\(_A\)R accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABA\(_A\)R modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs. KW - GABAA receptors KW - gephyrin KW - collybistin KW - protein-protein interaction (PPI) KW - super resolution microscopy KW - fluorescent probes KW - dimeric peptide KW - peptide inhibitor design Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201876 VL - 12 IS - 162 ER - TY - JOUR A1 - Meir, Michael A1 - Maurus, Katja A1 - Kuper, Jochen A1 - Hankir, Mohammed A1 - Wardelmann, Eva A1 - Rosenwald, Andreas A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - The novel KIT exon 11 germline mutation K558N is associated with gastrointestinal stromal tumor, mastocytosis, and seminoma development JF - Genes, Chromosomes & Cancer N2 - Familial gastrointestinal stromal tumors (GIST) are dominant genetic disorders that are caused by germline mutations of the type III receptor tyrosine kinase KIT. While sporadic mutations are frequently found in mastocytosis and GISTs, germline mutations of KIT have only been described in 39 families until now. We detected a novel germline mutation of KIT in exon 11 (p.Lys-558-Asn; K558N) in a patient from a kindred with several GISTs harboring different secondary somatic KIT mutations. Structural analysis suggests that the primary germline mutation alone is not sufficient to release the autoinhibitory region of KIT located in the transmembrane domain. Instead, the KIT kinase module becomes constitutively activated when K558N combines with different secondary somatic mutations. The identical germline mutation in combination with an additional somatic KIT mutation was detected in a second patient of the kindred with seminoma while a third patient within the family had a cutaneous mastocytosis. These findings suggest that the K558N mutation interferes with the juxtamembranous part of KIT, since seminoma and mastocystosis are usually not associated with exon 11 mutations. KW - germline mutation KW - GIST KW - KIT KW - mastocytosis KW - seminoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257476 VL - 60 IS - 12 ER - TY - JOUR A1 - Bieber, Michael A1 - Schuhmann, Michael K. A1 - Bellut, Maximilian A1 - Stegner, David A1 - Heinze, Katrin G. A1 - Pham, Mirko A1 - Nieswandt, Bernhard A1 - Stoll, Guido T1 - Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion JF - International Journal of Molecular Sciences N2 - During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte–platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα–von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia–reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke. KW - ischemic penumbra KW - Orai2 KW - glycoprotein receptor Ibα KW - ischemic stroke KW - thrombo-inflammation KW - middle cerebral artery occlusion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286038 SN - 1422-0067 VL - 23 IS - 16 ER - TY - THES A1 - Bender, Markus T1 - Studies on platelet cytoskeletal dynamics and receptor regulation in genetically modified mice T1 - Untersuchungen zur Zytoskelettdynamik und Rezeptorregulation in Blutplättchen genetisch modifizierter Mäuse N2 - Blutplättchen werden von Megakaryozyten im Knochenmark in einem Prozess produziert, an dem Aktin beteiligt ist. Aktin-Depolymerisierungsfaktor (ADF) und Cofilin sind Aktin-bindende Proteine, die als entscheidende Regulatoren im Aktinumsatz agieren, indem sie das Schneiden und Depolymerisieren von Filamenten unterstützen. Die Bedeutung von ADF/Cofilin und des Aktinumsatzes in der Bildung von Blutplättchen ist gegenwärtig nicht bekannt. In der vorliegenden Arbeit wurden Mäuse untersucht, die eine konstitutive ADF-Defizienz und/oder die eine konditionale n-Cofilin Defizienz (Cre/loxP) aufweisen. Um Cofilin nur in Megakaryozyten und Blutplättchen auszuschalten, wurden Cofilinfl/fl Mäuse mit PF4-Cre Mäusen verpaart. ADF- oder n-Cofilin-defiziente Mäuse hatten keinen oder nur einen geringen Phänotyp in Blutplättchen. Eine Defizienz von ADF und n-Cofilin führte hingegen zu einem beinahe kompletten Verlust der Blutplättchen, was mit Defekten in der Bildung von Plättchenzonen in Knochenmark-Megakaryozyten einherging. Weitere Untersuchungen an in vitro und ex vivo kultivierten Megakaryozyten zeigten eine Reduzierung der Bildung von Proplättchen und das Fehlen der typischen Verdickungen der Proplättchen. Diese Daten zeigen redundante aber essentielle Funktionen von ADF und n-Cofilin im terminalen Schritt der Plättchenbildung in vitro und in vivo, und belegen erstmals eine wichtige Rolle des Aktinumsatzes in diesem Prozess. Im zweiten Teil dieser Dissertation wurden die Mechanismen untersucht, die für die zelluläre Regulierung des Hauptkollagenrezeptors auf Blutplättchen, Glykoprotein VI (GPVI), verantwortlich sind. Nach einer Gefäßwandverletzung wird subendotheliales Kollagen freigelegt, wodurch GPVI die Aktivierung von Blutplättchen vermittelt, und damit zur Blutstillung (Hämostase), aber auch zum Verschluss eines verletzten Gefäßes beitragen kann, was letztendlich zu einem Myokardinfarkt oder einem Schlaganfall führen kann. Deshalb ist GPVI ein attraktives Zielprotein für eine anti-thrombotische Therapie, insbesondere weil frühere Studien gezeigt haben, dass anti-GPVI Antikörper eine irreversible Herunterregulierung des Rezeptors auf zirkulierenden Blutplättchen mittels Internalisierung und Abspaltung induzieren. Es wird vermutet, dass Metalloproteinasen der ADAM (a disintegrin and metalloproteinase domain) - Familie das Abspalten vermitteln, jedoch fehlt in vivo der Beweis dafür. Um die Mechanismen des Abspaltungsprozesses des GPVI Rezeptors in vivo besser verstehen zu können, wurden zwei Mauslinien, GPVI- und konditionale ADAM10-defiziente Mäuse, generiert und zusätzlich sogenannte „low TACE (TNFalpha converting enzyme)“ Mäuse analysiert. Es konnte gezeigt werden, dass GPVI in vitro von ADAM10 oder TACE in Abhängigkeit der Signalwege, die zum Abspalten des Rezeptors führen, geschnitten werden kann. Darüberhinaus wurde GPVI in vivo nach Antikörperverabreichung in ADAM10-defizienten Mäusen und „low TACE“ Mäusen herunterreguliert, was vermuten lässt, dass entweder beide Metalloproteinasen an diesem Prozess beteiligt sind oder noch eine zusätzliche Metalloproteinase für die GPVI Regulation in vivo verantwortlich ist. N2 - Platelets are produced by bone marrow megakaryocytes in a process involving actin dynamics. Actin-depolymerizing factor (ADF) and cofilin are actin-binding proteins that act as key regulators in actin turnover by promoting filament severing and depolymerization. The overall significance of ADF/cofilin function and actin turnover in platelet formation is presently unclear. In the first part of this thesis, platelet formation and function were studied in mice constitutively lacking ADF and/or mice with a conditional deficiency (Cre/loxP) in n-cofilin. To delete cofilin exclusively in megakaryocytes and platelets, cofilinfl/fl mice were crossed with PF4 (platelet factor 4)-Cre mice. While a single-deficiency in ADF or n-cofilin resulted in no or only a minor platelet formation defect, respectively, a double-deficiency in ADF and n-cofilin led to an almost complete loss of platelets. Bone marrow megakaryocytes of ADF/n-cofilin-deficient mice showed defective platelet zone formation. Interestingly, in vitro and ex vivo megakaryocyte differentiation revealed reduced proplatelet formation and absence of platelet-forming swellings. These data establish that ADF and n-cofilin have redundant but essential roles in the terminal step of platelet formation in vitro and in vivo. In the second part of the thesis, mechanisms underlying cellular regulation of the major platelet collagen receptor, glycoprotein VI (GPVI), were studied. GPVI mediates platelet activation on exposed subendothelial collagens at sites of vascular injury, and thereby contributes to normal hemostasis but also to occlusion of diseased vessels in the setting of myocardial infarction or stroke. Thus, GPVI is an attractive target for anti-thrombotic therapy, particularly because previous studies have shown that anti-GPVI antibodies induce irreversible down-regulation of the receptor in circulating platelets by internalization and ectodomain shedding. Metalloproteinases of the ADAM (a disintegrin and metalloproteinase domain) family are suspected to mediate this ectodomain shedding, but in vivo evidence for this is lacking. To study the mechanism of GPVI regulation in vivo, two mouse lines, Gp6 knock-out and Adam10fl/fl, PF4-Cre mice, were generated and in addition low TACE (TNFalpha converting enzyme) mice were analyzed. It was shown that GPVI can be cleaved in vitro by ADAM10 or TACE depending on the shedding-inducing signaling pathway. Moreover, GPVI was down-regulated in vivo upon antibody injection in ADAM10-deficient and low TACE mice suggesting that either both or an additional metalloproteinase is involved in GPVI regulation in vivo. KW - Zellskelett KW - Thrombozyt KW - Metalloproteinasen KW - Actin-bindende Proteine KW - Platelets KW - Cytoskeleton KW - Metalloproteases KW - Actin binding proteins Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48390 ER - TY - JOUR A1 - Wiessler, Anna-Lena A1 - Talucci, Ivan A1 - Piro, Inken A1 - Seefried, Sabine A1 - Hörlin, Verena A1 - Baykan, Betül B. A1 - Tüzün, Erdem A1 - Schaefer, Natascha A1 - Maric, Hans M. A1 - Sommer, Claudia A1 - Villmann, Carmen T1 - Glycine receptor β–targeting autoantibodies contribute to the pathology of autoimmune diseases JF - Neurology: Neuroimmunology & Neuroinflammation N2 - Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit–binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization. KW - autoantibody (aAb) KW - glycine receptor (GlyR) KW - stiff-person syndrome (SPS) KW - clinical neurology KW - movement disorders KW - progressive encephalitis with rigidity and myoclonus (PERM) Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349958 VL - 11 IS - 2 ER - TY - JOUR A1 - Meinert, Madlen A1 - Jessen, Christina A1 - Hufnagel, Anita A1 - Kreß, Julia Katharina Charlotte A1 - Burnworth, Mychal A1 - Däubler, Theo A1 - Gallasch, Till A1 - Da Xavier Silva, Thamara Nishida A1 - Dos Santos, Ancély Ferreira A1 - Ade, Carsten Patrick A1 - Schmitz, Werner A1 - Kneitz, Susanne A1 - Friedmann Angeli, José Pedro A1 - Meierjohann, Svenja T1 - Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner JF - Redox Biology N2 - The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2. KW - thiol starvation KW - ATF4 KW - NRF2 KW - melanoma Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350328 VL - 70 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Gupta, Shishir K. A1 - Almasi, Anna A1 - Yagci, Seray A1 - Srivastava, Mugdha A1 - Araujo, Gabriel H. M. A1 - Nagy, Zoltan A1 - Balkenhol, Johannes A1 - Dandekar, Thomas T1 - Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection JF - Frontiers in Immunology N2 - Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/. KW - signaling network KW - controllability KW - platelet KW - SARS-CoV-2 KW - fostamatinib KW - drug repurposing KW - COVID-19 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354158 VL - 14 ER -