TY - JOUR A1 - Kade, Juliane C. A1 - Bakirci, Ezgi A1 - Tandon, Biranche A1 - Gorgol, Danila A1 - Mrlik, Miroslav A1 - Luxenhofer, Robert A1 - Dalton, Paul D. T1 - The Impact of Including Carbonyl Iron Particles on the Melt Electrowriting Process JF - Macromolecular Materials and Engineering N2 - Melt electrowriting, a high-resolution additive manufacturing technique, is used in this study to process a magnetic polymer-based blend for the first time. Carbonyl iron (CI) particles homogenously distribute into poly(vinylidene fluoride) (PVDF) melts to result in well-defined, highly porous structures or scaffolds comprised of fibers ranging from 30 to 50 µm in diameter. This study observes that CI particle incorporation is possible up to 30 wt% without nozzle clogging, albeit that the highest concentration results in heterogeneous fiber morphologies. In contrast, the direct writing of homogeneous PVDF fibers with up to 15 wt% CI is possible. The fibers can be readily displaced using magnets at concentrations of 1 wt% and above. Combined with good viability of L929 CC1 cells using Live/Dead imaging on scaffolds for all CI concentrations indicates that these formulations have potential for the usage in stimuli-responsive applications such as 4D printing. KW - additive manufacturing KW - melt electrospinning writing KW - magnetoactive materials KW - electroactive polymers Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318482 SN - 1438-7492 VL - 307 IS - 12 ER -