TY - JOUR A1 - Metje-Sprink, Janina A1 - Groffmann, Johannes A1 - Neumann, Piotr A1 - Barg-Kues, Brigitte A1 - Ficner, Ralf A1 - Kühnel, Karin A1 - Schalk, Amanda M. A1 - Binotti, Beyenech T1 - Crystal structure of the Rab33B/Atg16L1 effector complex JF - Scientific Reports N2 - The Atg12-Atg5/Atg16L1 complex is recruited by WIPI2b to the site of autophagosome formation. Atg16L1 is an effector of the Golgi resident GTPase Rab33B. Here we identified a minimal stable complex of murine Rab33B(30-202) Q92L and Atg16L1(153-210). Atg16L1(153-210) comprises the C-terminal part of the Atg16L1 coiled-coil domain. We have determined the crystal structure of the Rab33B Q92L/Atg16L1(153-210) effector complex at 3.47 angstrom resolution. This structure reveals that two Rab33B molecules bind to the diverging alpha -helices of the dimeric Atg16L1 coiled-coil domain. We mutated Atg16L1 and Rab33B interface residues and found that they disrupt complex formation in pull-down assays and cellular co-localization studies. The Rab33B binding site of Atg16L1 comprises 20 residues and immediately precedes the WIPI2b binding site. Rab33B mutations that abolish Atg16L binding also abrogate Rab33B association with the Golgi stacks. Atg16L1 mutants that are defective in Rab33B binding still co-localize with WIPI2b in vivo. The close proximity of the Rab33B and WIPI2b binding sites might facilitate the recruitment of Rab33B containing vesicles to provide a source of lipids during autophagosome biogenesis. KW - autophagosome formation KW - ATG12-ATG5 conjugate KW - LC3 lipidation KW - binding sites KW - ATG proteins KW - RAB GTPases KW - family KW - membrane KW - recognition KW - proppins Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230396 VL - 10 ER - TY - THES A1 - Meyr, Marcus T1 - Untersuchung rekombinanter Vakziniaviren MVA auf Eignung als Vektorimpfstoff gegen Infektionen mit dem Hepatitis-C-Virus T1 - Evaluation of recombinant vaccinia virus MVA as an experimental vaccine against infections with the hepatitis c virus N2 - Die Infektion mit dem Hepatitis C Virus (HCV) gilt als eine der Hauptursachen für chronische Hepatitiden und führt häufig zu Leberzirrhose und Leberkarzinom. Weltweit sind etwa 200 Millionen Menschen mit diesem Virus infiziert. Die aktuelle Behandlung der Hepatitis C mit Ribavirin und Interferon-alpha ist langwierig, beeinträchtigt durch Nebenwirkungen und führt nur bei einem Teil der Patienten zur Heilung. Aus diesem Grund ist die Entwicklung eines präventiv oder therapeutisch einsetzbaren Impfstoffes gegen HCV-Infektionen sehr wünschenswert. Das hoch attenuierte und in seiner Vermehrungsfähigkeit extrem eingeschränkte modifizierte Vakziniavirus Ankara (MVA) gehört zu den viel versprechendsten Kandidaten für die Entwicklung neuartiger rekombinanter Virusimpfstoffe. Im Rahmen dieser Arbeit sollten erste rekombinante MVA-HCV-Viren auf ihre Eignung als Impfstoffe untersucht werden. Als Zielantigene dienten wichtige virale Strukturproteine, darunter das unter den HCV-Genotypen hoch konservierte Nukleokapsidprotein Core, sowie das Nichtstrukturprotein NS3, welches als regulatorisches Virusprotein im HCV-Replikationszyklus eine wichtige Rolle spielt, untersucht werden. Hierfür wurden die rekombinanten MVA-Viren MVA-P7.5-HCV core (MVA-core) und MVA P7.5-HCV-1-830 (MVA-1-830) eingesetzt, welche für die HCV-Strukturproteine codierende Gensequenzen unter der Kontrolle des Vakziniavirus-spezifischen Promotors P7.5 exprimieren. Zusätzlich wurde ein weiteres rekombinantes Virus MVA-P7.5-HCV-NS3 (MVA-NS3) konstruiert, welches die Gensequenz für das HCV-Nichtstrukturprotein NS3 trägt. Alle Vektorviren erwiesen sich in in vitro Experimenten als genetisch stabil, erlaubten die Produktion der rekombinanten HCV-Antigene in infizierten Zielzellen und waren somit geeignet für in vivo Untersuchungen im Mausmodell. Da HCV-spezifischen CD8+-T-Zellantworten eine wichtige Rolle bei der Ausheilung einer Hepatitis C zugeschrieben wird, sollte insbesondere die Anregung dieser Immunantworten untersucht werden. Dabei zeigte sich, dass bereits eine einmalige Immunisierung mit MVA-core, MVA-1-830 oder MVA-NS3 ausreichend ist, um HCV-spezifische CD8+-T-Zellantworten zu induzieren. Diese CD8+-T-Lymphozyten konnten ex vivo in Epitop-spezifischer Weise zur Interferon-gamma-Synthese stimuliert werden, ließen sich Antigen-spezifisch in vitro expandieren und waren in der Lage, HCV-spezifische Zielzellen zu erkennen und zu lysieren. Zudem konnte eine Steigerung der Immunantworten durch Mehrfachapplikation der MVA-Vakzinen erzielt werden. Im Folgenden gelang es, die HCV-spezifischen CD8+-T-Zellantworten durch kombinierte Applikation der MVA-Vakzinen mit anderen rekombinanten Virusimpfstoffen wie Semliki-Forest-Viren oder Adenoviren, sowie mit Plasmid-DNA weiter zu verstärken. Solche Impfstrategien sind viel versprechend, da sich die gemeinsame Komponente der eingesetzten, unterschiedlichen Vektorvakzinen auf die rekombinanten Antigene beschränkt und eine starke Immunreaktion auf diese Antigene angeregt wird. Die in dieser Arbeit gewonnenen Erkenntnisse erlauben die Schlussfolgerung, dass rekombinante MVA-Vektoren, die HCV-spezifische Antigene produzieren, dafür geeignet sind, um nach Impfapplikation HCV-spezifische zelluläre Immunantworten zu induzieren. Die im Tiermodell erarbeiteten, optimierten Immunisierungsstrategien liefern eine erste Grundlage für weitere Immunisierungsexperimente in Primatenmodellen und zur Planung erster klinischer Studien im Menschen. N2 - Infections with hepatitis C virus (HCV) are considered as one of the main causes for chronic hepatitis and often lead to liver cirrhosis and hepatocellular carcinoma. About 200 million people worldwide are chronically infected with this virus. The current antiviral therapy relying on ribavirin and interferon-alpha is time consuming, often impaired by side effects and leads to resolution of the disease in only a part of the patients. For this reason, the development of a prophylactic or therapeutic vaccine against HCV infections is very desirable. The highly attenuated and replication deficient modified vaccinia virus Ankara (MVA) is one of the most promising candidates for development of new generation virus vaccines. Purpose of this work was to evaluate first recombinant MVA HCV viruses for their suitability as vaccines against hepatitis C. HCV structural proteins, amongst them the highly conserved core protein, as well as the non-structural protein NS3, which plays a key regulatory role in the HCV replication cycle, served as target antigens for MVA vaccine development. First, we investigated recombinant MVA viruses MVA-P7.5-HCV-core (MVA-core) and MVA-P7.5-HCV-1-830 (MVA-1-830), which express the coding gene sequences for HCV structural proteins under control of the vaccinia virus specific promoter P7.5. Second, we constructed and characterized a recombinant virus MVA-P7.5-HCV-NS3 (MVA-NS3) that carries the gene sequence for the HCV non-structural protein NS3. As demonstrated by in vitro experiments, all vector viruses were genetically stable, permitted the production of recombinant HCV antigens in infected target cells and were thus suitable for in vivo experiments using mouse models. Since HCV specific CD8+ T cell responses are considered important in hepatitis C virus clearance, special emphasis was given to the analysis of induction of this kind of immune response. When tested in first vaccination experiments, already a single immunization with MVA-core, MVA-1-830 or MVA-NS3 was sufficient to induce HCV specific CD8+ T cell responses. These CD8+ T lymphocytes could be stimulated ex vivo in an epitope specific manner, resulting in interferon-gamma production, could be further expanded in vitro and were able to recognize and lyse HCV specific target cells. Additionally, multiple applications of the MVA vaccines resulted in an increase of these cellular immune responses. In a final series of experiments, the possibility to further amplify HCV specific CD8+ T cell responses could be demonstrated by using combined applications of MVA with other experimental gene transfer vaccines based on Semliki Forest virus, adenovirus or plasmid DNA. Overall, the results of this work clearly suggest that recombinant MVA vectors delivering HCV specific antigens, are suitable candidate vaccines for induction of HCV specific cellular immune responses upon immunization. Importantly, the definition of optimized immunization strategies offers a rational basis for further immunization studies in primate models and for the conception of first clinical studies in humans. KW - Vaccinia-Virus KW - Impfung KW - Hepatitis-C-Virus KW - Hepatitis KW - Vakzinia KW - MVA KW - Immunisierung KW - Impfung KW - hepatitis KW - vaccinia KW - mva KW - immunisation KW - vaccination Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11388 ER - TY - JOUR A1 - Minev, Boris R. A1 - Lander, Elliot A1 - Feller, John F. A1 - Berman, Mark A1 - Greenwood, Bernadette M. A1 - Minev, Ivelina A1 - Santidrian, Antonio F. A1 - Nguyen, Duong A1 - Draganov, Dobrin A1 - Killinc, Mehmet O. A1 - Vyalkova, Anna A1 - Kesari, Santosh A1 - McClay, Edward A1 - Carabulea, Gabriel A1 - Marincola, Francesco M. A1 - Butterfield, Lisa H. A1 - Szalay, Aladar A. T1 - First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells JF - Journal of Translational Medicine N2 - Background ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). Methods Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. Results No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days—an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients’ blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. Conclusions Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN#10201650) on October 22, 2018. KW - clinical trial KW - oncolytic vaccinia virus KW - stromal vascular fraction KW - immunotherapy of cancer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224105 VL - 17 ER - TY - THES A1 - Müller, Nora T1 - Masern Virus Interferenz mit T-Zell-Aktivierung : Einfluß auf Zytoskelettdynamik, Mobilität und Interaktion mit Dendritischen Zellen T1 - Measles Virus interference with T cell activation: effect on cytoskeleton dynamics, mobility and interaction with dendritic cell N2 - Der Kontakt humaner T-Zellen mit dem MV Glykoproteinkomplex interferiert mit der CD3/CD28 stimulierten Aktivierung von PI3/Akt-Kinase Signalwegen. Damit verbunden ist der ineffiziente Transport PH-Domänen-enthaltender Proteine in Membran-rafts, wie der Akt-Kinase und Vav, den Guaninnukleotid-Austauschfaktor von Rho GTPasen. Es konnte gezeigt werden, dass infolge des MV-Kontaktes die CD3/CD28 stimulierte Aktivität der Rho GTPasen Cdc42 und Rac1 inhibiert ist. Dagegen war in MV-behandelten Zellen eine leichte RhoA Aktivierung festzustellen. Rho GTPasen spielen eine kritische Rolle in der Regulation von Zytoskelettorganisation von T-Lymphozyten. Übereinstimmend damit wurde gezeigt, dass der Kontakt mit MV die CD3/CD28 costimulierte Aktivierung und Polymerisation des F-Aktins inhibiert. Damit verbunden ist die reduzierte Fähigkeit MV-behandelter T-Zellen auf Fibronektin- und mit CD3/CD28 Antikörpern-beschichteten Objektträgern zu polarisieren. Die Ausbildung F-Aktin-getriebener morphologischer Veränderungen, wie Filopodien, Lamellipodien und Uropodien, ist drastisch reduziert. Rasterelektronenmikroskopische Auf-nahmen zeigten in nicht-stimulierten und CD3/CD28 costimulierten MV-behandelten T-Zellen einen nahezu kompletten Verlust an Mikrovilli und Lamellipodien. Die Bindung von MV induziert die Dephosphorylierung des F-Aktin–bindenden Proteins Cofilin und der ERM-Proteine. Es konnte demonstriert werden, dass der MV-Kontakt die Ausbildung einer reifen immunologischen Synapse stört. Trotz der morphologischen Veränderungen konjugieren MV-behandelte T-Zellen mit DCs. Die Anzahl MV-behandelter T-Zellen, die mit DCs inter-agieren, ist vergleichbar mit der mock-behandelter T-Zellen. Allerdings zeigt die 3-dimensionale Rekonstruktion der DC/T-Zell-Kontaktzone, dass in MV-behandelten T-Zellen die zentrale Akkumulation und Clusterbildung des CD3-Moleküls gestört ist und keine monozentrische Synapse ausbildet wird. Desweiteren erfolgt die Relokalisation des MTOC in T-Zellen in Richtung der DC unvollständig. Zusammenfassend kann gesagt werden, dass der MV Glykoproteinkomplex mit essentiellen Schritten einer erfolgreichen T-Zell-Aktivierung während der APC/T-Zell-Interaktion interferiert. N2 - It was previously shown, that CD3/CD28-induced activation of PI3/Akt kinase pathway and proliferation are impaired in T cells after contact with the MV glycoprotein complex. As a result of PI3 kinase inactivation, membrane recruitment of PH domain containing proteins such as Akt kinase and the Rho GEF Vav, was abolished after CD3/CD28 coligation. The binding of MV interferes with CD3/CD28 coligation induced GTP-loading of the Rho GTPases, Cdc42 and Rac1. GTP-loading of RhoA was not impaired after MV treatment. Rather, RhoA was slightly activated by MV alone and this was enhanced upon CD3/CD28 ligation. Consisting with the failure of CD3/CD28 ligation to induce GTP-loading of Cdc42 and Rac1, polymerization of F-actin and morphological changes required for the formation of a contact plane such relaxation, flattening did not occur in MV treated T cells. MV treatment also efficiently interfered with the ability of T cells to adhere to ECM components. In contrast to mock treated, the majority of MV exposed T cells failed to aquire a polar front-rear organization. Thus, MV induced signaling efficiently impairs stimulation dependent reorganisation of the F-actin cytoskeleton and adhesion in T cells. As revealed by scanning electron microscopy, exposure of T cells to MV induced an almost complete breakdown of microvillar structures which could also not be restored upon CD3/CD28 costimulation. The almost complete collapse of membrane protrusions in MV treated cells was associated with reduced phosphorylation levels of cofilin and ERM proteins. The ability of MV exposed T cells to interact with DCs and form DC/T-cells conjugates is not affected. MV signaling to T cells interfered with clustering and recruitment of CD3 into the central supramolecular activation cluster of the IS. MV also prevents the redistribution of the MTOC in T cells towards the synapse. In summary, MV interferes with stimulated cytoskeleton remodeling, and this disturbes the ability of T cells to adhere, spread and cluster receptors essential for sustained activation. The signal given by the MV glycoprotein complex apparently prevents essential steps in APC/T cells interactions which are required for migration and successful activation. KW - Masernvirus KW - T-Lymphozyt KW - Immunsuppression KW - Zellskelett KW - Dendritische Zelle KW - Masern Virus KW - Immunsuppression KW - Costimulation KW - Zytoskelett KW - Dendritische Zellen KW - measles virus KW - immunosuppression KW - costimulation KW - cytoskeleton KW - dendritic cells Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17953 ER - TY - THES A1 - Neuenkirchen, Nils T1 - An in vitro system for the biogenesis of small nuclear ribonucleoprotein particles T1 - Die Biogenese kleiner nukleärer Ribonukleinprotein Partikel - ein in vitro System N2 - Most protein-encoding genes in Eukaryotes are separated into alternating coding and non-coding sequences (exons and introns). Following the transcription of the DNA into pre-messenger RNA (pre-mRNA) in the nucleus, a macromolecular complex termed spliceosome removes the introns and joins the exons to generate mature mRNA that is exported to the cytoplasm. There, it can be interpreted by ribosomes to generate proteins. The spliceosome consists of five small nuclear ribonucleic acids (snRNAs) and more than 150 proteins. Integral components of this complex are RNA-protein particles (RNPs) composed of one or two snRNAs, seven common (Sm) and a various number of snRNP-specific proteins. The Sm proteins form a ring-structure around a conserved site of the snRNA called Sm site. In vitro, Sm proteins (B/B', D1, D2, D3, E, F, G) and snRNA readily assemble to form snRNPs. In the context of the cell, however, two macromolecular trans-acting factors, the PRMT5 (protein arginine methyltransferases type 5) and the SMN (survival motor neuron) complex, are needed to enable this process. Initially, the Sm proteins in the form of heterooligomers D1/D2, D3/B and F/E/G are sequestered by the type II methyltransferase PRMT5. pICln, a component of the PRMT5 complex, readily interacts with Sm proteins to form two distinct complexes. Whereas the first one comprises pICln and D3/B the second one forms a ring consisting of pICln, D1/D2 and F/E/G (6S). It has been found that pICln prevents the premature interaction of snRNAs with the Sm proteins in these complexes and thus functions as an assembly chaperone imposing a kinetic trap upon the further assembly of snRNPs. PRMT5 catalyzes the symmetrical dimethylation of arginine residues in B/B', D1 and D3 increasing their affinity towards the SMN complex. Finally, the SMN complex interacts with the pICln-Sm protein complexes, expels pICln and mediates snRNP assembly in an ATP-dependent reaction. So far, only little is known about the action of PRMT5 in the early phase of snRNP assembly and especially how the 6S complex is formed. Studies of this have so far been hampered by the unavailability of soluble and biologically active PRMT5 enzyme. The composition of the SMN complex and possible functions of individual subunits have been elucidated or hypothesized in recent years. Still, the exact mechanism of the entire machinery forming snRNPs is poorly understood. In vivo, reduced production of functional SMN protein results in the neurodegenerative disease spinal muscular atrophy (SMA). How specific SMN mutations that have been found in SMA patients cause the disease remains elusive, yet, are likely to interfere with either SMN complex stability or snRNP assembly. The aim of this work was to establish an in vitro system to recapitulate the cytoplasmic assembly of snRNPs. This was enabled by the recombinant production of all PRMT5 and SMN complex components as well as Sm proteins in a combination of bacterial and insect cell expression systems. Co-expression of human PRMT5 and its direct interaction partner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) insect cells resulted for the first time in soluble and biologically active enzyme. Recombinant PRMT5/WD45 formed complexes with Sm protein heterooligomers as well as pICln-Sm protein complexes but not with F/E/G alone. Also, the enzyme exhibited a type II methyltransferase activity catalyzing the mono- (MMA) and symmetrical dimethylation (sDMA) of Sm proteins B, D1 and D3. Two experimental setups were devised to quantitatively analyze the overall methylation of substrates as well as to identify the type and relative abundance of specific methylation types. Methylation of Sm proteins followed Michaelis-Menten kinetics. Complex reconstitutions and competition of the methylation reaction indicate that 6S is formed in a step-wise manner on the PRMT5 complex. The analysis of the methylation type could be applied to deduce a model of sequential MMA and sDMA formation. It was found that large Sm protein substrate concentrations favored monomethylation. Following a distributive mechanism this leads to the conclusion that PRMT5 most likely confers partial methylation of several different substrate proteins instead of processing a single substrate iteratively until it is completely dimethylated. Finally, the human SMN complex was reconstituted from recombinant sources and was shown to be active in snRNP formation. The introduction of a modified SMN protein carrying a mutation (E134K) present in spinal muscular atrophy (SMA) proved that mutated complexes can be generated in vitro and that these might be applied to elucidate the molecular etiology of this devastating disease. N2 - Der Großteil der Protein-kodierenden Gene in Eukaryoten ist in kodierende und nicht-kodierende Regionen unterteilt - sogenannte Exons und Introns. Damit aus einem Gen ein Protein hergestellt werden kann, muss zunächst die genomische DNA im Rahmen der Translation in prä-messenger RNA (prä-mRNA; Boten-RNA) übersetzt werden. Aus dieser prä-mRNA werden anschließend durch einen makromolekularen Komplex (Spleißosom) die Introns entfernt und die kodieren Exons zusammengefügt. Die daraus resultierende gereifte mRNA dient letztendlich den Ribosomen als Vorlage zur Herstellung von Proteinen. Das Spleißosom besteht aus fünf snRNAs (small nuclear ribonucleic acids) und über 150 weiteren Proteinen. Zentrale Komponenten dieses Komplexes sind RNA-Protein Partikel (RNPs), die aus einer bzw. zwei snRNAs, sieben gemeinsamen (Sm) und weiteren snRNP-spezifischen Proteinen bestehen. Die Sm Proteine (B/B', D1, D2, D3, E, F and G) bilden eine Ringstruktur um eine konservierte Sequenz (Sm-site) der snRNA aus. In vitro erfolgt die Ausbildung dieser Struktur spontan. Im zellulären Kontext wird die Zusammenlagerung dieser snRNPs allerdings erst durch zwei makromolekulare, trans-agierende Proteinkomplexe, den PRMT5 und den SMN Komplex, ermöglicht. Zu Beginn interagieren die Sm Proteine als heterooligomere Strukturen bestehend aus D1/D2, D3/B und F/E/G mit der Typ II Methyltransferase PRMT5. pICln, eine Komponente des PRMT5 Komplexes, interagiert mit den Sm Proteinen und bildet zwei spezifische Komplexe aus. Während der erste aus pICln und D3/B besteht, lagern sich im zweiten die Sm proteine D1/D2 und F/E/G mit pICln zu einem Ring zusammen (6S Komplex). Diese Interaktion erzeugt eine kinetische Falle, so dass die Sm Proteine sich nicht mehr spontan an die snRNA anlagern können und somit die snRNP Biogenese verzögert wird. PRMT5 katalysiert die symmetrische Dimethylierung von Argininresten in B/B', D1 und D3, wodurch deren Affinität zum SMN Komplex erhöht wird. Letztendlich assoziert der SMN Komplex mit den zuvor erzeugten pICln-Sm Protein Komplexen, entlässt pICln und ermöglicht im weiteren die Zusammenlagerung von snRNPs in einer ATP-abhängigen Reaktion. Aktuell ist über die Funktion von PRMT5 in der frühen Phase der snRNP Biogenese wenig bekannt. Dies trifft insbesondere auf die Zusammenlagerung des 6S Komplexes zu. Biochemische Untersuchungen waren bis jetzt nahezu unmöglich, da rekombinant hergestelltes Protein entweder unlöslich oder biochemisch inaktiv war. In den vergangenen Jahren wurde viel über die Zusammensetzung des SMN Komplexes sowie über die Funktionen einzelner Untereinheiten herausgefunden aber auch spekuliert. Trotz alledem ist der genaue Mechanismus der snRNP Biogenese noch nahezu unbekannt. In vivo sind verringerte Mengen an funktionalem SMN Protein der Ausschlaggeber für die neurodegenerative Krankheit Spinale Muskelatrophie (SMA). Welchen Effekt Mutationen im SMN Protein haben, die in SMA Patienten festgestellt wurden ist ungewiss. Es ist allerdings zu vermuten, dass diese entweder die Integrität des SMN Komplexes negativ beeinflussen oder störend auf die snRNP Biogenese wirken. Das Ziel dieser Arbeit war es ein in vitro-System zu generieren, um die zytoplasmatische snRNP Biogenese biochemisch zu untersuchen. Dies geschah durch die rekombinante Produktion aller PRMT5 und SMN Komplex Komponenten sowie der Sm Proteine in einer Kombination von bakterieller und Insektenzell-Expression. Durch die Ko-Expression von humanem PRMT5 und dem Interaktionspartner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) Insekten Zellen konnte erstmals lösliches und enzymatisch aktives Protein hergestellt werden. Rekombinantes PRMT5/WD45 bildete Komplexe mit heterooligomeren Sm Proteinen sowie pICln-Sm Protein Komplexen, allerdings nicht mit F/E/G. Zusätzlich konnte eine Typ II Methyltransferase Aktivität dadurch nachgewiesen werden, dass die Sm Protein B, D1 und D3 monomethyliert (MMA) und symmetrisch dimethyliert (sDMA) werden können. Zur weiteren Untersuchung wurden zwei experimentelle Ansätze erarbeitet, um die allgemeine Methylierungsaktivität sowie das relative Vorhandensein von Mono- und Dimethylargininen zu bestimmen. Es konnte gezeigt werden, dass die Methylierung der Sm Proteine einer Michael-Menten Kinetik folgt. Die Rekonstitution von PRMT-Sm Protein Komplexen sowie the Methylierungsreaktionen deuten auf eine schrittweise Zusammenlagerung von 6S auf dem PRMT5 Komplex hin. ... KW - Biogenese KW - Small nuclear RNP KW - Methylierung KW - SMN KW - PRMT5 KW - SMN KW - PRMT5 KW - snRNP KW - sDMA KW - arginine methylation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71300 ER - TY - THES A1 - Nube, Jacqueline Sui Lin T1 - Comparative Analysis of Vaccinia Virus-Encoded Markers Reflecting Actual Viral Titres in Oncolytic Virotherapy T1 - Vergleichende Analyse von Vaccinia Virus-Kodierten Markern in Zusammenhang mit den viralem Titre in der onkolytischen Virotherapie N2 - Using viruses to treat cancer is a novel approach to an age-old disease. Oncolytic viruses are native or recombinant viruses that have the innate or enhanced capability to infect tumour cells, replicate within the tumour microenvironment and subsequently lyse those cells. One representative, the vaccinia virus (VACV), belongs to the orthopoxvirus genus of the Poxviridae family. GLV-1h68, a recombinant and attenuated vaccinia virus devel- oped by the Genelux Corporation, is a member of this family currently being tested in various phase I/II clinical trials under the name GL-ONC1. It has been shown to specif- ically replicate in tumour cells while sparing healthy tissue and to metabolise prodrug at or transport immunological payloads to the site of affliction. Since imaging modalities offer little insight into viral replication deep within the body, and because oncolytic virotherapy is dependent on replication within the target tissue, the need for a monitoring system is evident. Pharmacokinetic analysis of this oncolytic agent was to give insight into the dynamics present in tumours during treatment. This, in turn, would give clinicians the opportunity to monitor the efficacy as early as possible after the onset of treatment, to observe treatment progression and possibly to gauge prognosis, without resorting to invasive procedures, e.g. biopsies. A criteria for viable biomarkers was that it had to be directly dependent on viral replica- tion. Ideally, a marker for treatment efficacy would be specific to the treatment modality, not necessarily the treatment type. Such a marker would be highly detectable (high sen- sitivity), specific for the treatment (high specificity), and present in an easily obtained specimen (blood). Taking this into consideration, the biomarkers were chosen for their potential to be indicators of viral replication. Thus, the biomarkers analysed in this thesis are: the native proteins expressed by the viral genes A27L and B5R, the virally encoded recombinant proteins β-galactosidase, β-glucuronidase, green fluorescent protein (GFP), carboxypeptidase G2 (CPG2) and carcinoembryonic antigen (CEA). Each marker is under the control of one of five different promoters present. All recombinant viruses used in this thesis express A27L, B5R, GFP and β-glucuronidase and all are derived from the parental virus GLV-1h68. In addition to these markers, GLV-1h68 expresses β-galactosidase; GLV-1h181 expresses CPG2. [...] N2 - Onkolytische Viren sind natu ̈rliche oder rekombinante Viren, die die angeborene oder erworbene F ̈ahigkeit besitzen, Tumorzellen zu infizieren, sich in ihnen zu replizieren und anschließend diese Zellen zu lysieren. Ein Vertreter dieser Viren, das Vaccinia-Virus (VACV) geho ̈rt zu der Gattung der Orthopoxviren der Familie der Poxviridae. GLV- 1h68 ist ein von der Fa. Genelux entwickelter, rekombinant attenuierter Vaccinia-Virus Stamm (rVACV). Er hat die nachgewiesene Fa ̈higkeit, ausschließlich in Tumorzellen zu replizieren und dabei gesundes Gewebe zu verschonen. Viren dieses Stamms k ̈onnen auch sogenannte Prodrugs lokal am Tumor metabolisieren und/oder immunologische Payloads in die Tumorzellen einschleusen. Die Effizienz von GLV-1h68 (auch bezeichnet als GL- ONC1) wird zurzeit in mehreren klinischen Studien der Phase I/II getestet. Da die derzeitigen bildgebenden Verfahren wenig Aufschluss u ̈ber die virale Replikation und damit den therapeutischen Effekt des Virus geben, ist es dringend notwendig, eine Methode zu entwickeln, die Virusreplikation anhand von Blutproben und nicht-invasiver Untersuchungsmethoden nachzuweisen. Eine pharmakokinetische Analyse des Virus sollte Informationen u ̈ber die Dynamik geben, die sich w ̈ahrend der Therapie im Tumorinneren manifestiert. Dies gibt wiederum den behandelnden A ̈rzten die Mo ̈glichkeit, sowohl den Fortschritt also auch den Erfolg der Therapie im Patienten zu verfolgen. Daher wurden in dieser Arbeit verschiedene biologische Merkmale des Virus auf ihr Potenzial als Indikator fu ̈r die Virusreplikation getestet. Ein biologisches Merkmal kann als ein sogenannter Biomarker der Virustherapie ange- sehen werden, wenn dessen Expression in direkter Abha ̈ngigkeit zur viralen Replikation steht. Zusammen mit der Voraussetzung, im Blut einfach und spezifisch nachweisbar zu sein, kommen folglich bei der onkolytischen Virotherapie nur Proteine in Frage, die viral kodiert sind. Die Biomarker, die im Rahmen der oben genannten Problematik in dieser Arbeit diskutiert wurden, sind das exprimierte Protein des A27L-Gens, das B5R- exprimierte Glykoprotein, β-Galaktosidase (β-Gal), β-Glukuronidase (β-Glc), das gru ̈n- fluoreszierende Protein (GFP), Carboxypeptidase G2 (CPG2) und das carcinoembryonale Antigen (CEA). [...] KW - Onkolyse KW - Vaccinia-Virus KW - Biomarker KW - Virotherapie KW - Biomarker KW - Biomarker KW - Virotherapy KW - Tumour KW - Poxviridae KW - Oncolysis KW - Pockenviren KW - Tumor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85689 ER - TY - JOUR A1 - Paknia, Elham A1 - Chari, Ashwin A1 - Stark, Holger A1 - Fischer, Utz T1 - The Ribosome Cooperates with the Assembly Chaperone pICln to Initiate Formation of snRNPs JF - Cell Reports N2 - The formation of macromolecular complexes within the crowded environment of cells often requires aid from assembly chaperones. PRMT5 and SMN complexes mediate this task for the assembly of the common core of pre-mRNA processing small nuclear ribonucleoprotein particles (snRNPs). Core formation is initiated by the PRMT5-complex subunit pICln, which pre-arranges the core proteins into spatial positions occupied in the assembled snRNP. The SMN complex then accepts these pICln-bound proteins and unites them with small nuclear RNA (snRNA). Here, we have analyzed how newly synthesized snRNP proteins are channeled into the assembly pathway to evade mis-assembly. We show that they initially remain bound to the ribosome near the polypeptide exit tunnel and dissociate upon association with pICln. Coincident with its release activity, pICln ensures the formation of cognate heterooligomers and their chaperoned guidance into the assembly pathway. Our study identifies the ribosomal quality control hub as a site where chaperone-mediated assembly of macromolecular complexes can be initiated. KW - ribosome KW - snRNPs KW - assembly chaperone KW - pICln Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162420 VL - 16 IS - 12 ER - TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Donat, Ulrike A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Nolte, Ingo A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients. KW - angiogenesis KW - microenvironment KW - model KW - cancer KW - therapy KW - pet dogs KW - nude-mice KW - breast-tumors KW - microvascular density KW - endothelial growth-factor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130039 VL - 7 IS - 10 ER - TY - THES A1 - Pelz, Jann-Patrick T1 - Strukturbiologische Untersuchungen zur Chaperone-vermittelten Zusammenlagerung spleißosomaler U-snRNPs T1 - Structural studies on the chaperone-assisted assembly of spliceosomal U snRNPs N2 - Durch die Spleißreaktion werden nicht-kodierende Sequenzelemente (Introns) aus eukaryotischen Vorläufer-mRNAs entfernt und die kodierenden Sequenzelemente (Exons) miteinander zu einem offenen Leserahmen verbunden. Dieser zentrale Prozessierungsschritt während der eukaryotischen Genexpression wird durch das Spleißosom katalysiert, das aus den vier kleinen nukleären Ribonucleoproteinpartikeln (snRNPs) U1, U2, U4/U6 und U5, sowie einer Vielzahl weiterer Proteinfaktoren gebildet wird. Alle snRNPs besitzen eine gemeinsame ringförmige Kernstruktur, die aus sieben gemeinsamen Sm-Proteinen (SmB/B‘-D1-D2-D3-E-F-G) besteht, die ein einzelsträngiges Sequenzmotiv auf der snRNAs binden. Während sich diese, als Sm-Core-Domäne bezeichnete Struktur in vitro spontan ausbilden kann, erfolgt die Zusammenlagerung in vivo in einem assistierten und hochregulierten Prozess. Dieser ist abhängig von insgesamt mindestens 12 trans-agierenden Faktoren, die in den PRMT5- und SMN-Komplexen organisiert sind. Der PRMT5-Komplex agiert in der frühen Phase der Zusammenlagerung, indem er die Sm-Proteine durch die Untereinheit pICln rekrutiert und die symmetrische Methylierung von Argininresten in den C terminalen Schwänzen von SmB/B‘, SmD1 und SmD3 katalysiert. Als Resultat dieser frühen Phase befinden sich die Sm-Proteine SmD1-D2-E-F-G und SmB/B‘-D3 in zwei getrennten und durch pICln organisierten Komplexen. Während SmB/B‘-D3-pICln am PRMT5-Komplex gebunden bleibt, existiert der zweite Komplex als freies Intermediat mit einem Sedimentationskoeffizienten von 6S. Diese Intermediate können nicht mit RNA assoziieren, sodass für die Fortsetzung des Zusammenlagerungsprozesses die Interaktion der Sm-Proteine mit pICln aufgelöst werden muss. Dies geschieht in der späten Phase der Sm-Core-Zusammenlagerung, in der die Sm-Proteine vom SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) übernommen werden und pICln dissoziiert wird. Dadurch werden die Sm-Proteine für ihre Interaktion mit der snRNA aktiviert und können auf die Sm-Bindestelle transferiert werden, wodurch die Formierung des Sm-Core abgeschlossen wird. Im Rahmen dieser Arbeit konnten mit Hilfe einer Kombination röntgenkristallographischer und elektronenmikroskopischer Methoden zwei wichtige Intermediate dieses Zusammenlagerungs-prozesses strukturbiologisch charakterisiert werden. Bei diesen Intermediaten handelt es sich um den 6S-Komplex, sowie um ein Sm-Protein-Transferintermediat mit einem Sedimentations-koeffizienten von 8S. In diesem ist der 6S-Komplex an zwei zentrale Untereinheiten des SMN-Komplexes (SMN und Gemin2) gebunden, während pICln den Komplex noch nicht verlassen hat. Der 8S-Komplex stellt daher ein „gefangenes“ Intermediat zwischen der frühen und späten Phase der Zusammenlagerung dar. Zunächst gelang es eine erste Kristallform des rekombinant hergestellten 8S-Komplexes zu erhalten, die jedoch keine Strukturlösung erlaubte. Durch eine kombinierte Optimierung der Kristallisationsbedingung und der verwendeten Proteine wurde eine weitere ähnliche Kristallform erhalten, mit der die Kristallstruktur des 8S-Komplexes gelöst werden konnte. Die Kristallisation des 6S-Komplexes gelang im Anschluss auf Basis der Hypothese, dass Kristalle beider Komplexe aufgrund der kompositionellen Verwandtschaft zwischen 6S und 8S auch Ähnlichkeiten in der Architektur ihrer Kristallgitter aufweisen könnten. Daher wurden innerhalb von pICln gezielt Aminosäuren substituiert, die sich innerhalb von Kristallkontakten der 8S-Kristalle befanden und konformationell eingeschränkt waren. Mit entsprechend rekonstituierten 6S-Präparationen konnten dann zwei Kristallformen erzeugt werden, die eine Strukturlösung des 6S-Komplexes ermöglichten. Durch die Kristallstruktur des 6S-Komplexes konnte für pICln eine strukturelle Mimikry der Sm-Proteine identifiziert werden. Diese ermöglicht eine Bindung der Sm-Proteine und eine frühzeitige topologische Organisation des Sm-Pentamers D1-D2-F-E-G in einer geschlossenen hexameren Ringstruktur. Die Kristallstruktur des 8S-Komplexes zeigt, wie der SMN-Komplex über Gemin2 an das Sm-Pentamer bindet. In Kombination mit einer EM-Struktur des 8S-Komplexes gelang es weiterhin, einen plausiblen Mechanismus für die Elimination von pICln und die Aktivierung der Sm-Proteine für die snRNA-Bindung zu formulieren. Somit konnten diese Arbeiten zu einem besseren Verständnis der Funktionen von trans-agierenden Faktoren bei Zusammenlagerung von RNA-Protein-Komplexen in vivo beitragen. N2 - Splicing is the process in which non-coding sequence elements (introns) are removed from eukaryotic pre-mRNAs and coding sequence elements (exons) are linked to an open reading frame. This central step in eukaryotic gene expression is catalyzed by the spliceosome, which is composed of the four small nuclear Ribonucleoproteins (snRNPs) U1, U2, U4/U6, U5 and a large number of additional protein factors. The snRNPs possess a common ring-shaped core structure that is formed by the seven Sm proteins (SmB/B’-D1-D2-D3-E-F-G) around a single-stranded sequence (Sm site) of the snRNAs. While this so-called Sm core domain forms spontaneously in vitro, its assembly is a highly regulated and assisted process in vivo. It is dependent on the action of at least 12 trans-acting factors which are organized in the PRMT5 and SMN complexes. The PRMT5 is active in the early phase of assembly and recruits the Sm proteins via its pICln subunit and catalyzes the symmetrical di methylation of arginine residues in the C-terminal tails of SmB/B’, SmD1 and SmD3. As a result of the early phase the Sm proteins SmD1-D2-E-F-G and SmB/B’-D3 are organized by pICln in two distinct complexes. While SmB/B’-D3 remains bound to the PRMT5 complex, the second complex exists as a free intermediate with a sedimentation coefficient of 6S. These intermediates cannot associate with RNA and the interaction of the Sm proteins with pICln has to be resolved for the assembly process to be continued. This happens in the late phase of Sm core assembly in which the Sm proteins are taken over by the SMN complex and pICln is dissociated. Afterwards the Sm proteins can be transferred onto the Sm site of the snRNA and the Sm core is formed. As part of this thesis two key intermediates of this assembly process could structurally be characterized by a combination of crystallographic and electron microscopic methods. These intermediates comprise the 6S complex and an Sm protein transfer-intermediate with a sedimentation coefficient of 8S. In this 8S complex the 6S complex is bound to two central subunits of the SMN complex (SMN and Gemin2) while pICln is still associated with the Sm proteins. Hence, this complex represents a trapped intermediate between the early and late phase of assembly. In the beginning a first crystal form of a recombinantly prepared 8S complex was obtained that did not allow the solution of the structure. By a combined optimization of the crystallization condition and the proteins a further similar crystal form was obtained that allowed for the solution of the 8S crystal structure. The crystallization of the 6S complex could successfully be accomplished based on the hypothesis that the lattices of crystals of both complexes might show an architectural similarity because of the similar composition of the complexes. Hence, amino acids of pICln that were conformationally restricted within crystal contacts of the 8S crystals were targeted for substitution to alanine. 6S preparations reconstituted with these proteins yielded two new crystal forms that allowed for the structure solution of the 6S complex. Based on the crystal structure of the 6S complex a structural mimicry of Sm proteins by pICln was revealed. This enables binding of the Sm proteins by pICln which is the basis for an early topological organisation of the Sm Pentamer D1-D2-F-E-G within a closed hexameric ring structure. The crystal structure of the 8S complex revealed how the SMN complex binds to the Sm Pentamer via its Gemin2 subunit. In combination with an EM structure of the 8S complex both structures revealed a plausible mechanism for the elimination of pICln and the activation of the Sm proteins for snRNA binding. The solution of both structures helps to better understand the function of trans-acting factors during the in vivo assembly of RNA-protein complexes. KW - Spleißosom KW - SMN KW - Molecular Chaperone KW - Macromolecular Assembly KW - Macromolecular Crystallography KW - Small nuclear RNP KW - Assembly KW - Polypeptidketten bindende Proteine Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116973 ER - TY - THES A1 - Philipp, Carolin T1 - Talglipide als Wirtsfaktoren für Mycobacterium leprae : Literaturrecherche und Entwicklung einer Methode zur Talganalyse T1 - Sebum lipids as host factors for Mycobacterium leprae : Literature research and development of a method of sebum analysis. N2 - Trotz weltweiter kostenlos zur Verfügung stehender multi drug therapy und Eradikationsbemühungen der WHO liegt die Leprainzidenz seit fünf Jahren bei etwa 250 000 Neuerkrankungen pro Jahr. Der massive Abfall der Prävalenz seit 1985 ist zum einen rechnerisch und durch die Art der Datenerhebung bedingt (s. 5.1.1), zum anderen lässt sie keine Rückschlüsse auf die Transmissionsereignisse, also die Aktivität der Krankheit zu. Dazu dient die Inzidenz, die nur unverhältnismäßig gesunken ist (s. 2.4.1). Für eine effektive Bekämpfung der Lepra muss jedoch eine Reduktion der Neuerkrankungen erreicht werden. Bekannt ist, dass nur ein Bruchteil der mit M.leprae exponierten Individuen eine manifeste Krankheit entwickelt. Die Suche nach Wirtsfaktoren für eine Lepraerkrankung ist für gezielte Präventions- und Prophylaxe-Maßnahmen, die Neuerkrankungen verhindern sollen, demnach von großer Bedeutung. In der vorliegenden Arbeit werden die Ergebnisse einer Literaturrecherche zum Thema "Talglipide als Wirtsfaktoren für M.leprae" präsentiert und eine Methode zur Talganalyse entwickelt. Anhand wissenschaftlicher Publikationen wurde der aktuelle Stand der Forschung in den verschiedenen Bereichen dieser Hypothese reviewartig dargestellt. Der aktuelle Erkenntnisstand hinsichtlich der Lepraübertragung ist vereinbar mit mehreren Übertragungswegen, wobei die Tröpfchen- und die Hautübertragung favorisiert werden (s. 2.5.1). Die Interpretation der Genomanalysen von M.leprae hat in Kombination mit früheren biochemischen Erkenntnissen Aufschluss über die metabolischen Fähigkeiten von M.leprae gegeben. M.leprae besitzt ein reduktives "Minimalgenom", das sich an die intrazelluläre Nische, in der es lebt, außerordentlich adaptiert hat. Der Verlust wichtiger Kohlenstoffquellen und eine stark eingeschränkte Atmungskette stehen im Gegensatz zu den fast vollständig erhaltenen anabolen und katabolen Stoffwechselwegen der Lipide. Sowohl für die Zellwandsynthese als auch zur Energieproduktion ist M.leprae auf wirtsbezogene Lipide angewiesen. Freie Fettsäuren werden dabei veresterten Fettsäuren vorgezogen (s. 5.2.1.1). Epidemiologische Erkenntnisse stehen ebenfalls in Einklang mit unserer Lipidhypothese. Als Ursache für das Clustering von Leprafällen in Haushalten kommen sowohl genetische als auch zufällig verteilte Faktoren sowie ein auf den gesamten Haushalt wirkender "Haushaltsfaktor" in Frage. Als genetischer Faktor, der die Talglipidzusammensetzung beeinflusst, wären Enzymaktivitäten für die Squalen- bzw. Sapiensäuresynthese denkbar (vgl. 5.2.1.3). Einen in der Bevölkerung zufällig verteilten Suszeptibilitätsfaktor könnte die residente Keimflora der Haut darstellen, die für die Menge der im Talg vorkommenden freien Fettsäuren verantwortlich ist (s. 5.2.1.2). Als möglicher Haushaltsfaktor kommt "Armut" in Betracht, der nachgewiesenermaßen mit schlechter Körper- und Kleidungshygiene einhergeht (s. 5.2.2.3). In Kombination mit einer vermutlich ebenfalls mit Armut assoziierten häufigeren kutanen Verletzung durch Parasiten und Mücken könnte dies eine kutane Schmierinfektion mit M.leprae begünstigen. Für eine Schmierinfektion über kontaminierte Gegenstände spricht auch die gute extrakorporale Überlebensfähigkeit des Erregers und der Nachweis von M.leprae in Bodenproben (s. 5.2.2.2). Die epidemiologischen Daten zu Geschlechterverhältnis und Infektionszeitpunkt lassen ebenfalls eine Rolle der Talglipide als Wirtsfaktoren für eine Lepraerkrankung vermuten (s. 5.2.1.2). Auf Basis der Erkenntnis, dass Lipide und insbesondere Talglipide als Wirtsfaktoren für M.leprae in Betracht kommen, wurde zu diesbezüglich relevanten Talgkomponenten recherchiert. Als trophischer Wirtsfakor kommen die individuell in unterschiedlichen Mengen vorliegenden freien Fettsäuren des Sebums in Betracht. Die Menge an Squalen und Sapiensäure im Talg hat nachgewiesenermaßen erheblichen Einfluss auf die Barrierefunktion der Haut gegen bakterielle Erreger (s. 5.2.1.3). Es wurde folglich eine auf Dünnschicht- und Gaschromatografie beruhende Methode zur Quantifizierung dieser Talgbestandteile entwickelt (s. 4.6). Die Probenentnahme erfolgt mittels Sebutape, was eine bewährte, reproduzierbare und auch unter tropischen Bedingungen leicht anwendbare Methode darstellt. N2 - Despite worldwide free available multi drug therapy and eradication efforts of the WHO, the leprosy incidence is for five years at about 250 000 new cases per year. The massive drop in prevalence since 1985 is on one hand mathematically and due to the way of data collection (see 5.1.1), on the other hand it does not allow conclusions about the transmission events, ie the activity of the disease. An appropriate marker of the disease activity would be the incidence, which is only fallen disproportionately (see 2.4.1). For an effective fight against leprosy, however, a reduction of new cases must be achieved. It is known that only a small part of individuals exposed to M.leprae develop a manifest disease. The search for host factors for leprosy is therefore of great importance for well-directed preventive and prophylactic measures. In the present work the results of a literature review on the subject "Sebum lipids as host factors for M. leprae" and the development of a method for sebum analysis are presented. Based on scientific publications the current state of research in the various areas of this hypothesis was presented review-like . The current state of knowledge regarding leprosy transmission is compatible with multiple transmission paths, wherein the droplets and the skin transmission are favored (see 2.5.1). The interpretation of genome analysis of M. leprae together with previous biochemical findings shed light on the metabolic capabilities of M. leprae. M. leprae has a reductive " minimal genome ", which has become extremely adapted to the intracellular niche in which it lives. The loss of important carbon sources and a severely impaired respiratory chain are in contrast to the almost perfectly preserved anabolic and catabolic pathways of lipids. For both the cell wall synthesis and for energy production M.leprae is dependent on host related lipids. Free fatty acids are thereby preferred to esterified fatty acids (see 5.2.1.1 ). Epidemiological findings are also in line with our lipid hypothesis. Concerning the causes for the clustering of leprosy cases in households, genetic factors as well as randomly distributed factors as well as a “household factor” must be considered. Enzyme activities for squalene- or sapienic acid-synthesis are conceivable as a genetic factor that influences the sebum lipid composition (see 5.2.1.3 ). A randomly distributed susceptibility factor could be the resident bacterial flora of the skin, which is responsible for the amount of free fatty acids occurring in the sebum (see 5.2.1.2 ). The household factor might be "poverty" which has been shown to correlate with poor body and clothing hygiene (see 5.2.2.3 ) . In combination with poverty-related frequent cutaneous injury caused by parasites and mosquitoes, this could favor a cutaneous infection with M. leprae. A smear infection via contaminated objects would be in accord with the good extracorporeal survival of the pathogen and the detection of M. leprae in soil samples (see 5.2.2.2 ) . The epidemiological data on sex ratio and age of infection also point to the fact that sebum lipids might be host factors for leprosy (see 5.2.1.2 ). Based on the recognition that lipids, and in particular sebum lipids must be taken into consideration as host factors for M.leprae, research has been done to identify possibly relevant sebum components. Individually different amounts of free fatty acids in the sebum must be considered as a trophic host factor. The amount of squalene and sapienic acid in the sebum has been shown to have significant influence on the barrier function of the skin against bacterial pathogens (see 5.2.1.3 ). We thus developed a method based on thin-layer and gas chromatography to quantifiy these sebum components (see 4.6). The sampling is done with “Sebutape”, which is a proven, reproducible and easily applicable method, even under tropical conditions. KW - Mycobacterium leprae KW - Mykobakterien KW - Lepra KW - Talg KW - Talganalyse KW - Hautuebertragung Lepra KW - Wirtsfaktoren Lepra KW - sebum KW - sebum analysis KW - skin transmission leprosy KW - host factors leprosy Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85028 ER -