TY - JOUR A1 - Menekse, Kaan A1 - Renner, Rebecca A1 - Mahlmeister, Bernhard A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Bowl-shaped naphthalimide-annulated corannulene as nonfullerene acceptor in organic solar cells JF - Organic Materials N2 - An electron-poor bowl-shaped naphthalimide-annulated corannulene with branched alkyl residues in the imide position was synthesized by a palladium-catalyzed cross-coupling annulation sequence. This dipolar compound exhibits strong absorption in the visible range along with a low-lying LUMO level at –3.85 eV, enabling n-type charge transport in organic thin-film transistors. Furthermore, we processed inverted bulk-heterojunction solar cells in combination with the two donor polymers PCE–10 and PM6 to achieve open-circuit voltages up to 1.04 V. By using a blend of the self-assembled naphthalimide-annulated corannulene and PCE–10, we were able to obtain a power conversion efficiency of up to 2.1%, which is to the best of our knowledge the highest reported value for a corannulene-based organic solar cell to date. KW - Chemie KW - corannulene KW - nonfullerene acceptors KW - curved π-systems KW - bulk-heterojunction solar cells KW - aggregation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299095 UR - https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0040-1714283 SN - 2625-1825 VL - 2 IS - 3 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schöl, Marie A1 - Waghmare, Trushnal A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kleuser, Burkhard T1 - Sphingolipids: effectors and Achilles heals in viral infections? JF - Cells N2 - As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention. KW - glycosphingolipids KW - ceramides KW - sphingosine 1-phosphate KW - sphingomyelinase KW - HIV KW - SARS-CoV-2 KW - measles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245151 SN - 2073-4409 VL - 10 IS - 9 ER - TY - JOUR A1 - Hofmann, Julian A1 - Fayez, Shaimaa A1 - Scheiner, Matthias A1 - Hoffmann, Matthias A1 - Oerter, Sabrina A1 - Appelt‐Menzel, Antje A1 - Maher, Pamela A1 - Maurice, Tangui A1 - Bringmann, Gerhard A1 - Decker, Michael T1 - Sterubin: Enantioresolution and Configurational Stability, Enantiomeric Purity in Nature, and Neuroprotective Activity in Vitro and in Vivo JF - Chemistry – A European Journal N2 - Alzheimer′s disease (AD) is a neurological disorder with still no preventive or curative treatment. Flavonoids are phytochemicals with potential therapeutic value. Previous studies described the flavanone sterubin isolated from the Californian plant Eriodictyon californicum as a potent neuroprotectant in several in vitro assays. Herein, the resolution of synthetic racemic sterubin (1) into its two enantiomers, (R)‐1 and (S)‐1, is described, which has been performed on a chiral chromatographic phase, and their stereochemical assignment online by HPLC‐ECD coupling. (R)‐1 and (S)‐1 showed comparable neuroprotection in vitro with no significant differences. While the pure stereoisomers were configurationally stable in methanol, fast racemization was observed in the presence of culture medium. We also established the occurrence of extracted sterubin as its pure (S)‐enantiomer. Moreover, the activity of sterubin (1) was investigated for the first time in vivo, in an AD mouse model. Sterubin (1) showed a significant positive impact on short‐ and long‐term memory at low dosages. KW - Alzheimer′s disease KW - chiral resolution KW - circular dichroism KW - Eriodictyon californicum KW - flavonoids KW - sterubin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215993 VL - 26 IS - 32 SP - 7299 EP - 7308 ER - TY - JOUR A1 - Kim, Jin Hong A1 - Liess, Andreas A1 - Stolte, Matthias A1 - Krause, Ana-Maria A1 - Stepanenko, Vladimir A1 - Zhong, Chuwei A1 - Bialas, David A1 - Spano, Frank A1 - Würthner, Frank T1 - An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye JF - Advanced Materials N2 - A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications. KW - squaraine dyes KW - crystal engineering KW - J-aggregates KW - near-infrared sensitivity KW - organic photodiodes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256374 VL - 33 IS - 26 ER - TY - JOUR A1 - Lehmann, Matthias A1 - Dechant, Moritz A1 - Weh, Dominik A1 - Freytag, Emely T1 - Metal Phthalocyanine−Fullerene Dyads: Promising Lamellar Columnar Donor−Acceptor Liquid Crystal Phases JF - ChemPlusChem N2 - Liquid crystal (LC) shape‐amphiphiles with a disc tethered to a fullerene have been intensely studied for the application in photovoltaics, and helical nanosegregation of C\(_{60}\) has been claimed around the π‐stacking disks based on X‐ray results. The most promising materials reported to date have been resynthesized and studied comprehensively by XRS, density measurements, modelling, and electron density reconstruction. In contrast to previous reports, the results indicate that metal phthalocyanine−fullerene mesogens pack in lamellar columnar phases with p2gm symmetry. Fullerenes assemble in layers and are flanked by phthalocyanine columns, thus explaining the balanced charge carrier mobility of electrons and holes. Such variable donor−acceptor structures are promising for organic electronic applications. KW - Donor−acceptor dyads KW - fullerenes KW - liquid crystals KW - nanosegregation KW - shape-amphiphiles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218531 VL - 85 IS - 8 SP - 1934 EP - 1938 ER - TY - JOUR A1 - Shen, Chia-An A1 - Bialas, David A1 - Hecht, Markus A1 - Stepanenko, Vladimir A1 - Sugiyasu, Kazunori A1 - Würthner, Frank T1 - Polymorphism in squaraine dye aggregates by self-assembly pathway differentiation: panchromatic tubular dye nanorods versus J-aggregate nanosheets JF - Angewandte Chemie International Edition N2 - A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores. KW - organic chemistry KW - supramolecular polymers KW - nanorods and nanosheets KW - polymorphism KW - squaraine dyes KW - cooperative self-assembly Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256443 IS - 21 ET - 60 ER - TY - JOUR A1 - Pinzner, Florian A1 - Keller, Thorsten A1 - Mut, Jürgen A1 - Bechold, Julian A1 - Seibel, Jürgen A1 - Groll, Jürgen T1 - Polyoxazolines with a vicinally double-bioactivated terminus for biomacromolecular affinity assessment JF - Sensors N2 - Interactions between proteins and carbohydrates with larger biomacromolecules, e.g., lectins, are usually examined using self-assembled monolayers on target gold surfaces as a simplified model measuring setup. However, most of those measuring setups are either limited to a single substrate or do not allow for control over ligand distance and spacing. Here, we develop a synthetic strategy, consisting of a cascade of a thioesterification, native chemical ligation (NCL) and thiol-ene reaction, in order to create three-component polymer conjugates with a defined double bioactivation at the chain end. The target architecture is the vicinal attachment of two biomolecule residues to the α telechelic end point of a polymer and a thioether group at the ω chain end for fixating the conjugate to a gold sensor chip surface. As proof-of-principle studies for affinity measurements, we demonstrate the interaction between covalently bound mannose and ConA in surface acoustic wave (SAW) and surface plasmon resonance (SPR) experiments. KW - polyoxazolines KW - functionalization KW - lectin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239530 SN - 1424-8220 VL - 21 IS - 9 ER - TY - JOUR A1 - Brust, Felix A1 - Nagler, Oliver A1 - Shoyama, Kazutaka A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Organic Light‐Emitting Diodes Based on Silandiol‐Bay‐Bridged Perylene Bisimides JF - Advanced Optical Materials N2 - Perylene bisimides (PBIs) are among the best fluorophores but have to be enwrapped for optoelectronic applications by large and heavy substituents to prevent their ππ‐stacking, which is known to accelerate non‐radiative decay processes in the solid state. Here, light‐weight di‐tert‐butylsilyl groups are introduced to bridge 1,12‐dihydroxy and 1,6,7,12‐tetrahydroxy PBIs to afford sublimable dyes for vacuum‐processed optoelectronic devices. For both new compounds, this substitution provides a twisted and shielded perylene π‐core whose, via OSiObridges, rigid structure affords well‐resolved absorption and emission spectra with strong fluorescence in solution, as well as in the solid state. The usefulness of these dyes for vacuum‐processed optoelectronic devices is demonstrated in organic light‐emitting diodes (OLEDs) that show monomer‐like emission spectra and high maximum external quantum efficiency (EQEmax) values of up to 3.1% for the doubly silicon‐bridged PBI. KW - organic light emitting diodes KW - perylene bisimide dyes KW - rigidification KW - solid‐state emission KW - vacuum processable Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312599 VL - 11 IS - 5 ER - TY - JOUR A1 - Schmidt, David A1 - Stolte, Matthias A1 - Süß, Jasmin A1 - Liess, Dr. Andreas A1 - Stepanenko, Vladimir A1 - Würthner, Frank T1 - Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material JF - Angewandte Chemie International Edition N2 - Strongly emissive solid‐state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer‐like absorption and emission profiles as well as fluorescence quantum yields over 90 % in its crystalline solid state. The material was synthesized by attaching two bulky tris(4‐tert‐butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments. KW - cristal engeneering KW - dyes KW - flourescence quantum yield KW - perylene bisimides KW - solid-state emitters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204809 VL - 58 IS - 38 ER - TY - JOUR A1 - Griesbeck, Stefanie A1 - Michail, Evripidis A1 - Rauch, Florian A1 - Ogasawara, Hiroaki A1 - Wang, Chenguang A1 - Sato, Yoshikatsu A1 - Edkins, Robert M. A1 - Zhang, Zuolun A1 - Taki, Masayasu A1 - Lambert, Christoph A1 - Yamaguchi, Shigehiro A1 - Marder, Todd B. T1 - The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging JF - Chemistry - A European Journal N2 - Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two‐photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two‐photon excited fluorescence (TPEF) live‐cell imaging. KW - boranes KW - cell imaging KW - fluerescence KW - lysosome KW - two-photon excited fluorescence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204829 VL - 25 IS - 57 ER - TY - JOUR A1 - Hoernes, Thomas Philipp A1 - Faserl, Klaus A1 - Juen, Michael Andreas A1 - Kremser, Johannes A1 - Gasser, Catherina A1 - Fuchs, Elisabeth A1 - Shi, Xinying A1 - Siewert, Aaron A1 - Lindner, Herbert A1 - Kreutz, Christoph A1 - Micura, Ronald A1 - Joseph, Simpson A1 - Höbartner, Claudia A1 - Westhof, Eric A1 - Hüttenhofer, Alexander A1 - Erlacher, Matthias David T1 - Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions JF - Nature Communications N2 - The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited. KW - chemical modification KW - nucleic acids KW - ribozymes KW - RNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321067 VL - 9 ER - TY - JOUR A1 - Herbst, Stefanie A1 - Soberats, Bartolome A1 - Leowanawat, Pawaret A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases JF - Nature Communications N2 - Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N–H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π–π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure–property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics. KW - liquid crystals KW - self-assembly Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319914 VL - 9 ER - TY - JOUR A1 - He, Tao A1 - Wu, Yanfei A1 - D'Avino, Gabriele A1 - Schmidt, Elliot A1 - Stolte, Matthias A1 - Cornil, Jérôme A1 - Beljonne, David A1 - Ruden, P. Paul A1 - Würthner, Frank A1 - Frisbie, C. Daniel T1 - Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors JF - Nature Communications N2 - Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure–charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure–property relationships in organic semiconductors. KW - electronic and spintronic devices KW - electronic devices KW - scanning probe microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227957 VL - 9 ER - TY - JOUR A1 - Kraus, Michael A1 - Grimm, Clemens A1 - Seibel, Jürgen T1 - Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase JF - Scientific Reports N2 - Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain shift. Here we present a crystal structure of this variant in a conformation suitable for the accommodation of the donor substrate sucrose in excellent agreement with the wild type structure. Remarkably, this conformation does not feature the previously observed domain shift which is therefore reversible and part of a dynamic process rather than a static phenomenon. This crystallographic snapshot completes our understanding of the catalytic cycle of this useful variant and will allow for a more rational design of further generations of Sucrose Phosphorylase variants. KW - biocatalysis KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224845 VL - 8 ER - TY - JOUR A1 - Gil-Sepulcre, Marcos A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Velasco, Lucía A1 - Moonshiram, Dooshaye A1 - Rüdiger, Olaf A1 - DeBeer, Serena A1 - Stepanenko, Vladimir A1 - Solano, Eduardo A1 - Würthner, Frank A1 - Llobet, Antoni T1 - Surface-promoted evolution of Ru-bda coordination oligomers boosts the efficiency of water oxidation molecular anodes JF - Journal of the American Chemical Society N2 - A new Ru oligomer of formula {[Ru-\(^{II}\)(bda-\(\kappa\)-N\(^2\)O\(^2\))(4,4'-bpy)]\(_{10}\)(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarbox-ylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-\(\pi\) interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H\(_2\)O)\(_2\)@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm\(^2\) at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface. KW - electrodes KW - ligands KW - oligomers KW - surface interactions KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351514 VL - 143 IS - 30 ER - TY - JOUR A1 - Gryszel, Maciej A1 - Schlossarek, Tim A1 - Würthner, Frank A1 - Natali, Mirco A1 - Głowacki, Eric Daniel T1 - Water‐soluble cationic perylene diimide dyes as stable photocatalysts for H\(_2\)O\(_2\) evolution JF - ChemPhotoChem N2 - Photocatalytic generation of hydrogen peroxide, H\(_2\)O\(_2\), has gained increasing attention in recent years, with applications ranging from solar energy conversion to biophysical research. While semiconducting solid‐state materials are normally regarded as the workhorse for photogeneration of H\(_2\)O\(_2\), an intriguing alternative for on‐demand H\(_2\)O\(_2\) is the use of photocatalytic organic dyes. Herein we report the use of water‐soluble dyes based on perylene diimide molecules which behave as true molecular catalysts for the light‐induced conversion of dissolved oxygen to hydrogen peroxide. In particular, we address how to obtain visible‐light photocatalysts which are stable with respect to aggregation and photochemical degradation. We report on the factors affecting efficiency and stability, including variable electron donors, oxygen partial pressure, pH, and molecular catalyst structure. The result is a perylene diimide derivative with unprecedented peroxide evolution performance using a broad range of organic donor molecules and operating in a wide pH range. KW - hydrogen peroxide KW - oxygen reduction reaction KW - perylene KW - photocatalysis KW - dyes/pigments Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-370250 SN - 2367-0932 VL - 7 IS - 9 ER -