TY - THES A1 - Brosi, Cornelia T1 - Functional characterization of the TTF complex and its role in neurodevelopmental disorders T1 - Funktionelle Charakterisierung des TTF-Komplexes und seine Rolle in neurologischen Entwicklungsstörungen N2 - The eukaryotic gene expression requires extensive regulations to enable the homeostasis of the cell and to allow dynamic responses due to external stimuli. Although many regulatory mechanisms involve the transcription as the first step of the gene expression, intensive regulation occurs also in the post-transcriptional mRNA metabolism. Thereby, the particular composition of the mRNPs plays a central role as the components associated with the mRNA form a specific “mRNP code” which determines the fate of the mRNA. Many proteins which are involved in this regulation and the mRNA metabolism are affected in diseases and especially neurological disorders often result from an aberrant mRNP code which leads to changes in the regulation and expression of mRNPs. The focus of this work was on a trimeric protein complex which is termed TTF complex based on its subunits TDRD3, TOP3β and FMRP. Biochemical investigations revealed that the three components of the TTF complex are nucleo-cytosolic shuttle proteins which localize in the cytoplasm at the steady-state, associate with mRNPs and are presumably connected to the translation. Upon cellular stress conditions, the TTF components concentrate in stress granules. Thus, the TTF complex is part of the mRNP code, however its target RNAs and function are still completely unknown. Since the loss of functional FMRP results in the fragile X syndrome and TOP3β is associated with schizophrenia and intellectual disability, the TTF complex connects these phenotypically related neuro-psychiatric disorders with each other on a molecular level. Therefore, the aim of this work was to biochemically characterize the TTF complex and to define its function in the mRNA metabolism. In this work, evidence was provided that TDRD3 acts as the central unit of the TTF complex and directly binds to FMRP as well as to TOP3β. Thereby, the interaction of TDRD3 and TOP3β is very stable, whereas FMRP is a dynamic component. Interestingly, the TTF complex is not bound directly to mRNA, but is recruited via the exon junction complex (EJC) to mRNPs. This interaction is mediated by a specific binding motif of TDRD3, the EBM. Upon biochemical and biological investigations, it was possible to identify the interactome of the TTF complex and to define the role in the mRNA metabolism. The data revealed that the TTF complex is mainly associated with “early” mRNPs and is probably involved in the pioneer round of translation. Furthermore, TOP3β was found to bind directly to the ribosome and thus, establishes a connection between the EJC and the translation machinery. A reduction of the TTF components resulted in selective changes in the proteome in cultured cells, whereby individual protein subsets seem to be regulated rather than the global protein expression. Moreover, the enzymatic analysis of TOP3β indicated that TOP3β is a type IA topoisomerase which can catalytically attack not only DNA but also RNA. This aspect is particularly interesting with regard to the connection between early mRNPs and the translation which has been revealed in this work. The data obtained in this work suggest that the TTF complex plays a role in regulating the metabolism of an early mRNP subset possibly in the course of the pioneer round of translation. Until now, the link between an RNA topoisomerase and the mRNA metabolism is thereby unique and thus provides a completely new perspective on the steps in the post-transcriptional gene expression and its regulation. N2 - Die eukaryotische Genexpression bedarf einer umfassenden Regulation um die Homöostase der Zelle zu gewährleisten und um dynamische Reaktionen auf externe Einflüsse zu ermöglichen. Obwohl viele der regulatorischen Mechanismen die Transkription als ersten Schritt der Genexpression betreffen, findet auch eine intensive Regulierung auf der Ebene des post-transkriptionellen mRNA-Metabolismus statt. Dabei spielt die jeweilige Zusammensetzung der mRNPs eine zentrale Rolle, da je nachdem, mit welchen Faktoren eine mRNA assoziiert ist, ein sog. „mRNP-Code“ entsteht, der das Schicksal der mRNA bestimmt. Viele der an der Regulierung und dem mRNA-Metabolismus beteiligten Proteine sind in Krankheiten betroffen und gerade neurologische Erkrankungen resultieren häufig von einem fehlerhaften mRNP-Code, der zu Veränderungen in der Regulation und Expression von mRNPs führt. Im Zentrum dieser Arbeit stand ein trimerer Proteinkomplex, der aufgrund seiner Untereinheiten TDRD3, TOP3β und FMRP als TTF-Komplex bezeichnet wird. Biochemische Daten haben gezeigt, dass die drei Komponenten des TTF-Komplexes nucleo-cytoplasmatische „Shuttle“-Proteine sind, die sich im „steady-state“ hauptsächlich im Cytoplasma befinden, mit mRNPs assoziieren und vermutlich mit der Translation in Verbindung stehen. Unter zellulären Stressbedingungen konzentrieren sich die TTF-Komponenten in Stress Granula. Der TTF-Komplex ist damit Teil des mRNP-Codes, dessen zelluläre Ziel-RNAs und Funktion bislang aber völlig unbekannt sind. Da der Verlust von funktionellem FMRP zu der Ausprägung des fragilen X Syndroms (FXS) führt und TOP3β mit Schizophrenie und geistiger Retardation in Verbindung steht, verbindet der TTF-Komplex phänotypisch verwandte neuro-psychiatrische Krankheiten auf molekularer Ebene miteinander. Das Ziel dieser Arbeit war es daher, den TTF-Komplex biochemisch zu charakterisieren und seine Funktion im mRNA-Metabolismus zu definieren. Im Zuge dieser Arbeit gelang der Nachweis, dass TDRD3 als zentrale Einheit des TTF-Komplexes agiert und sowohl FMRP als auch TOP3β direkt bindet. Die Interaktion von TDRD3 und TOP3β ist hierbei sehr stabil, FMRP ist hingegen eine dynamische Komponente. Interessanterweise wird der TTF-Komplex nicht direkt an mRNA gebunden, sondern über den Exon-Junction-Komplex (EJC) an mRNPs rekrutiert. Diese Interaktion wird durch ein spezifisches Bindungsmodul in TDRD3, dem sog. EBM vermittelt. In einer Reihe von biochemischen und systembiologischen Studien konnte das Interaktom des TTF-Komplexes bestimmt und seine Rolle im mRNA-Metabolismus definiert werden. Die Daten offenbarten, dass der TTF-Komplex primär mit „frühen“ mRNPs assoziiert ist und sehr wahrscheinlich an der „pioneer round of translation“ beteiligt ist. Weiterhin zeigte sich, dass TOP3β das Ribosom direkt bindet und somit eine Verbindung des EJC und der Translationsmaschinerie etabliert. Die Reduktion von Komponenten des TTF-Komplexes in kultivierten Zellen führte zu selektiven Änderungen im Proteom, wobei einzelne Proteinteilgruppen, jedoch nicht die globale Expression durch den TTF-Komplex reguliert zu sein scheinen. Die enzymatische Analyse von TOP3β hat darüber hinaus gezeigt, dass es sich um eine Topoisomerase vom Typ IA handelt, die nicht nur DNA sondern auch RNA angreifen kann. Dieser Aspekt ist besonders interessant im Zusammenhang der in dieser Arbeit aufgedeckten Verbindung von frühen mRNPs mit der Translation. Die im Rahmen dieser Arbeit erhaltenen Daten legen nahe, dass der TTF-Komplex eine Rolle bei der Regulation des Metabolismus „früher“ mRNP-Teilgruppen möglicherweise im Zuge der „Pionierrunde“ der Translation spielt. Dabei ist die Verbindung einer RNA-Topoisomerase mit dem mRNA-Metabolismus bisher einzigartig und eröffnet so eine ganz neue Sichtweise auf die post-transkriptionellen Schritte der Genexpression und ihre Regulation. KW - Messenger-RNP KW - Fragiles-X-Syndrom KW - Schizophrenie KW - Translation KW - Gene Expression KW - TTF complex KW - TDRD3 KW - TOP3b KW - FMRP Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157783 ER - TY - JOUR A1 - Buchberger, Alexander A1 - Böhm, Stephanie T1 - The Budding Yeast Cdc48Shp1 Complex Promotes Cell Cycle Progression by Positive Regulation of Protein Phosphatase 1 (Glc7) JF - PLoS One N2 - The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits. KW - alleles KW - cell cycle KW - immunoprecipitation KW - phosphatases KW - genetic interactions Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96073 ER - TY - THES A1 - Buckel, Lisa T1 - Evaluating the combination of oncolytic vaccinia virus and ionizing radiation in therapy of preclinical glioma models T1 - Evaluierung der Kombination von onkolytischem Vaccinia Virus und ionisierender Strahlung in vorklinischen Gliomamodellen N2 - Glioblastoma multiforme (GBM) represents the most aggressive form of malignant brain tumors and remains a therapeutically challenge. Intense research in the field has lead to the testing of oncolytic viruses to improve tumor control. Currently, a variety of different oncolytic viruses are being evaluated for their ability to be used in anti-cancer therapy and a few have entered clinical trials. Vaccinia virus, is one of the viruses being studied. GLV-1h68, an oncolytic vaccinia virus engineered by Genelux Corporation, was constructed by insertion of three gene cassettes, RUC-GFP fusion, β-galactosidase and β- glucuronidase into the genome of the LIVP strain. Since focal tumor radiotherapy is a mainstay for cancer treatment, including glioma therapy, it is of clinical relevance to assess how systemically administered oncolytic vaccinia virus could be combined with targeted ionizing radiation for therapeutic gain. In this work we show how focal ionizing radiation (IR) can be combined with multiple systemically delivered oncolytic vaccinia virus strains in murine models of human U-87 glioma. After initial experiments which confirmed that ionizing radiation does not damage viral DNA or alter viral tropism, animal studies were carried out to analyze the interaction of vaccinia virus and ionizing radiation in the in vivo setting. We found that irradiation of the tumor target, prior to systemic administration of oncolytic vaccinia virus GLV-1h68, increased viral replication within the U-87 xenografts as measured by viral reporter gene expression and viral titers. Importantly, while GLV-1h68 alone had minimal effect on U-87 tumor growth delay, IR enhanced GLV-1h68 replication, which translated to increased tumor growth delay and mouse survival in subcutaneous and orthotopic U-87 glioma murine models compared to monotherapy with IR or GLV-1h68. The ability of IR to enhance vaccinia replication was not restricted to the multi-mutated GLV-1h68, but was also seen with the less attenuated oncolytic vaccinia, LIVP 1.1.1. We have demonstrated that in animals treated with combination of ionizing radiation and LIVP 1.1.1 a strong pro-inflammatory tissue response was induced. When IR was given in a more clinically relevant fractionated scheme, we found oncolytic vaccinia virus replication also increased. This indicates that vaccinia virus could be incorporated into either larger hypo-fraction or more conventionally fractionated radiotherapy schemes. The ability of focal IR to mediate selective replication of systemically injected oncolytic vaccinia was demonstrated in a bilateral glioma model. In mice with bilateral U-87 tumors in both hindlimbs, systemically administered oncolytic vaccinia replicated preferentially in the focally irradiated tumor compared to the shielded non- irradiated tumor in the same mouse We demonstrated that tumor control could be further improved when fractionated focal ionizing radiation was combined with a vaccinia virus caring an anti-angiogenic payload targeting vascular endothelial growth factor (VEGF). Our studies showed that following ionizing radiation expression of VEGF is upregulated in U-87 glioma cells in culture. We further showed a concentration dependent increase in radioresistance of human endothelial cells in presence of VEGF. Interestingly, we found effects of vascular endothelial growth factor on endothelial cells were reversible by adding purified GLAF-1 to the cells. GLAF-1 is a single- chain antibody targeting human and murine VEGF and is expressed by oncolytic vaccinia virus GLV-109. In U-87 glioma xenograft murine models the combination of fractionated ionizing radiation with GLV-1h164, a vaccinia virus also targeting VEGF, resulted in the best volumetric tumor response and a drastic decrease in vascular endothelial growth factor. Histological analysis of embedded tumor sections 14 days after viral administration confirmed that blocking VEGF translated into a decrease in vessel number to 30% of vessel number found in control tumors in animals treated with GLV-164 and fractionated IR which was lower than for all other treatment groups. Our experiments with GLV-1h164 and fractionated radiotherapy have shown that in addition to ionizing radiation and viral induced tumor cell destruction we were able to effectively target the tumor vasculature. This was achieved by enhanced viral replication translating in increased levels of GLAF-2 disrupting tumor vessels as well as the radiosensitization of tumor vasculature to IR by blocking VEGF. Our preclinical results have important clinical implications of how focal radiotherapy can be combined with systemic oncolytic viral administration for highly aggressive, locally advanced tumors with the potential, by using a vaccinia virus targeting human vascular endothelial growth factor, to further increase tumor radiation sensitivity by engaging the vascular component in addition to cancer cells. N2 - Glioblastoma multiforme (GBM) verkörpert die aggressivste Form von bösartigen Gehirntumoren und seine Therapie gestaltet sich schwierig. Weitläufige Forschung hat dazu geführt, dass onkolytische Viren zur Verbesserung der Tumorbehandlung untersucht wurden. Gegenwärtig wird eine Vielzahl an verschiedenen onkolytischen Viren untersucht und einige wenige befinden sich bereits in klinischen Studien. Eines der Viren die untersucht werden, ist das Vaccinia-Virus. GLV-1h68, ein onkolytisches Vaccinia- Virus, wurde durch die Einfügung von drei Genkasseten, RUC-GFP Fusion, β- Galaktosidase und β- Glucuronidase in das Genom des LIVP Stammes hergestellt. Da fokale Bestrahlungstherapie aus der Behandlung von Krebs, nicht nur im Falle von Glioblastomen, nicht wegzudenken ist, ist es klinisch relevant, zu untersuchen, wie ein systemisch verabreichtes Vaccinia-Virus mit gezielter ionisierender Strahlung (IR) kombiniert werden könnte, um Therapiechancen zu verbesseren. In dieser Arbeit konnte gezeigt werden, wie gezielte IR mit verschiedenen sytemisch injizierten Vaccinia-Virus Stämmen in einem Mausmodell für humane U-87-Glioma kombiniert wurde. Nachdem einleitende Versuche bestätigten, dass IR die virale Erbinformation nicht beschädigt und auch nicht den viralen Tropismus verändert, wurden Tierstudien durchgeführt, die die Interaktion des Vaccinia-Virus mit Bestrahlungtherapie in vivo untersuchten. Wir konnten zeigen, dass eine vorherige Bestrahlung des Tumors, bevor das GLV-1h68-Virus systemisch injiziert wurde, eine erhöhte viraler Replikation im Tumor zur Folge hatte, wie wir durch gesteigerte virale Titer und Markergenexpression belegen konnten. Von wesentlicher Bedeutung ist, dass eine Verabreichung von ausschliesslich GLV-1h68 einen minimalen Einfluss auf das U-87 Tumorwachstum hatte, während die durch die Bestrahlung ausgelöste erhöhte Vermehrung von Virus im Tumor eine Verzögerung des Tumorwachstums sowie ein verlängertes Überleben von Mäusen mit U-87-Xenografts zur Folge hatte. Die Fähigkeit von IR virale Vermehrung zu erhöhen, wurde auch für das weniger attenuierte LIVP 1.1.1-Virus gezeigt. Wenn die Bestrahlung in einem klinisch relevanten fraktionierten Bestrahlungsschema verabreicht wurde, war virale Replikation ebenfalls erhöht. Dies verdeutlicht, dass das Vaccinia-Virus klinisch entweder in eine Bestrahlung mit einer einzelnen Dosis oder in eine konventionelle fraktionierte Bestrahlung integriert werden kann. Die Fähigkeit von fokaler IR, eine selektive Vermehrung von systemisch injizierten onkolytischen Vaccinia-Viren zu ermöglichen, wurde in einem bilateralen Gliomamausmodell bestätigt. In Mausen mit Tumoren an beiden Hinterbeinen, vermehrte sich das systemisch gespritzte Vaccinia-Virus bevorzugt im bestrahlten Tumor. Wir konnten zeigen, wie die Tumorkontrolle darüber hinaus weiter verbessert werden kann, wenn fraktionierte fokale Bestrahlung mit einem Vaccinia-Virus kombiniert wird, das eine anti-angiogenetische Ladung, die den vaskulaeren endothelialen Wachstumsfaktor (VEGF) inhibiert, exprimiert. Unsere Studien konnten zeigen, dass durch die Bestrahlung von U-87 Gliomazellen eine Hochregulation von VEGF-Expression ausgelöst wurde, die Radioresistenz von Endothelzellen konzentrationsabhängig induzierte. Wir konnten zeigen, dass die durch VEGF verursache Radioresistenz umkehrbar ist, wenn zusätzlich aufgereinigtes GLAF-1, einen Vaccinia Virus exprimierten Antikörper, zu den Zellen gegeben wurde. In einem Mausmodell zeigte die Kombination aus fraktionierter Bestrahlung und GLV-1h164, ein Vaccinia-Virus, das ebenfalls einen VEGF Antikörper mit Ähnlichkeit zu GLAF-1 exprimiert, resultierte in der stärksten volumetrischen Tumorantwort. Es wurde ebenfalls eine drastische Abnahme an VEGF im Tumor bereits 3 Tagen nach Virus- Injektion nachgewiesen. Histologische Analyse bestätigte, dass die Blockade von VEGF eine Erniedrigung der Anzahl von Tumorblutgefäßen, zu 30% von Kontrolltumoren, zur Folge hatte. Dieser Wert war niedriger als in allen anderen Behandlungsgruppen. Unsere Versuche mit fraktionierter Bestrahlung und GLV-1h164 konnten zeigen, dass zusätzlich zu der durch Virus und Bestrahlung ausgelösten Tumorzellzerstörung, eine effiziente Degeneration der Tumorblutgefäße möglich war. Dies wurde durch eine erhöhte Virus-Vermehrung als Folge der Bestrahlung, sowie durch Sensitiveren der tumoralen Endothelzellen durch Blockierung von VEGF-A erreicht. Die Ergebnisse, die in dieser Arbeit zeigen, wie fokale Bestrahlungstherapie mit systemisch verabreichten onkolytische Vaccinia-Viren für aggressive, fortgeschrittene Tumore kombiniert werden kann. Es ist denkbar, dass die Tumortherapie weiter verbessert werden kann, wenn ein Vaccinia-Virus benutzt wird, das sich zusätzlich gegen VEGF richtet, so werden zu den Krebszellen zusätzlich Tumorblutgefäße in die Therapie miteinbezogen, um die Sensitivität von Endothelzellen gegen Bestrahlung weiter zu erhöhen. KW - Gliom KW - Vaccinia-Virus KW - Strahlentherapie KW - Kombinationstherapie KW - onkolytische Virotherapie KW - Glioma KW - vaccinia virus KW - ionizing radiation KW - combination therapy KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85309 ER - TY - JOUR A1 - Cecil, Alexander A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Dandekar, Thomas A1 - Szalay, Aladar A. T1 - Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models JF - Bioengineered N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients. KW - boolean modeling KW - oncolytic virus KW - human xenografted mouse models KW - cancer therapy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200507 VL - 10 IS - 1 ER - TY - THES A1 - Chari, Ashwin T1 - The Reaction Mechanism of Cellular U snRNP Assembly T1 - Der Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung N2 - Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors (“assembly chaperones”) for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis. N2 - Makromolekulare Komplexe, auch molekulare Maschinen genannt, ermöglichen eine grosse Vielfalt biologischer Reaktionen und Aufgaben, die für das Überleben von Organismen kritisch sind. Diese Komplexe bestehen entweder nur aus Protein, oder setzen sich aus Protein und Nukleinsäure (DNA oder RNA) zusammen. Prominente Beispiele für diese Klassen molekularer Maschinen sind das Proteosom, das Nukleosom oder das Ribosom. Wie sich solche Einheiten innerhalb einer Zelle zusammenlagern ist eine grundlegende Frage der Molekularbiologie. Frühere Studien hatten angeduetet, dass es möglich ist sogar sehr grosse Komplexe wie das Ribosom in vitro aus gereinigten Bestandteilen zu einem aktiven Partikel zu rekonstruieren. Die Strukturinformation, die für die Bildung von makromolekularen Komplexen erforderlich ist, liegt also in den Untereinheiten selbst. Im Gegensatz dazu mehren sich heute die Hinweise dafür, dass sich viele makromolekulare Komplexe nicht spontan zusammenlagern, sondern die Aktivität assistierender Faktoren („Assembly Chaperone“) für ihre Reifung benötigen. In dieser Arbeit wurde der Zusammenbau von RNA-Protein (RNP) Partikeln durch eine Kombination aus Biochemie und Strukturbiologie untersucht. Ein ergiebiges System, um diesen Prozess zu studieren, ist die Biogenese der RNPs (U snRNPs) des Spleissosoms. Aufgabe dieser molekularen Maschine ist das Herausschneiden nicht-kodierender Introns und das Zusammenfügen kodiereneder Exons um so funktionelle mRNA zu bilden. Die Zusammensetzung und Architektur von U snRNPs sind gut definiert. Auch ist der Kern- Zytoplasma Transport, der für die Reifung dieser Partikel notwendig sind, detailliert beschrieben worden. Außerdem weisen neueste Studien darauf hin, dass die Bildung von U snRNPs in vivo durch eine komplexe Maschinerie, die aus den Protein-Arginin- Methyltransferase 5 (PRMT5)- und Survival-Motor-Neuron (SMN)- Komplexen besteht, vermittelt wird. Die Entschlüsselung des Reaktionsmechanismus des zellulärem U snRNP Zusammenbaus würde als Musterbeispiel für unser Verständnis dienen, wie RNPs in einer Zelle gebildet werden. Folgende Erkenntnisse wurden in dieser Arbeit gewonnen: 1) Es wurde zunächst versucht eine komplette Bestandsliste der Untereinheiten des SMN-Komplexes zu erstellen. Dies wurde durch die biochemische Definition und Charakterisierung einer atypischen Komponente dieses Komplexes, des Unrip Proteins, erreicht. Dieses Protein bindet ausschliesslich im Zytoplasma an den SMN-Komplex und beeinflusst dessen subzelluläre Lokalisation. 2) Die komplette Inventarisierung des SMN-Komplexes ermöglichte die Untersuchung der Wechselwirkung aller Untereinheiten und somit die Untersuchung seiner Architektur. Diese Studie zeigte, dass die Proteine SMN, Gemin7 und Gemin8 das Rückgrat des SMN-Komplexes bilden auf dem die restlichen Untereinheiten modular angeordnet werden. 3) Die zwei oben erwähnten Studien bildeten die Grundlage, den Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung zu entschlüsseln. Zunächst wurde eine frühe Phase im SMN-vermittelten U snRNP Zusammenbau analysiert. Es konnte gezeigt werden, dass zwei Untereinheiten des U7 snRNP (LSm10 und 11) mit dem PRMT5-Komplex wechselwirken, ohne methyliert zu werden. Dies deutet darauf hin, dass die unterstützende Rolle des PRMT5-Komplexes von seiner Methylierungsaktivität unabhängig ist. 4) Schlüsselintermediate im Zusammenschluss von U snRNPs wurden identifiziert und durch eine Kombination von Biochemie und Strukturbiologie charakterisiert. In einer ersten Stufe bildet sich ein Vorgänger von U snRNPs mit einem Sedimentationskoeffizienten von 6S aus. Dieses Intermediat, bestehend aus pICln (einer Untereinheit des PRMT5-Komplexes) und Sm Proteinen, stellt eine kinetische Falle in der U snRNP Zusammenlagerung dar. Das Voranschreiten zum maturen U snRNP hängt von der Aktivität des SMN-Komplexes ab, der als Katalysator wirkt. Weiterhin konnte gezeigt werden, dass die Ausbildung von U snRNPs strukturell ähnlich zu der Reaktion verläuft, die Polymerasen mit geringer Prozessivität an der DNA verankert und die als „clamp-loading“ bezeichnet wird. 5) Der menschliche SMN-Komplex setzt sich aus mehreren Untereinheiten zusammen. Es ist jedoch unbekannt, ob alle Teile des Komplexes für die Zusammenlagerung von U snRNPs notwendig sind. Diese Frage wurde durch eine Kombination aus Bioinformatik und Biochemie adressiert. Durch Datenbanksuchen in komplett sequenzierten Genomen wurde festgestellt, dass die evolutionär ursprüngliche Form des SMN-Komplexes aus den zwei Proteinen SMN und Gemin2 besteht. Die biochemische Reinigung des Komplexes der Taufliege Drosophila melanogaster offenbarte, dass er auch in diesem Organismus aus denselben zwei Untereinheiten zusammengebaut ist. Außerdem wurde der Beweis erbracht, dass das SMN-Gemin2 heterodimer notwendig und hinreichend ist, um U snRNPs akkurat zusammenzulagern. Zukünftige Studien werden weitere detaillierte Ansichten des Reaktionsmechanismus in der zellulären Zusammenlagerung von U snRNPs liefern. Die Ergebnisse, die in der vorliegenden Arbeit erhalten wurden, deuten darauf hin, dass die Untereinheiten SMN und Gemin2 des SMN-Komplexes für den Zusammenbau von U snRNPs hinreichend sind. Was also ist die Funktion der weiteren Untereinheiten des SMN-Komplexes? Die Rekonstitutionsschemata, die in dieser Arbeit etabliert wurden, werden essentiell für die Beantwortung dieser Frage sein. Darüberhinaus werden weitere mechanistische Einsichten in die Zusammenlagerung von U snRNPs von der Ermittlung von Strukturen der Assembly-Maschinerie in verschiedenen Zuständen abhängen. Die Voraussetzung für diese strukturbiologische Untersuchungen, die Möglichkeit ausreichende Mengen homogener Komplexe herzustellen, ist ebenfalls in dieser Arbeit geschaffen worden. KW - Small nuclear RNP KW - Katalysator KW - Enzym KW - Maschine KW - Biopolymere KW - Makromolekül KW - Biogenese KW - Reaktionsmechanismus KW - Small nuclear RNP KW - Catalyst KW - Enzyme KW - Molecular Machine KW - Chaperone KW - Macromolecular Complex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40804 ER - TY - THES A1 - Christenn, Marcus T1 - Charakterisierung von Somatostatinrezeptor-Subtyp 4 interagierenden Proteinen in der Ratte (Rattus norvegicus) T1 - Characterisation of somatostatin receptor subtype 4 interacting proteins in the rat (Rattus norvegicus) N2 - Somatostatin ist ein regulatorisches Peptid, das eine Vielzahl von biologischen Prozessen innerhalb des Körpers beeinflußt. Die Wirkung von Somatostatin wird auf zellulärer Ebene über eine Familie von fünf G-Protein-gekoppelten Rezeptoren vermittelt, die entweder in G Protein-abhängiger Weise oder vermutlich auch über andere interagierende intrazelluläre Proteine auf nachgeschaltete Signaltransduktionswege wirken. Der Somatostatinrezeptor Subtyp 4 (SSTR4) wird hauptsächlich im Gehirn exprimiert und wirkt dort inhibierend auf die exzitatorische Signalweiterleitung. Es sind aber auch stimulierende Effekte des SSTR4 bekannt. Um das subtypspezifische Signalverhalten des SSTR4 weiter zu untersuchen, wurden im Rahmen dieser Arbeit Proteine gesucht, die intrazellulär mit dem SSTR4 interagieren und so seine physiologischen Effekte beeinflussen. In einem ersten Ansatz konnten drei mögli-che Interaktionspartner mit Hilfe des Hefe-Zwei-Hybrid-Systems identifiziert werden, die aber in nachfolgenden Untersuchungen als unpezifisch eingestuft wurden. Mit Hilfe einer Affinitätschromatografie wurden dann zwei Proteine identifiziert, die spezifisch mit dem SSTR4 interagieren. Sowohl PSD-95 als auch PSD-93 (Postsynaptic density protein of 95 kDa bzw. 93kDa) wurden mit einem immobilisierten Peptid präzipitiert, das die neun C-terminalen Aminosäuren des SSTR4 enthält. Die Interaktion des SSTR4 mit PSD 95 wurde im Weiteren näher charakterisiert. In einem Bindungsexperiment mit rekombinaten Proteinen konnte gezeigt werden, dass die Interaktion durch die 1. und 2. PDZ-Domäne von PSD-95 vermittelt wird. In humanen embryonalen Nieren-Zellen (HEK293), die den SSTR4 stabil exprimieren, konnte PSD-95 mit dem Rezeptor koimmunpräzipitiert werden. Nach Koexpression von PSD-95 und SSTR4 findet man eine partielle Kolokalisierung beider Proteine an der Zellmembran, wobei aber der Großteil des PSD-95 weiterhin eine diffuse zytoplasmatische Verteilung zeigt. Die Interaktion wurde in vivo sowohl immunhistochemisch in kultivierten Hippocampus-Neuronen als auch durch Koimmunpräzipitation beider Proteine aus Rattengehirn-Lysaten nachgewiesen. Die Interaktion von PSD-95 mit dem SSTR4 beeinflußt weder die Agonisten-induzierte Internalisierung des Rezeptors in HEK293-Zellen, noch die Kopplung des Rezeptors an einen G-Protein-gekoppelten einwärtsgleichrichtenden Kaliumkanal in Oozyten des afrikanischen Krallenfrosches Xenopus laevis. Durch die Interaktion mit PSD-95 wird der SSTR4 in physikalische Nähe zu bestimmten Zielproteinen gebracht, über die nachfolgend die Somatostatineffekte weitervermittelt werden. So ermöglicht die Interaktion vermutlich eine Integration des SSTR4 in den postsynaptischen Komplex aus PSD-95 und Glutamatrezeptoren, wo der SSTR4 die bereits beschrieben regulatorischen Effekte auf die Glutamat-vermittelte exzitatorische Signaltransduktion ausüben kann. N2 - Somatostatin is a regulatory peptid, which affects a multiplicity of biological processes within the body. The effects of Somatostatin are mediated by a family of five G-protein-coupled receptors, which act on several downstream signaltransduction pathways either in a G-protein-dependent way or probably in a G-protein-independent manner via intracellular interacting proteins. The somatostatin receptor subtype 4 (SSTR4) is mainly expressed in brain, where it inhibits the excitatory neurotransmission. In addition, excitatory effects of SSTR4 have also been published. In order to examine the subtype specific signalling of SSTR4, I tried to identify intracellular proteins which interact directly with the SSTR4 and affect its physiological effects. Using the yeast two-hybrid system I identified three possible interaction partners for SSTR4, which were however classified as non-specific in subsequent experiments. In a second approach two proteins which interact with SSTR4 could be identified by affinity-chromatography. Both proteins PSD-95 and PSD-93 (Postsynaptic density protein of 95 kDa and 93kDa) were precipitated specifically with an immobilized peptid that contains the nine C-terminal amino acids of SSTR4. The interaction of the SSTR4 with PSD-95 was further characterized. In a binding experiment with recombinant proteins I could show that the interaction is mediated by the 1st and 2nd PDZ-domain of PSD-95. In human embryonic kidney cells (HEK293) which stably express SSTR4, PSD-95 could be coprecipitated with the receptor. After coexpression of PSD-95 and SSTR4 both proteins are partially colocalized at the plasma membrane. The majority of the PSD-95 however shows a diffuse cytoplasmic distribution. The in vivo interaction was proven by immunohistochemistry on cultivated hippocampal neurons and by coimmunoprecipitation of both proteins from rat brain lysates. The interaction of PSD-95 with SSTR4 affected neither the agonist induced internalisation of the receptor in HEK293 cells, nor the coupling of the receptor to a G-protein-coupled inwardly-rectifying potassium channel in oocytes obtained from the african clawed frog Xenopus laevis. By the interaction with PSD-95, SSTR4 is brought into physical proximity to certain target proteins which mediate the effects of somatostatin. Thus the interaction probably allows an integration of SSTR4 into the postsynaptic complex of PSD-95 and glutamergic receptors, where SSTR4 could regulate the glutamat-mediated excitatory signaltransduction. KW - Ratte KW - Somatostatin KW - G-Proteine KW - Rezeptor KW - G-Protein-gekoppelter Rezeptor KW - Somatostatinrezeptor Subtyp 4 KW - interagierende Proteine KW - PDZ-Domäne KW - PSD-95 KW - G-protein-coupled receptor KW - somatostatin receptor subtype 4 KW - interacting proteins KW - PDZ-domain KW - PSD-95 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14253 ER - TY - THES A1 - Colnot, Thomas T1 - Beurteilung von Phyto- und Xenoöstrogenen am Beispiel ausgewählter Substanzen T1 - Assessment of Phyto- and Xenoestrogens for Selected Substances N2 - Bei Daidzein und Bisphenol A handelt es sich um zwei Vertreter einer Klasse von Stoffen, die als „Umwelthormone“ (engl. endocrine disrupter) bezeichnet werden. Aus der Gruppe der Phytoöstrogene wurde Daidzein als wichtiger Vertreter, der in hohen Konzentrationen in vielen Nutzpflanzen und Nahrungsmitteln vorkommt, ausgewählt. Sojaprodukte, die den größten Beitrag einer menschlichen Exposition gegen Daidzein liefern, werden in zunehmendem Maße auch in westlichen Ländern konsumiert. Bisphenol A wurde als Vertreter der Xenoöstrogene gewählt, da es - was Weltjahresproduktion und Verwendung angeht - die wohl wichtigste Substanz dieser Gruppe darstellt. Im ersten Teil der Arbeit wurde die Biotransformation und Toxikokinetik der beiden Verbindungen nach oraler Gabe in der Ratte aufgeklärt. Dabei konnte gezeigt werden, daß die orale Bioverfügbarkeit beider Substanzen in der Ratte sehr gering war. Maximal zehn Prozent der jeweils applizierten Dosis konnten im Urin der Tiere wiedergefunden werden. Als Hauptmetabolit wurden sowohl von Daidzein als auch von Bisphenol A das jeweilige Glucuronid-Konjugat gebildet. Bei Daidzein überwog in der männlichen Ratte zusätzlich das Sulfat-Konjugat. Der Anteil an freier, d.h. unkonjugierter Verbindung betrug im Urin der Tiere zwischen 1 und 3 Prozent der Dosis. Außer den Phase II-Konjugaten, die aufgrund ihrer mangelnden östrogenen Wirksamkeit zu einer Detoxifizierung der beiden Verbindungen führte, konnten nach Gabe von Bisphenol A in der Ratte keine weiteren Metabolite identifiziert werden. Nach Exposition mit Daidzein konnten in den Faeces der Tiere in geringem Umfang die beiden reduktiven Metabolite Equol und O-DMA gefunden werden. Diese wurden wahrscheinlich im Magen-Darm-Trakt durch die Bakterien der Darmflora gebildet. Sowohl Daidzein als auch Bisphenol A wurden bei der Ratte nur unvollständig aus dem Magen-Darm-Trakt resorbiert; der Großteil der gegebenen Dosis wurde als unveränderte Substanz in den Faeces wiedergefunden. Bei Bisphenol A wurde die Ausscheidung zudem durch einen ausgeprägten enterohepatischen Kreislauf verzögert. Im zweiten Teil der Arbeit wurden zunächst empfindliche GC/MS- und HPLC-Methoden zur Quantifizierung der Verbindungen in humanen Plasma- und Urinproben entwickelt. Danach wurden freiwillige Probanden oral mit jeweils 5 mg Daidzein bzw. d16-Bisphenol A exponiert, um Daten zur Biotransformation und Toxikokinetik der beiden Substanzen im Mensch zu erhalten. Wegen des deutlich meßbaren Hintergrundes an Bisphenol A, das in allen Kontrollproben nachweisbar war, wurde für die Humanstudie die deuterierte Verbindung gegeben, für die kein störender Hintergrund meßbar war. Die Bioverfügbarkeit der Gesamt-Substanz (freie Verbindung + Konjugate) im Menschen war in beiden Fällen deutlich höher als in der Ratte. Von Daidzein wurden 40 Prozent (Ratte 10 Prozent), von Bisphenol A > 95 Prozent (Ratte 13 Prozent) der applizierten Dosis im Urin der Probanden wiedergefunden. Dabei zeigte sich ein sehr effizienter Phase II-Metabolismus; weniger als 1 Prozent der Glucuronid-Konjugatkonzentrationen wurden als unveränderte Substanz gefunden. Das Glucuronid stellte in beiden Fällen den einzigen nachweisbaren Metaboliten dar. Die Elimination von Daidzein und Bisphenol A verlief in den beiden Studien sehr schnell nach einer Kinetik erster Ordnung. Im Gegensatz zu der Ratte konnten auch bei Bisphenol A keine Auffälligkeiten in den Ausscheidungskurven beobachtet werden, Hinweise auf einen enterohepatischen Kreislauf im Menschen wurden nicht gefunden. Im Falle von Bisphenol A wurde fast die komplette applizierte Dosis (> 95 Prozent) in Form des Glucuronides im Urin wiedergefunden. Anhand der erhobenen Daten wurde anschließend eine Beurteilung des Risikos für den Menschen abgegeben. N2 - Daidzein and bisphenol a are two representatives of a class of substances known as endocrine disrupters. A common mark of these compounds is their affinity to at least one of two estrogen receptors in vitro. This leads to speculation on how such compounds may interfere with hormonal regulation in animals and humans. As an important representative of the group of phytoestrogens daidzein has been chosen. Daidzein occurs in high concentrations in plants like soy, thus contributing to a human exposure via food. Bisphenol a has been chosen for this thesis because it probably is the most important industrial chemical suspected of endocrine activity, considering worldwide annual production numbers. Biotransformation and kinetics of the two model substances, daidzein and bisphenol a, have been elucidated. The results showed that oral bioavailability of the two chemicals has been very low. Less than ten percent of the dose given could be recovered from urine of animals. The major metabolite in biotransformation of both daidzein and bisphenol a proved to be the glucuronide of the respective compound. Additionally, after application of daidzein to rats, daidzein sulfate could be identified specifically in male animals only. The percentage of unconjugated parent compound in both studies has been shown to be between one and three percent of the dose given. No further metabolites could be found after oral administration of bpa to rats; after oral administration of daidzein to rats, equol and o-dma could be identified as minor metabolites in feces of animals. In both studies, the major part of the administered dose could be recovered as unchanged parent compound from feces. In the case of BPA, elimination was slowed by the occurence of enterohepatic circulation. This explains why the elimination of BPA and its conjugates was slow and did not follow a first-order kinetics. Furthermore, sensitive analytical methods (HPLC and GC/MS) were developed to allow quantification of low amounts of the two model compounds in human plasma und urine samples. To obtain information on the biotransformation and toxicokinetics in humans, volunteers were given 5 mg of either daidzein or d16-bisphenol a. Because of a rather high background for bisphenol a in control samples, deuterated bisphenol a had been chosen for the human study. Bioavailability of total substance (i.e. unconjugated + conjugated compound) in humans was markedly higher than in rats. After controlled exposure to daidzein 40 per cent (as compared to 10 per cent in rats) could be recovered from urine, in the case of d16-bpa more than 95 per cent (as compared to 13 per cent in rats) could be recovered. Less than 1 per cent of the concentration of the conjugated compound could be found as unchanged parent compound. In both cases, the glucuronide has been identified as sole metabolite in human volunteers. Elimination of both substances was quick and followed a first order kinetics. In the case of d16-bisphenol a, all of the given dose could be recovered from urine. With the data gathered, an assessment of the risk posed by these chemicals to humans was given. KW - Phytoöstrogen KW - Bisphenol A KW - Biotransformation KW - Toxikologie KW - Biotransformation KW - Toxikokinetik KW - Phytoöstrogene KW - Xenoöstrogene KW - Daidzein KW - Bisphenol A KW - Metabolismus KW - biotransformation KW - toxicokinetics KW - phytoestrogens KW - xenoestrogens KW - daidzein KW - bisphenol A KW - metabolism Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1180438 ER - TY - CHAP A1 - Das, Hirakjyoti A1 - Zografakis, Alexandros A1 - Oeljeklaus, Silke A1 - Warscheid, Bettina T1 - Analysis of Yeast Peroxisomes via Spatial Proteomics T1 - Analyse von Hefeperoxisomen durch Spatial Proteomik T2 - Peroxisomes N2 - Peroxisomes are ubiquitous organelles with essential functions in numerous cellular processes such as lipid metabolism, detoxification of reactive oxygen species and signaling. Knowledge of the peroxisomal proteome including multi-localized proteins and, most importantly, changes of its composition induced by altering cellular conditions or impaired peroxisome biogenesis and function is of paramount importance for a holistic view on peroxisomes and their diverse functions in a cellular context. In this chapter, we provide a spatial proteomics protocol specifically tailored to the analysis of the peroxisomal proteome of baker's yeast that enables the definition of the peroxisomal proteome under distinct conditions and to monitor dynamic changes of the proteome including the relocation of individual proteins to a different cellular compartment. The protocol comprises subcellular fractionation by differential centrifugation followed by Nycodenz density gradient centrifugation of a crude peroxisomal fraction, quantitative mass spectrometric measurements of subcellular and density gradient fractions and advanced computational data analysis, resulting in the establishment of organellar maps on a global scale. KW - peroxisome purification KW - mass spectrometry KW - label-free quantification KW - protein localization KW - spatial proteomics KW - Saccharomyces cerevisiae KW - differential centrifugation KW - density gradient centrifugation KW - organellar mapping Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327532 PB - Springer ET - accepted version ER - TY - JOUR A1 - De Giorgi, Valeria A1 - Buonaguro, Luigi A1 - Worschech, Andrea A1 - Tornesello, Maria Lina A1 - Izzo, Francesco A1 - Marincola, Francesco M. A1 - Wang, Ena A1 - Buonaguro, Franco M. T1 - Molecular Signatures Associated with HCV-Induced Hepatocellular Carcinoma and Liver Metastasis JF - PLoS ONE N2 - Hepatocellular carcinomas (HCCs) are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV) infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis. Conclusions: A diagnostic molecular signature complementing conventional pathologic assessment was identified. KW - identification KW - hepatitis C virus KW - United States KW - gene expression KW - class I KW - endoplasmic reticulum KW - motile phenotype KW - bladder cancer KW - up-regulation KW - target Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131155 VL - 8 IS - 2 ER - TY - JOUR A1 - Denk, S. A1 - Schmidt, S. A1 - Schurr, Y. A1 - Schwarz, G. A1 - Schote, F. A1 - Diefenbacher, M. A1 - Armendariz, C. A1 - Dejure, F. A1 - Eilers, M. A1 - Wiegering, Armin T1 - CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer JF - International Journal of Colorectal Disease N2 - Background Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that decreasing MYC expression may have significant therapeutic value. CIP2A is an oncogenic factor that regulates MYC expression. CIP2A is overexpressed in colorectal cancer (CRC), and its expression levels are an independent marker for long-term outcome of CRC. Previous studies suggested that CIP2A controls MYC protein expression on a post-transcriptional level. Methods To determine the mechanism by which CIP2A regulates MYC in CRC, we dissected MYC translation and stability dependent on CIP2A in CRC cell lines. Results Knockdown of CIP2A reduced MYC protein levels without influencing MYC stability in CRC cell lines. Interfering with proteasomal degradation of MYC by usage of FBXW7-deficient cells or treatment with the proteasome inhibitor MG132 did not rescue the effect of CIP2A depletion on MYC protein levels. Whereas CIP2A knockdown had marginal influence on global protein synthesis, we could demonstrate that, by using different reporter constructs and cells expressing MYC mRNA with or without flanking UTR, CIP2A regulates MYC translation. This interaction is mainly conducted by the MYC 5′UTR. Conclusions Thus, instead of targeting MYC protein stability as reported for other tissue types before, CIP2A specifically regulates MYC mRNA translation in CRC but has only slight effects on global mRNA translation. In conclusion, we propose as novel mechanism that CIP2A regulates MYC on a translational level rather than affecting MYC protein stability in CRC. KW - CIP2A KW - MYC KW - translation KW - colon cancer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280092 VL - 36 IS - 5 ER -