TY - THES A1 - Schwab, Andrea T1 - Development of an osteochondral cartilage defect model T1 - Entwicklung eines osteochondralen Knorpeldefektmodells N2 - The limited intrinsic self-healing capability of articular cartilage requires treatment of cartilage defects. Material assisted and cell based therapies are in clinical practice but tend to result in formation of mechanical inferior fibro-cartilage in long term follow up. If a lesion has not been properly restored degenerative diseases are diagnosed as late sequela causing pain and loss in morbidity. Complex three dimensional tissue models mimicking physiological situation allow investigation of cartilage metabolism and mechanisms involved in repair. A standardized and reproducible model cultured under controllable conditions ex vivo to maintain tissue properties is of relevance for comparable studies. Topic of this thesis was the establishment of an cartilage defect model that allows for testing novel biomaterials and investigate the effect of defined defect depths on formation of repair tissue. In part I an ex vivo osteochondral defect model was established based on isolation of porcine osteochondral explants (OCE) from medial condyles, 8 mm in diameter and 5 mm in height. Full thickness cartilage defects with 1 mm to 4 mm in diameter were created to define ex vivo cartilage critical size after 28 days culture with custom developed static culture device. In part II of this thesis hydrogel materials, namely collagen I isolated from rat tail, commercially available fibrin glue, matrix-metalloproteinase clevable poly(ethylene glycol) polymerized with heparin (starPEGh), methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono-dilactate-poly(ethylene glycol) triblock copolymer/methacrylated hyaluronic acid (MP/HA), thiol functionalized HA/allyl functionalized poly(glycidol) (P(AGE/G)-HA-SH), were tested cell free and chondrocyte loaded (20 mio/ml) as implant in 4 mm cartilage defects to investigate cartilage regeneration. Reproducible chondral defects, 8 mm in diameter and 1 mm in height, were generated with an artificial tissue cutter (ARTcut®) to investigate effect of defect depth on defect regeneration in part III. In all approaches OCE were analyzed by Safranin-O staining to visualize proteoglycans in cartilage and/or hydrogels. Immuno-histological and -fluorescent stainings (aggrecan, collagen II, VI and X, proCollagen I, SOX9, RUNX2), gene expression analysis (aggrecan, collagen II and X, SOX9, RUNX2) of chondrocyte loaded hydrogels (part II) and proteoglycan and DNA content (Part I & II) were performed for detailed analysis of cartilage regeneration. Part I: The development of custom made static culture device, consisting of inserts in which OCE is fixed and deep well plate, allowed tissue specific media supply without supplementation of TGF � . Critical size diameter was defined to be 4 mm. Part II: Biomaterials revealed differences in cartilage regeneration. Collagen I and fibrin glue showed presence of cells migrated from OCE into cell free hydrogels with indication of fibrous tissue formation by presence of proCollagen I. In chondrocyte loaded study cartilage matrix proteins aggrecan, collagen II and VI and transcription factor SOX9 were detected after ex vivo culture throughout the two natural hydrogels collagen I and fibrin glue whereas markers were localized in pericellular matrix in starPEGh. Weak stainings resulted for MP/HA and P(AGE/G)-HA-SH in some cell clusters. Gene expression data and proteoglycan quantification supported histological findings with tendency of hypertrophy indicated by upregulation of collagen X and RunX2 in MP/HA and P(AGE/G)-HA-SH. Part III: In life-dead stainings recruitment of cells from OCE into empty or cell free collagen I treated chondral defects was seen. Separated and tissue specific media supply is critical to maintain ECM composition in cartilage. Presence of OCE stimulates cartilage matrix synthesis in chondrocyte loaded collagen I hydrogel and reduces hypertrophy compared to free swelling conditions and pellet cultures. Differences in cartilage repair tissue formation resulted in preference of natural derived polymers compared to synthetic based materials. The ex vivo cartilage defect model represents a platform for testing novel hydrogels as cartilage materials, but also to investigate the effect of cell seeding densities, cell gradients, cell co-cultures on defect regeneration dependent on defect depth. The separated media compartments allow for systematic analysis of pharmaceutics, media components or inflammatory cytokines on bone and cartilage metabolism and matrix stability. N2 - Aufgrund der geringen Selbsheilungsfähigkeit von artikulären Knorpel erfordern Knorpeldefekte eine orthopädische Behandlung. Bislang konnte mit material- oder zellbasierenden Behandlungsstrategien keine funktionelle Regeneration von Knorpeldefekten erreicht werden. In Langzeitstudien zeigt sich vermehrt die Bildung von mechanisch instabilem fibrosen Knorpel. Als Spätfolge nicht vollständig verheilter Knorpeldefekte wird die degenerative Erkrankung Osteoarthrose diagnostiziert. 3-dimensionale Gewebemodelle, die die physiologischen Gegebenheiten nachahmen erlauben einen Einblick in die Mechanismen während der Defektheilung. Dem subchondralen Knochen kommt eine kritische Rolle in der Regeneration nach Mikrofrakturierung zu, weshalb ein Knorpelmodell auf osteochondralen Gewebe basieren sollte. Thema der Arbeit war es ein standardisiertes Knorpeldefektmodell zu etablieren, das die Testung neuer Hydrogelformulierungen sowohl zellfrei als auch zellbeladen hinsichtlich deren Regenerationspotential ermöglicht und den Einfluss der Knorpeldefekttiefe auf die Regeneration zu analysieren. Teil I der Arbeit umfasste die Etablierung des ex vivo osteochondralen Defektmodells, basierend auf der Isolation von porcinen osteochondralen Explantaten (OCE) mit eine Durchmesser von 8 mm und einer Höhe von 5 mm aus der medialen Kondyle. Full thickness Knorpeldefekte mit einem Durchmesser zwischen 1 mm und 4 mm wurden induziert, um den kritischen Defektdurchmesser nach 28 Tagen Kultur in einer neuartigen statischen Kulturplatte zu definieren. In Teil II stand die Testung von Hydrogelen aus Kollagen I isoliert aus Rattenschwänzen, kommerziell erhältlicher Firbrinkleber, Matrix- Metalloproteinase clevable poly(Ethylen Glycol) polymerisiert mit Heparin (starPEGh), methacrylates poly(N-(2-hydroxypropyl) methacrylamid mono-dilactate-poly(Ethylene Glycol) triblock copolymer/methacrylated Hyaluronsäure (MP/HA), thiol functionalisiertes HA/allyl functionalisiertes poly(Glycidol) (P(AGE/G)-HA-SH) als zellfreies oder mit 20 Mio/ml Chondrozyten beladenes Implantat im Knorpeldefekt mit einem Durchmesser von 4 mm im Fokus. Ein automatisiertes Verfahren zur Wundsetzung (ARTcut®) erlaubte in Teil III der Thesis das Kreieren von reproduzierbaren chondralen Defekten mit 4 mm Durchmesser und 1 mm Tiefe in das OCE Modell , um den Einfluss der Defekttiefe auf die Knorpelregeneration zu analysieren. Das Knorpelgewebe des OCE und/oder Hydrogele wurde in allen Experimenten mittels Safranin-O auf Proteoglykangehalt untersucht. Immunhistologische und -fluoreszenzfärbung knorpelspezifischer Marker, Genexpressionsanalysen der Chondrozyten beladenen Hydrogele (Teil II) und Quantifizierung der Proteoglykane und des DNA Gehalts (Teil I & II) folgten nach ex vivo Kultur. Teil I: Die neu entwickelten statischen Kulturkammern setzen sich aus Inserts, in denen das OCE fixiert ist, und einer 6 Well–Platte zusammen. Dadurch wird eine Gewebespezifische Medienversorung mit Knorpelmedium ohne TGF � in den Inserts und Knochenmedium in der Vertiefung der Wellplatte ermöglicht. Die kritische Defektgröße im ex vivo Modell wurde mit 4 mm festgesetzt. Teil II: Biomaterialien als Implantate im Knorpeldefekt zeigten ein materialabhängiges Regenerationspotential. Die Einwanderung von Zellen aus dem OCE in zellfreie Hydrogele resultierte in der Lebend-Tot Färbung bei Kollagen I und Fibrinkleber mit der Tendenz der Synthese von fibrösem Knorpel. Die Chondorzyten beladenen Hydrogele aus Kollagen I und Fibrinkleber zeigten eine homogene Positivfärbung für die hyalinen Proteine Aggrekan, Collagen II und X und des Knorpeltranskriptionsfaktors SOX9, wohingegen die Färbung bei starPEGh lokal in der perizellulären Region lokalisiert war. Die weiteren Materialien MP/HA und P(AGE/G)-HA-SH wiesen eine schwache Positivfärbung an einzelnen Zellclustern auf. Die Genexpressionsanalyse und die Quantifizeirung der Proteoglykane bestätigten die histologischen Ergebnisse mit der Tendenz der Hypertrophie, belegt durch Hochregulierung von Kollagen X und RunX2, bei Chondrozyten eingebettet in MP/HA und P(AGE/G)-HA-SH. Teil III: In der Lebend-Tot Färbung konnte die Einwanderung von Zellen aus dem Knorpel des OCE in den Leerdefekt und zellfreies Kollagen I Hydrogel nachgewisen werden. Separierte und Gewebe spezifische Medienversorgung erwieß sich als kritischer Faktor zur Aufrechterhaltung der Knorpel ECM. Die Anwesenheit des OCE stimuliert Knorpelmatrixsynthese, die für das in vitro kultivierte Chondrozyten beladene Kollagen I nachweislich geringer vorhanden war. Außerdem war die Produktion des hypertrophen Markers Kollagen X im Implantat im OCE weniger stark ausgeprägt als in der in vitro Kultur. Die Unterschiede der Knorpelregeneration deutet auf die Bevorzugung von natürlichen Polymeren gegenüber den synthetisch basierten Hydrogelen hin. Das ex vivo Knorpeldefektmodell stellt eine Platform zur Testung neuer Hydrogelmaterialien als Knorpelimplantate dar. Weiterhin kann das Modell zur Analyse von Zellbesiedelungsstrategien als auch für Zell-Ko-Kulturen im Hinblick auf die Defektregeneration herangezogen werden. Die getrennten Medienreservoire ermöglichen weiterhin die systematische Analyse von Medienkomponenten oder entzündlichen Zytokinen auf die Vitalität und Stabilität von Knochen und Knorpelgewebe. KW - Hyaliner Knorpel KW - hyaline cartilage KW - Test system KW - cartilage regeneration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155617 ER - TY - THES A1 - Schweinlin, Matthias Oliver T1 - Development of advanced human intestinal in vitro models T1 - Entwicklung von erweiterten humanen intestinalen in vitro Modellen N2 - The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine. N2 - Die Hauptfunktion des Dünndarms besteht in der Aufnahme von lebenswichtigen Nährstoffen, Wasser und Vitaminen. Zudem stellt er eine Barriere dar, die uns vor toxischen Fremdstoffen und Pathogenen schützt. Um diese Prozesse besser zu verstehen, ist die Entwicklung neuer in vitro Modellen des Darms von großem Interesse um pharmakologische und pathologische Studien durchzuführen. Abhängig von der wissenschaftlichen Fragestellung können Modelle von unterschiedlicher Komplexität zur Anwendung kommen. In vitro Transwell® Systeme basierend auf einer porösen PET-Membran ermöglichen die Untersuchung von Transportmechanismen über die intestinal Barriere und den Einfluss von Wirkstoffen auf deren Integrität. Dieser künstliche Aufbau ähnelt jedoch nur eingeschränkt der Physiologie des Dünndarms und kann eine zusätzliche physikalische Barriere darstellen. Die Anwendungsmöglichkeiten dieses Modells im Tissue Engineering sind daher begrenzt. Gewebemodelle basierend auf einer dezellularisierten biologischen Matrix hergestellt aus Schweinedarmgewebe haben sich als gute Alternative zum herkömmlichen Transwell® System herausgestellt. Diese Studie zeigt, dass die erhaltenen Komponenten der biologischen Extrazellulärmatrix wie Kollagen und Elastin eine natürliche Umgebung für die Epithelzellen bieten und Zelladhäsion und Wachstum der Zellen fördern. Darmepithelzellen wie Caco-2 Zellen, welche auf einer solchen Matrix kultiviert wurden, bildeten einen konfluenten, dichten Monolayer auf der apikalen Oberfläche aus. Zusätzlich ermöglichte dieser Aufbau die Migration von Myofibroblasten in die Matrix, was die Bildung der intestinalen Barriere unterstützt. In dieser Doktorarbeit wurden zusätzlich dendritische Zellen als wichtige Komponente des adaptiven Immunsystems in das Modell integriert. Dieses Ko-Kultur Modell erwies sich als geeignet um partikuläre Formulierungen zu testen, welche als Transportsysteme für Tumorantigene entwickelt wurden. Es wurden Partikel basierend auf PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA und Chitosan untersucht. Aufnahmestudien ergaben nur geringfügige Unterschiede in den Transportraten zwischen den verschiedenen Partikeln. Es konnte ausserdem gezeigt werden, dass dendritische Zellen die Partikel phagozytieren, nachdem sie die intestinale Barriere überwunden haben. Die Partikel erwiesen sich als effektives Transportsystem um Peptide über die intestinale Barriere zu schleusen und stellen daher ein nützliches Werkzeug für die Entwicklung neuartiger Medikamente dar. Um die komplexe Struktur und Physiologie des Darms noch besser nachzustellen, wurde für den Aufbau des Modells die Caco-2 Zelllinie durch primäre Darmzellen ersetzt. Die Darmkrypten, welche undifferenzierte Stammzellen und Vorläuferzellen enthalten, wurden aus humanen Dünndarmgewebe, dem Jejunum, isoliert und in vitro expandiert. Die Zellen wurden zusammen mit Myofibroblasten auf der dezellularisierten Schweinedarmmatrix, unter statischen und dynamischen Bedingungen, kultiviert. Die primären Darmepithelzellen bildeten einen konfluenten Monolayer, welcher alle differenzierten intestinalen Zelltypen aufwies, gezeigt durch Zellen positiv für Mucin (Becherzellen), Villin (Enterozyten), Chromogranin A (enteroendokrine Zellen) und Lysozym (Paneth-Zellen). Mit Hilfe von Elektronenmikroskopie ließen sich essentielle funktionelle Einheiten eines intakten Epithels darstellen, wie die Mikrovilli und Tight Junctions. Um die Dichtigkeit des Epithels zu überprüfen wurde mit FITC-Dextran die Permeabilität bestimmt und TEER-Messungen durchgeführt. Die Modelle zeigten einen charakteristischen Transport für mehrere Referenzsubstanzen. Mechanische Stimulation durch ein dynamisches Kultivierungssystem hatte einen starken Einfluss auf die Barriereintegrität und Transporteraktivität der Modelle, was sich in einer dichteren Barriere und erhöhten Efflux-Transporteraktivität widerspiegelte. Alles in allem bietet die Verwendung primärer intestinaler Zellen in Kombination mit einer dezellularisierten biologischen Matrix eine neue, vielversprechende Möglichkeit physiologischere in vitro Modelle des Darms aufzubauen. Der Erhalt intestinaler Stammzellen mit ihrem Proliferations- und Differenzierungspotential zusammen mit angepassten Protokollen könnte dabei helfen die Modelle weiter zu verbessern. Insbesondere die dynamische Kultivierung und die Ko-Kultur-Modelle erwiesen sich als entscheidender Schritt auf dem Weg zu physiologischeren Modellen. Solche Gewebemodelle könnten sich als nützlich erweisen, wenn es darum geht die Vorhersagekraft der in vitro Modelle, sowie die in vitro-in vivo Korrelation zu verbessern. Solche Gewebemodelle können ein nützliches Werkzeuge in der präklinischen Forschung für die Testung von pharmazeutischen Wirkstoffen, probiotisch aktiven Organismen, sowie humaner pathogener Keime sein und sogar zum Aufbau personalisierter Modelle für die regenerative Medizin dienen. KW - Tissue Engineering KW - in vitro KW - Dünndarm KW - intestinal in vitro model KW - intestine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142571 ER - TY - THES A1 - Lodes, Nina Theresa T1 - Tissue Engineering für seltene Erkrankungen mit Störungen des mukoziliären Transports T1 - Tissue engineering for rare diseases with impaired mucociliary transport N2 - Bei der zystischen Fibrose (CF) sowie der primären Ziliendyskinesie (PCD) handelt es sich um zwei seltene Erkrankungen, die unter anderem den mukoziliären Transport beeinträchtigen. CF gehört hierbei zu den am häufigsten vorkommenden angeborenen Stoffwechselerkrankungen, wobei Betroffene unter einem Defekt des Cystic Fibrosis Transmembrane Conductor Regulator (CFTR)-Gens leiden, der durch die Produktion von hochviskosem Sekret in muzinproduzierenden Organen, wie dem gastrointestinalen Trakt und der Lunge, gekennzeichnet ist. Patienten, die an PCD leiden, weisen Defekte in, zum jetzigen Zeitpunkt, ca. 38 bekannten und PCD-assoziierten Genen auf, die in strukturellen Defekten des ziliären Apparats und somit in dysfunktionalen Kinozilien resultieren. Da aktuell weder für die CF noch für die PCD eine Heilung möglich ist, steht bei der Therapie vor allem die Linderung der Symptome im Fokus. Grundlegendes Ziel ist der langfristige Erhalt der Lungenfunktion sowie die Prävention bakterieller Infekte. Als bisherige Modellsysteme zur Erforschung möglicher Therapeutika gelten Tiermodelle, die den humanen Phänotyp aufgrund von Speziesdiversität nicht vollständig abbilden können. Als vielversprechende Testsysteme für die zystische Fibrose gelten humane intestinale Organoidkulturen. Nachdem allerdings vorwiegend respiratorische Symptome für die Mortalität der Patienten verantwortlich sind, stellen CF-Atemwegsmodelle bessere Testsysteme für zukünftige Therapeutika dar. Atmungsorganoidkulturen wurden verwendet, um die CFTR-Funktionalität zu untersuchen, repräsentieren aber nicht vollständig die in vivo Situation. Deshalb werden zur Entwicklung neuer Therapiestrategien patientenspezifische 3D in vitro Testsysteme der humanen Atemwege benötigt, die insbesondere im Hinblick auf personalisierte Medizin ihren Einsatz finden. In der vorliegenden Arbeit wurde eine für den Lehrstuhl neue Methode zur Zellgewinnung aus nasalen Schleimhautabstrichen etabliert, die eine standardisierte Versorgung mit humanem Primärmaterial garantiert. Zur Generierung einer krankheitsspezifischen Zelllinie, wie beispielsweise einer PCD-Zelllinie mit Hilfe des CRISPR/Cas9-Systems, ist eine Atemwegszelllinie erforderlich, die die in vivo Situation vollständig repräsentiert. So wurden vier verschiedene respiratorische Epithelzelllinien (HBEC3-KT, Calu-3, VA10 und Cl-huAEC) auf ihren mukoziliären Phänotyp hin untersucht, wobei lediglich die Zelllinie HBEC3-KT in zilientragende Zellen differenzierte. Diese zeigten jedoch nur auf ca. 5 % der Modelloberfläche Kinozilien, wodurch die humane respiratorische Mukosa nicht komplett abgebildet werden konnte und die HBEC3-KT-Zelllinie keine geeignete Zelllinie zur Generierung einer PCD-Zelllinie darstellte. Mit Hilfe des Tissue Engineering war es möglich, 3D in vitro Testsysteme basierend auf zwei unterschiedlichen Matrices, der biologischen SIS (small intestinal submucosa) und der synthetischen Polyethylenterephthalat (PET)-Membran, aufzubauen. Es wurden 3D Atemwegstestsysteme mit humanen primären nasalen und tracheobronchialen Epithelzellen generiert. Ergänzend zu histologischen Untersuchungen und zur Charakterisierung spezifischer Marker des respiratorischen Systems mittels Immunfluoreszenz, wurde die Ultrastruktur der Modelle, mit speziellem Fokus auf ziliäre Strukturen, analysiert. Um Rückschlüsse auf die ziliäre Funktionalität ziehen zu können und somit eine hohe in vivo Korrelation zu bestätigen, wurde im Rahmen dieser Arbeit am Lehrstuhl für Tissue Engineering und Regenerative Medizin die Methode der Hochgeschwindigkeitsvideomikroskopie etabliert, welche die Analyse der Zilienschlagfrequenz sowie des mukoziliären Transports ermöglicht. Ebenfalls wurde der Einfluss von isotoner Kochsalzlösung und des � 2-adrenergen Agonisten Salbutamol, das vor allem als Bronchodilatator bei Asthmapatienten eingesetzt wird, auf die Zilienschlagfrequenz analysiert. Es konnte gezeigt werden, dass beide Substanzen den Zilienschlag im Atemwegsmodell erhöhen. Zur Generierung der Testsysteme der beiden seltenen Erkrankungen CF und PCD wurden Epithelzellen der betroffenen Patienten zunächst mittels nicht-invasiver Raman-Spektroskopie auf einen potentiellen Biomarker untersucht, welcher Einsatz in der Diagnostik der beiden Krankheiten finden könnte. Es konnte jedoch weder für die CF noch für die PCD ein Biomarker aufgedeckt werden. Jedoch zeigten PCD-Zellen eine geringe Auftrennung gegenüber nicht-PCD Zellen. Anschließend wurden 3D-Atemwegstestsysteme basierend auf Patientenzellen aufgebaut. Der Phänotyp der CF-Modelle wurde mittels immunhistologischer Färbung und der Analyse des gestörten mukoziliären Transports verifiziert. Strukturelle ziliäre Defekte konnten durch die ultrastrukturelle Analyse von Zilienquerschnitten in drei donorspezifischen PCD-Modellen identifiziert werden. Darüber hinaus konnte die ziliäre Funktionalität mit Hilfe der Hochgeschwindigkeitsvideomikroskopie nicht nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, eine neue Methode zur vollständigen Charakterisierung von 3D-Atemwegstestsystemen zu etablieren, die die Analyse der Zilienschlagfrequenz sowie des mukoziliären Transports ermöglicht. Es konnte erstmalig gezeigt werden, dass mit Hilfe des Tissue Engineering ein personalisiertes Krankheitsmodell für die PCD auf Segmenten eines dezellularisierten porzinen Jejunums generiert werden kann, das zukünftig ein Testsystem für potentielle Therapeutika darstellen kann. N2 - Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are two rare diseases which,among others, impair the mucociliary transport. CF is one of the most common in-herited metabolic diseases with patients suffering from a defect in theCystic FibrosisTransmembrane Conductor Regulator(CFTR) gene, which is characterized by the pro-duction of highly viscous secretions in mucin-producing organs such as the gastrointestinaltract and lungs. Patients suffering from PCD have defects in currently approximately 38known and PCD-associated genes resulting in structural defects of the ciliary appara-tus and thus in dysfunctional cilia. Since neither CF nor PCD have any chance of beingcured so far, the main focus is on alleviating the symptoms. The basic goal is the long-term preservation of lung function and the prevention of microbial infections. Previousmodel systems for exploring possible therapeutic options have been animal models thatcan never completely represent the human phenotype due to species diversity. Humanintestinal organoid cultures are considered as a promising test system for cystic fibro-sis. However, since respiratory symptoms are mainly responsible for patient mortality,CF respiratory models provide better test systems for future therapeutics. Respiratoryorganoid cultures have been used to study CFTR functionality, but do not completelyrepresent thein vivosituation. In order to develop new therapeutic strategies, patient-specific 3Din vitrotest systems for the human respiratory tract expressing functionalkinocilia are required, which can be used in particular with regard to personalized medi-cine.In the present thesis, a new method for obtaining cells from nasal mucosal brush biop-sies was established, that guarantees a standardised supply of human primary materi-al. In order to generate a disease-specific cell line, such as a PCD cell line, using theCRISPR/Cas9 system, a respiratory cell line that fully represents thein vivosituation isrequired. Hence, four different respiratory epithelial cell lines (HBEC3-KT, Calu-3, VA10and Cl-huAEC) were investigated with regard to their mucociliary phenotype, wherebyonly the cell line HBEC3-KT differentiated into ciliated cells. However, these showed ki-nocilia only on approx. 5 % of the model’s surface, thus the human respiratory mucosacould not be completely modelled and HBEC3-KT cell line is no suitable cell line for geneediting experiments.Tissue engineering made it possible to build 3Din vitrotest systems based on two differentmatrices, the biological SIS (small intestine submucosa) and synthetic PET (polyethyleneterephthalate) membranes. 3D airway test systems were generated using human primarynasal and tracheobronchial epithelial cells. In addition to histological investigations and the characterization of specific markers of the respiratory system by immunofluorescence,the ultrastructure of the models was analyzed with a special focus on ciliary structures.In order to gain insight into the ciliary functionality and thus to achieve a highin vivocorrelation, the method of high-speed video microscopy was established within the scopeof this work at the Chair of Tissue Engineering and Regenerative Medicine, which allowsthe analysis of ciliary beat frequency as well as mucociliary transport. The influence ofisotonic saline solution and salbutamol, aβ2-adrenergic agonist mainly used as broncho-dilator in asthma patients, on ciliary beat frequency was also analyzed. It could be shownthat both substances increased the ciliary beat of the primary respiratory mucosa models.In order to generate test systems for the two rare diseases CF and PCD, epithelial cellsof the affected patients were first examined by non-invasive Raman spectroscopy for apotential biomarker that could be used in diagnostic approaches. However, no biomarkerfor CF or PCD could be detected, with PCD cells showing a low separation to non-PCDcells. Subsequently, 3D test systems based on patient cells were developed. The phenotypeof the CF models was verified by immunohistological staining and analysis of impairedmucociliary transport. Ultrastructural ciliary defects could be identified by ultrastructuralanalysis of cilia cross sections in three donor-specific PCD models. Additionally, ciliaryfunctionality could not be detected using high speed video microscopy analysis.In summary, this work succeeded in establishing a new method for the complete characte-rization of 3D airway test systems, which allows the analysis of ciliary beating frequencyand mucociliary transport. It has been shown for the first time that tissue engineering canbe used to generate a personalized disease model for PCD using a decellularized poricinejejunum as a scaffold. Both, PCD and CF disease models could in future be regarded astest systems for potential therapeutics. KW - In-vitro-Kultur KW - Tissue Engineering KW - Gewebekultur KW - Individualisierte Medizin KW - Respiratorisches System KW - Primäre Ziliendyskinesie KW - airways KW - primary ciliary dyskinesia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200178 ER - TY - THES A1 - Ramani Mohan, Ramkumar T1 - Effect of Mechanical Stress On Stem Cells to Improve Better Bone Regeneration T1 - Die Auswirkung von mechanischer Belastung auf Stammzellen zur Verbesserung der Knochenregeneration N2 - Critical size bone defects and nonunion fractures remain difficult to treat. Although cell‐loaded bone substitutes have improved bone ingrowth and formation, the lack of methods for achieving viability and the uniform distribution of cells in the scaffold limits their use as bone grafts. In addition, the predominant mechanical stimulus that drives early osteogenic cell maturation has not been clearly identified. Further, it is challenging to evaluate mechanical stimuli (i.e., deformation and fluid–flow-induced shear stress) because they are interdependent. This thesis compares different mechanical stimuli applied to cell-seeded scaffolds to develop bone grafts efficiently for the treatment of critical size bone defects. It also seeks to understand how deformation strain and interstitial fluid–flow-induced shear stress promote osteogenic lineage commitment. In this thesis, different scaffolds were seeded with primary human bone marrow mesenchymal stem cells (BM-MSCs) from different donors and subjected to static and dynamic culture conditions. In contrast with the static culture conditions, homogenous cell distributions were accomplished under dynamic culture conditions. Additionally, the induction of osteogenic lineage commitment without the addition of soluble factors was observed in the bioreactor system after one week of cell culture. To determine the role of mechanical stimuli, a bioreactor was developed to apply mechanical deformation force to a mesenchymal stem sell (MSC) line (telomerase reverse transcriptase (TERT)) expressing a strain-responsive AP-1 luciferase reporter construct on porous scaffolds. Increased luciferase expression was observed in the deformation strain compared with the shear stress strain. Furthermore, the expression of osteogenic lineage commitment markers such as osteonectin, osteocalcin (OC), osteopontin, runt-related transcription factor 2 (RUNX2), alkaline phosphate (AP), and collagen type 1 was significantly downregulated in the shear stress strain compared with the deformation strain. These findings establish that the deformation strain was the predominant stimulus causing skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Finally, these findings were used to develop a bioreactor in vitro test system in which the effect of medication on osteoporosis could be tested. Primary human BM-MSCs from osteoporotic donors were subjected to strontium ranelate (an osteoporotic drug marketed as Protelos®). Increased expression of collagen type 1 and calcification was seen in the drugtreated osteoporotic stem cells compared with the nondrug-treated osteoporotic stem cells. Thus, this bioreactor technology can easily be adapted into an in vitro osteoporotic drug testing system. N2 - Knochendefekte kritischer Größe und Frakturen mit Pseudoarthrose bleiben schwierig zu behandeln. Obwohl zellbeladene Knochenersatzprodukte das Einwachsen und die Bildung von Knochen verbessert haben, schränken fehlende Methoden zur Erreichung der Lebensfähigkeit und der gleichmäßigen Verteilung der Zellen im Gerüst die Verwendung von Knochenersatzprodukten als Knochentransplantate ein. Ebenfalls konnte der vorherrschende mechanische Reiz, der die frühe osteogene Zellreifung antreibt nicht eindeutig identifiziert werden. Ferner ist es schwierig, mechanische Reize (d. H. Verformung und durch Flüssigkeitsströmung induzierte Scherbeanspruchung) zu bewerten, da diese Größen sie voneinander abhängig sind. Diese Arbeit vergleicht die Auswirkung verschiedener mechanischer Reize auf mit Zellen besiedelte Gerüste, um herauszufinden, ob Knochentransplantate effizient entwickelt werden können damit sie für die Behandlung von Knochendefekten einsetzbar sind. Des Weiteren wird versucht zu verstehen, wie Verformungsdehnung und durch interstitielle Flüssigkeitsströmung induzierte Scherbeanspruchung die Bindung osteogener Linien fördern. In dieser Arbeit wurden verschiedene Gerüste mit primären mesenchymalen Knochenmarkstammzellen (BM-MSCs) von verschiedenen Spendern ausgesät und statischen und dynamischen Kulturbedingungen ausgesetzt. Im Gegensatz zu den statischen Kulturbedingungen wurde unter dynamischen Kulturbedingungen eine homogene Zellverteilungen erreicht. Zusätzlich wurde im Bioreaktorsystem nach einer Woche Zellkultur eine Formung einer osteogenen Linienbindung auch ohne Zusätze von löslichen Faktoren beobachtet. Um die Rolle mechanischer Stimuli zu bestimmen, wurde ein Bioreaktor entwickelt, um auf porösen Scaffolds eine mechanische Verformungskraft auf eine mesenchymale Stammzelllinie (MSC) (Telomerase Reverse Transkriptase (TERT)) auszuüben. Diese exprimiert ein auf Dehnung ansprechendes AP-1-Luciferase-Reporterkonstrukt. Eine erhöhte LuciferaseExpression wurde in der Verformungsdehnung im Vergleich zur Scherspannungsdehnung beobachtet. Darüber hinaus war die Expression von osteogenen Linien Marker wie Osteonektin, Osteocalcin (OC), Osteopontin, Runt-verwandtem Transkriptionsfaktor 2 (RUNX2), alkalischem Phosphat (AP) und Kollagen Typ 1 in der Scherbeanspruchungsbelastung im Vergleich zur Verformungsdehnung signifikant herabreguliert. Diese Befunde belegen, dass die Verformungsdehnung der vorherrschende Stimulus war, der dazu führte, dass Skelettvorläufer in früheren Stadien der osteogenen Zellreifung eine Osteogenese durchliefen. Schließlich wurden diese Ergebnisse verwendet, um ein Bioreaktor-In-vitro-Testsystem zu entwickeln, in dem die Wirkung von Medikamenten auf Osteoporose getestet werden konnte. Primäre humane BM-MSCs von osteoporotischen Spendern wurden Strontiumranelat (einem als Protelos® vertriebenen Arzneimittel zur Therapie der Osteoporose) ausgesetzt. Eine erhöhte Expression von Kollagen Typ 1 und Verkalkung wurde in den mit Arzneimitteln behandelten osteoporotischen Stammzellen im Vergleich zu den nicht mit Arzneimitteln behandelten osteoporotischen Stammzellen beobachtet. Somit kann diese Bioreaktortechnologie leicht in ein in vitro Arzneimitteltestsystem angepasst werden. KW - Bioreactor KW - Mechanical deformation KW - Scaffold bone implant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240134 ER - TY - THES A1 - Fey, Christina T1 - Establishment of an intestinal tissue model for pre-clinical screenings T1 - Etablierung eines Darmgewebemodells für Präklinische Screenings N2 - The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies. N2 - Der Dünndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen über die speziellen Aufnahmemechanismen zu erlangen und zur Risikoabschätzung für den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen Trägerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulären Funktionen durch die geringe Porosität oder die unerwünschten molekularen Adhäsionseffekte des künstlichen Trägermaterials negativ beeinflusst werden. Um einige häufige Nachteile zu überwinden werden natürliche extrazelluläre Matrizen (ECM) wie die porzine dezellularisierte Dünndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser Trägerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte Trägerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. Darüber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengünstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative Trägerstruktur für standardisierte und funktionelle Organmodelle in vitro geeignet ist. Dafür wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer Oberflächentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte Oberfläche und die oberflächen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zelluläre Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, repräsentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden Transportaktivität. Zusammenfassend bestätigten diese Ergebnisse die hohe Qualität der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung für präklinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven Repräsentanz von Enterozyten nicht abgebildet werden. Neben der Trägerstruktur die für den Aufbau der in vitro Modelle verwendet wird, trägt auch die zelluläre Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zelluläre Vielfalt des Dünndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primären intestinalen Organoide, die sich hauptsächlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, Vorläuferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zelluläre Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primäre Organoide werden üblicherweise in einer 3D-Matrigel® Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergänzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstützt. Intestinale primäre Sphäroid-/Organoidkulturen wurden auf beiden BNC Varianten als Transwell®-ähnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lässt, dass die Matrix unter diesen Bedingungen für den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die Oberflächen-eigenschaften in zukünftigen Studien angepasst werden, um so eine gute Zelladhäsion auch für primäre Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch für die präklinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primären intestinalen Sphäroide/Organoide und der Notwendigkeit eines vereinfachten aber prädiktiven Modells für präklinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primären immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zelluläre Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primäre Organoide aus dem murinen und dem menschlichen Dünndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren für die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. Während die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit für eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie üblicherweise für primäre humane Sphäroide/Organoide verwendet wird. Darüber hinaus führten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfänglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich Vorläuferzellen (TACs) anstelle der differenzierten Zelltypen der primären Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in Transwell®-basierten Modellen zu einem geringfügig veränderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert für die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels repräsentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von Sphäroid-ähnlichen Strukturen, jedoch keine Organoid-ähnlichen Strukturen unter verlängerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebüßt haben. Die Transwell®-basierten Modelle, welche für jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten repräsentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-ähnliche Transportmechanismen für die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle für in vitro Modelle des Dünndarms verwendet werden können. Darüber hinaus begünstigt die einfache Handhabung und Zellexpansion unter kostengünstigeren Bedingungen im Vergleich zu primären Organoidkulturen den Einsatz dieser neu-generierten Zellklone für Bioverfügbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zelluläre, für die Etablierung alternativer in vitro-Modelle des Dünndarmepithels, die in präklinischen Screenings für reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können. KW - Dünndarm KW - In vitro KW - Tissue Engineering KW - intestinal in vitro model KW - bacterial nanocellulose KW - primary-cell-derived immortalized cell line KW - in vitro Modelle KW - Bakterielle Nanocellulose KW - Primär-basierte immortalisierte Zelllinie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244107 ER - TY - THES A1 - Leikeim, Anna T1 - Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression T1 - Vaskularisierungsstrategien für Vollhautäquivalente zur Modellierung der Melanom-Progression N2 - Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis. N2 - Das maligne Melanom (MM) ist die gefährlichste Form von Hautkrebs mit weltweit steigender Inzidenz. Melanom-Hautmodelle können helfen, seine Ursachen und Entstehung aufzuklären oder neue Behandlungsstrategien zu entwickeln. Den meisten bisherigen Hautmodellen fehlt jedoch ein Gefäßsystem, was ihre Funktionalität und Anwendbarkeit einschränkt. Das MM ist auf das Gefäßsystem angewiesen, sowohl für die eigene Versorgung als auch für die Ausbreitung über Lymph- und Blutgefäße zu entfernten Körperstellen. Um die Entwicklung des MM genau zu studieren, ist daher eine funktionelles Gefäßsystem unabdingbar. Bislang gibt es keine vaskularisierten Hautmodelle, um die Melanommetastasierung in vitro zu untersuchen, weshalb solche Studien immer noch auf Tierversuche angewiesen sind. In der vorliegenden Arbeit werden zwei unterschiedliche Ansätze zur Vaskularisierung von Hautmodellen mit dem Ziel verfolgt, ein vaskularisiertes 3D in vitro Vollhautmodell (full-thickness skin equivalent, FTSE) zu etablieren, das als Testsystem zur Untersuchung der Entwicklung des MM dienen kann. Einerseits wurden Endothelzellen in den dermalen Teil von FTSEs integriert. Die optimale Aussaatdichte, eine sphäroidale Konformation der Zellen und das Zellkulturmedium wurden getestet. Eine hohe Zelldichte führte zur Bildung von lumenbildenden Formen, die im dermalen Teil des Modells verteilt waren. Diese kapillarähnlichen Strukturen wurden durch Färbung für den Endothelzellmarker CD31 als endothelialen Ursprungs nachgewiesen. Das etablierte vaskularisierte FTSE (vFTSE) wurde nach 4 Wochen Kultur histologisch charakterisiert und zeigte eine der menschlichen Haut in vivo ähnliche Architektur mit einer geschichteten Epidermis, die vom dermalen Äquivalent durch eine Basalmembran, gezeigt durch Kollagen Typ IV, getrennt ist. Dieses zufällige kapillarartige Netzwerk ist jedoch nicht funktional, da es nicht durchblutet werden kann. Daher konzentrierte sich der zweite Vaskularisierungsansatz auf die Erzeugung eines perfundierbaren Gewebekonstrukts. Ein Kanal wurde in einem Kollagenhydrogel geformt und mit Endothelzellen besiedelt, um ein zentrales, perfundierbares Gefäß zu imitieren. Die Erzeugung und die Perfusionskultur des Kollagenhydrogels wurde durch die Verwendung von zwei speziell angefertigten, 3D-gedruckten Bioreaktoren ermöglicht. Die histologische Beurteilung der Hydrogele zeigte die Auskleidung des Kanals mit einer Einzelschicht von Endothelzellen, die den zellspezifischen Marker CD31 exprimieren. Für die Untersuchung der MM-Progression in vitro wurde ein 3D-Melanom-Hautäquivalent hergestellt. Melanomzellen wurden in den epidermalen Teil von FTSEs integriert, was die native Mikroumgebung des Tumors darstellt. Die Melanomnester wuchsen an der dermo-epidermalen Grenzfläche innerhalb der gut stratifizierten Epidermis und wurden durch die Expression gängiger Melanommarker charakterisiert. Zusätzlich konnte die Kombination des Melanom-Modells mit dem vFTSE gezeigt werden, was zu Hautmodellen mit Tumoren an der dermo-epidermalen Grenzfläche und lumenartigen Strukturen in der Dermis führte. Alles in allem bieten die in dieser Arbeit vorgestellten Modelle weitere Schritte hin zur Entwicklung eines vaskularisierten, perfundierbaren Melanommodell zur Erforschung der Melanomprogression und Metastasierung. KW - Tissue Engineering KW - In-vitro-Kultur KW - Melanom KW - skin model KW - vascularization KW - in vitro-Testsystem KW - perfused hydrogel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272956 ER - TY - THES A1 - Lotz, Christian T1 - Entwicklung eines Augenirritationstests zur Identifikation aller GHS-Kategorien für den Endpunkt Augenreizung T1 - Development of an eye irritation test to identify all GHS categories of eye irritation N2 - Die Risikobewertung von Chemikalien ist für die öffentliche Gesundheit von entschei-dender Bedeutung, weshalb strenge Testverfahren zu deren toxikologischer Begutach-tung angewandt werden. Die ursprünglich tierbasierten Testverfahren werden aufgrund von neuen wissenschaftlichen Erkenntnissen und wegen ökonomischer Ineffizienz sowie ethischer Fragwürdigkeit immer mehr durch alternative Methoden ohne Tiermodelle ersetzt. Für den toxikologischen Endpunkt der Augenreizung wurden bereits die ersten alternativen Testsysteme auf der Basis von ex vivo- oder in vitro-Modellen entwickelt. Jedoch ist bis dato kein alternatives Testsystem in der Lage, das gesamte Spektrum der verschiedenen Kategorien der Augenreizungen nach dem global harmonisierten System zur Einstufung und Kennzeichnung von Chemikalien (GHS) vorherzusagen und damit den tierbasierten Draize-Augenreizungstest vollends zu ersetzen. Gründe hierfür sind fehlende physiologische Merkmale im Modell sowie eine destruktive Analysemethode. Aufgrund dessen wurden in dieser Studie die Hypothesen getestet, ob ein verbessertes In-vitro-Modell oder eine zerstörungsfreie, hochsensitive Analysemethode die Vorher-sagekraft des Augenreizungstests verbessern können. Dafür wurden zunächst neue Mo-delle aus humanen Hornhaut- und Hautepithelzellen entwickelt. Die Modelle aus pri-mären cornealen Zellen zeigten eine gewebespezifische Expression der Marker Zytokera-tin 3 und 12 sowie Loricrin. In beiden Modellen konnte durch die Verkürzung der Kul-turdauer die Ausbildung einer Hornschicht verhindert werden. Die Modelle wiesen dadurch eine sensiblere Barriere vergleichbar der nativen Cornea auf. Darüber hinaus konnte durch die chemische Quervernetzung mit Polyethylenglykolsuccinimidylglutara-tester ein transparentes, nicht kontrahierendes Stroma-Äquivalent etabliert werden. Der Stroma-Ersatz konnte zur Generierung von Hemi- und Voll-Cornea-Äquivalenten einge-setzt werden und lieferte somit erste Ansatzpunkte für die Rekonstruktion der nativen Hornhaut. Parallel dazu konnte ein zerstörungsfreies Analyseverfahren basierend auf der Impe-danzspektroskopie entwickelt werden, das wiederholte Messungen der Gewebeintegri-tät zulässt. Zur verbesserten Messung der Barriere in dreidimensionalen Modelle wurde hierfür ein neuer Parameter, der transepitheliale elektrische Widerstand (TEER) bei der Frequenz von 1000 Hz, der TEER1000 Hz definiert, der eine genauere Aussage über die Integrität der Modelle zulässt. Durch die Kombination der entwickelten cornealen Epithelzellmodelle mit der TEER1000 Hz-Messung konnte die Prädikitivität des Augenrei-zungstests auf 78 - 100 % erhöht werden. Von besonderer Bedeutung ist dabei, dass die nicht destruktive Messung des TEER1000 Hz zum ersten Mal erlaubte, die Persistenz von Irritationen durch wiederholte Messungen in einem in vitro-Modell zu erkennen und somit die GHS-Kategorie 1 von GHS-Kategorie 2 zu unterscheiden. Der wissenschaftli-che Gewinn dieser Forschungsarbeit ist ein neues Testverfahren, das alle GHS-Kategorien in einem einzigen in vitro-Test nachweisen und den Draize-Augenreizungstest gänzlich ersetzen kann. N2 - The assessment of the risk of chemicals is of crucial importance for public health. Hence, strict test procedures have been developed for toxicological evaluation of consumer products. The original animal-based test methods are being replaced by alternative methods due to new scientific findings, economic inefficiency and ethical doubts. For the toxicological endpoint of eye irritation, the first alternative test systems based on ex vivo or in vitro models have been developed. However, to date no alternative test meth-od has been able to predict the entire spectrum of eye irritation categories specified in the globally harmonized system for the classification and labelling of chemicals (GHS). Thus, no stand-alone test methods can replace the animal-based Draize eye irritation test resulting in the need of complex integrated testing strategies. Reasons for this are the lack of key physiological characteristics of the implemented models, species specific differences and the employed destructive analysis method. Therefore, this study tested whether a refinement of the used models or a more sensitive analytical method could improve the predictive power of the eye irritation test. First, new models of human corneal and skin epithelial cells were developed. Since a key fea-ture of the human cornea is a lack of cornification, several parameters such as calcium and retinoic acid to reduce the cornification were investigated. In both models the for-mation of a stratum corneum could be prevented most effectively by shortening the cul-ture time. Hence, the models had a more sensitive barrier comparable to the native cor-nea. However, only the model based on primary cornea cells showed a cornea-specific expression of the markers cytokeratin 3 and 12 as well as loricrin. Models based on skin keratinocytes retained a skin-specific phenotype. In addition, a stromal matrix was de-veloped to allow for the generation of a full-thickness cornea model. For this a cell-seeded collagen hydrogel was chemically cross-linkined via a polyethylene glycol suc-cinimidyl glutarate generating a transparent, non-contracting stroma equivalent. In parallel, a non-destructive highly sensitive analysis method based on impedance spec-troscopy was developed that allows repeated measurements of the tissue integrity. To improve the measurement of the barrier in three-dimensional models, a new parameter, the transepithelial electrical resistance (TEER) at the frequency of 1000 Hz, the TEER1000 Hz was defined. By combining the developed corneal epithelial cell models with the TEER1000 Hz measurement, the predictivity of the eye irritation test could be increased to 78 - 100 %. Moreover, the TEER1000 Hz allowed for the first time to detect the persistence of irritative effects by repeated measurements in an in vitro model and thus to distinguish between all GHS categories. The scientific yield of this research work is therefore a new test method that can detect all GHS categories in a single in vitro test and holds the possibility to completely replace the Draize eye irritation test. KW - Tissue Engineering KW - Eye irritation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170126 ER - TY - THES A1 - Siverino, Claudia T1 - Induction of ectopic bone formation by site directed immobilized BMP2 variants \(in\) \(vivo\) T1 - Induktion ektoper Knochenbildung durch gerichtet immobilisierte BMP2-Varianten \(in\) \(vivo\) N2 - In contrast to common bone fractures, critical size bone defects are unable to self-regenerate and therefore external sources for bone replacement are needed. Currently, the gold standard to treat critical size bone fractures, resulting from diseases, trauma or surgical interventions, is the use of autologous bone transplantation that is associated with several drawbacks such as postoperative pain, increased loss of blood during surgery and extended operative time. The field of bone tissue engineering focuses on the combination of biomaterials and growth factors to circumvent these adverse events and thereby to improve critical size bone defects treatment. To this aim, a promising approach is represented by using a collagen sponge soaked with one of the most powerful osteoinductive proteins, the bone morphogenetic protein 2 (BMP2). After the approval by the Food and Drug Administration (FDA), BMP2 was used to successfully treat several severe bone defects. However, the use of BMP2 delivery systems is associated with severe side effects such as inflammation, swelling, ectopic bone formation outside of the site of implantation and breathing problems if implanted in the area of the cervical spine. The occurrence of severe side effects is related to the supraphysiological amounts of the applied protein at the implantation site. The BMP2 is typically adsorbed into the scaffold and diffuses rapidly after implantation. Therefore, intensive research has been conducted to improve the protein’s retention ability, since a prolonged entrapment of the BMP2 at the implantation site would induce superior bone formation in vivo due to a minimized protein release. By controlling the release from newly designed materials or changing the protein immobilization methods, it seems possible to improve the osteoinductive properties of the resulting BMP2-functionalized scaffolds. The combination of biocompatible and biodegradable scaffolds functionalized with a covalently immobilized protein such as BMP2 would constitute a new alternative in bone tissue engineering by eliminating the aforementioned severe side effects. One of the most common immobilization techniques is represented by the so-called EDC/NHS chemistry. This coupling technique allows covalent biding of the growth factor but in a non-site direct manner, thus producing an implant with uncontrollable and unpredictable osteogenic activities. Therefore, the generation of BMP2 variants harboring functional groups that allow a site-directed immobilization to the scaffold, would enable the production of implants with reproducible osteogenic activity. The new BMP2 variants harbor an artificial amino acid at a specific position of the mature polypeptide sequence. The presence of the unnatural amino acid allows to use particular covalent immobilization techniques in a highly specific and site directed manner. The two selected BMP2 variants, BMP2 E83Plk and BMP2 E83Azide, were expressed in E. coli, renatured and purified by cation exchange chromatography. The final products were intensively analyzed in terms of purity and biological activity in vitro. The two BMP2 variants enabled the application of different coupling techniques and verify the possible options for site directed immobilization to the scaffold. Intensive analyses on the possible side effects caused by the coupling reactions and on the quantification of the coupled protein were performed. Both click chemistry reactions showed high reaction efficacies when the BMP2 variants were coupled to functionalized fluorophores. Quantification by ELISA and scintillation counting of radioactively labeled protein revealed different outcomes. Moreover, the amounts of protein detected for the BMP2 variants coupled to microspheres were similar to that of the wild type protein. Therefore, it was not possible to conclude whether the BMP2 variants were covalently coupled or just adsorbed. BMP2 variants being immobilized to various microspheres induced osteogenic differentiation of C2C12 cells in vitro, but only in those cells that were located in close proximity to the functionalized beads. This selectivity strongly indicates that the protein is for a great portion covalently coupled and not just adsorbed. Moreover, the difference between the covalently coupled BMP2 variants and the adsorbed BMP2 WT was confirmed in vivo. Injection of the BMP2-functionalized microspheres in a rat model induced subcutaneous bone formation. The main aim of the animal experiment was to prove whether covalently coupled BMP2 induces bone formation at significant lower doses if compared to the amount being required if the protein is simply adsorbed. To this aim, several BMP2 concentrations were tested in this animal experiment. The BMP2 variants, being covalently immobilized, were hypothesized to be retained and therefore bio-available at the site of implantation for a prolonged time. However, in the animal experiments, lower doses of either coupled or adsorbed protein were unable to induce any bone formation within the 12 weeks. In contrast, the highest doses induced bone formation that was first detected at week 4. During the 12 weeks of the experiment, an increase in bone density and a steady state bone volume was observed. These results were obtained only for the covalently coupled BMP2 E83Azide but not for BMP2 E83Plk that did not induce bone formation in any condition. The negative outcome after application of BMP2 E83Plk suggested that the coupling reaction might have provoked changes in the protein structure that extremely influenced its osteogenic capabilities in vivo. However, the histological examination of the different ossicles induced either by BMP2 WT or BMP2 E83Azide, revealed clear morphological differences. BMP2 WT induced a bone shell-like structure, while the covalently coupled protein induced uniform bone formation also throughout the inner part. The differences between the two newly formed bones can be clearly associated with the different protein delivery mechanisms. Thus, the developed functionalized microspheres constitute a new interesting strategy that needs further investigations in order to be able to be used as replacement of the currently used BMP2 WT loaded medical devices. N2 - Knochendefekte kritischer Größe sind im Vergleich zu normalen Knochenfrakturen nicht in der Lage selbst zu heilen. Daher werden zusätzlich Knochenersatzmaterialien zu deren Heilung benötigt. Der derzeitige Goldstandard in der Behandlung dieser Defekte, die durch Krankheiten, Traumata oder durch chirurgische Eingriffe hervorgerufen werden können, ist Transplantation autologen Knochens, was jedoch mit einigen Nachteilen verbunden ist. Als Alternative können neuartige biokompatible Materialien mit intrinsischem osteogenen Potential verwendet werden. Solche Materialien können Wachstumsfaktoren beinhalten welche aktiv die Heilung des beschädigten Knochens fördern. Ein vielversprechender Ansatz um dieses Ziel zu erreichen, ist der Einsatz eines Kollagenträgers, welcher mit einem der stärksten osteoinduktiven Proteine, dem Bone Morphogenic Protein 2 (BMP2) dotiert ist. Nach der Genehmigung durch die Food and Drug Administration (FDA), wurde BMP2 erfolgreich bei der Behandlung von schwerwiegenden Knochendefekten eingesetzt. Daher wird es als bisher beste Alternative zu autologen Transplantaten sowie als beste Möglichkeit zur Anregung der Knochenneubildung angesehen. Nichtdestotrotz geht der Einsatz von mit BMP2 beladenen Trägersystemen mit Nebenwirkungen, wie Entzündungen Schwellungen, Knochenwucherungen abseits des behandelten Defektes sowie Atembeschwerden bei Behandlungen im Bereich der Halswirbelsäule einher. Die Nebenwirkungen werden durch die supraphysiologische Menge an Protein, mit der die Trägerstruktur beladen wird hervorgerufen. Jedoch ist solch eine Menge an Protein nötig, da die Abgabe des Proteins an der Transplantationsstelle sehr schnell abläuft. Deshalb konzentriert sich die Forschung auf die Verbesserung der Freisetzungskinetik, da ein längerer Verbleib des BMP2 an der Implantationsstelle sowie eine verringerte Freisetzung des Proteins eine bessere Knochenbildung in vivo herbeiführt. Die Freisetzungskinetik kann durch die Eigenschaften neu entwickelter Materialien selbst oder durch alternative Methoden der Kopplung des Proteins an die Trägerstruktur verändert werden. Die Kombination aus biokompatiblen sowie biodegradierbaren Trägerstrukturen, an die über kovalente Bindungen BMP2 gebunden wird, stellt eine vielversprechende Alternative dar, welche die vorgenannten Nebenwirkungen bei der Knochenregeneration eliminiert. Die am häufigsten eingesetzte Methode zur kovalenten Anbindung von Proteinen an Trägerstukturen erfolgt über die sogenannte EDC/NHS-Chemie. Diese Technik erlaubt die allerdings nur eine ungerichtete Anbindung wodurch die standardisierte Reproduktion eines möglichen Medizinproduktes erschwert wird. Als Resultat entstehen sehr wahrscheinlich Implantate mit unvorhersehbaren osteogenen Eigenschaften. Die Herstellung von BMP2-Varianten, welche gerichtet an Trägerstrukturen gekoppelt werden können, ermöglicht die Herstellung von Implantaten mit reproduzierbarer osteogener Aktivität. Alle hier vorgestellte Varianten beinhalten eine artifizielle Aminosäure an einer bestimmten Stelle in der Polypeptidsequenz. Die künstliche Aminosäure ermöglicht den Einsatz spezieller Kopplungschemien für kovalente Bindungen, welche dadurch per Definition spezifisch und gerichtet sind. Für weiterführende Experimente wurden die folgende BMP2-Varianten ausgewählt: BMP2 E83Plk und BMP2 E83Azide. Diese wurden durch Expression in E. coli gewonnen, renaturiert und mittels Ionenchromatographie aufgereinigt. Die gewonnenen Produkte wurden hinsichtlich ihrer Reinheit und biologischen Aktivität in vitro untersucht. Beide BMP2 Varianten ermöglichen den Einsatz verschiedener Kopplungstechniken an geeignete Trägerstrukturen. Analysen hinsichtlich möglicher Nebenwirkungen aufgrund der Kupplungsreaktion sowie die genaue Quantifizierung der gekoppelten Proteine auf den Mikrosphären wurden durchgeführt. Beide Kopplungsstrategien zeigten eine hohe Effizienz wobei für die Quantifizierung der Proteinmengen mittels ELISA und Szintillationszählung unterschiedliche Werte gemessen wurden. Des Weiteren war die gemessene Proteinmenge von an Mikrosphären gekoppelten BMP2 Varianten in einem ähnlichen Bereich, wie die bei der ungekoppelten BMP2 WT Kontrolle gemessen wurden. Daher war es nicht möglich zu bestimmen, inwieweit die verwendeten BMP2-Varianten kovalent gebunden oder lediglich adsorbiert waren. Die BMP2 Varianten, die anhand der verwendeten Kopplungschemie in kovalent gebundener Form vorliegenden sollten, induzierten unabhängig vom jeweils verwendeten Material der Sphären die osteogene Differenzierung von C2C12 Zellen die in unmittelbarem Kontakt zu diesen Sphären standen. Im Falle von BMP2 WT beinhaltenden Sphären wurde auch Zelldifferenzierung in Distanz zu den einzelnen Sphären beobachten, was auf Diffusionsprozesse hindeutet. Da dies im Falle der kovalent gekoppelten BMP-2 Varianten nicht beobachtet werden konnte zeigt, dass das Protein hier zum Großteil kovalent gebunden vorliegt und nicht nur adsorbiert wird. Unterschiede zwischen den kovalent gebundenen BMP2 Varianten und dem adsorbierten Wildtyp zeigten sich auch in den Tierexperimenten. Mikrosphären, welche mit BMP2 WT oder einem der beiden BMP2 Varianten beladenen waren, wurden einer Ratte subkutan injiziert, was zu einer ektopen Knochenbildung führte. Das Ziel des Tierversuches war, zu überprüfen, ob geringere Dosen an kovalent gebundenem BMP2, verglichen mit der hohen benötigten Menge an adsorbiertem Protein diese Knochenneubildung induzieren kann. Dabei wurden verschiedene BMP2 Konzentrationen getestet. Die Hypothese war, dass die kovalent gebundenen BMP2 Varianten zurückgehalten werden beziehungsweise langsamer freigesetzt werden und daher über einen längeren Zeitraum an der Implantationsstelle wirksam sind. Allerdings konnte im Tierversuch weder durch niedrig dosiertes (< 10 μg) kovalent gebundenes noch durch adsorbiertes Protein innerhalb von 12 Wochen ektope Knochenbildung induziert werden. Dagegen konnte mit der höchsten Dosis bereits nach 4 Wochen Knochenbildung nachgewiesen werden. Während des zwölfwöchigen Experiments konnte ein Anstieg der Knochendichte und ein Steady State des Knochenvolumens beobachtet werden. Dies traf jedoch nur für das kovalent gebundene BMP2 E83Azide zu, jedoch nicht für das BMP2 E83Plk, welches bei allen Dosen kein Knochenwachstum hervorrufen konnte. Das negative Ergebnis nach der Gabe von BMP2 E83Plk deutet darauf hin, dass die hier verwendete Kopplungschemie möglicherweise eine Veränderung der Proteinstruktur bewirkt und dadurch die biologische Aktivität des Proteins verloren geht. Allerdings zeigten histologische Untersuchungen der gebildeten Knochenstrukturen, welche durch BMP2 WT oder durch BMP2 E83Azide hervorgerufen wurden, deutliche morphologische Unterschiede. BMP2 WT erzeugt eine solide schalenförmige Strukturen während das kovalent gebundene Protein ein eher gleichförmiges Knochenwachstum induziert, auch im Inneren der gebildeten Knochenstruktur, welches hier Reste implantierten Mikrosphären umschließt. Dies konnte nicht in den durch BMP2 WT induzierten Knochenstrukturen nachgewiesen werden. Der Unterschied zwischen den zwei Formen neu gebildeten Knochens kann mit den verschiedenen Freisetzungsmechanismen in Verbindung gebracht werden. Daher stellt die Entwicklung funktionalisierter Mikrosphären eine neue interessante Strategie dar, welche weiterführende Untersuchungen benötigt, um die aktuell genutzten BMP2 WT beinhaltenden Medizinprodukte zu ersetzen. KW - Bone morphogenetic protein 2 KW - ectopic bone formation KW - site directed immobilization KW - bone regeneration KW - in vivo study Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169359 ER - TY - THES A1 - Tabisz, Barbara T1 - Site Directed Immobilization of BMP-2: Two Approaches for the Production of Osteoinductive Scaffolds T1 - Gerichtete Immobilisierung von BMP-2: Zwei Ansätze zur Herstellung osteogener Trägerstrukturen N2 - Bone fractures typically heal without surgical intervention. However, pathological situations exist which impede the healing process resulting in so-called non-union fractures. Such fractures are nowadays treated with scaffold material being introduced into the defect area. These scaffolds can be doped with osteogenic factors, such as bone morphogenetic protein (BMP)2. BMP2 belongs to the most osteogenic growth factors known to date. Its medical use, efficiency and safety have been approved by FDA for certain applications. Currently, BMP2 is distributed with a stabilizing scaffold, which is simply soaked with the growth factor. Due to fast release kinetics supraphysiological high doses of BMP2 are required which are causally associated with severe side effects observed in certain applications being most harmful in the area of the cervical spine. These side-effects include inflammation, swelling and breathing problems, leading to disastrous consequences or secondary surgical interventions. Since it could be shown that a retardation of BMP2 release from the scaffold resulted in superior bone forming properties in vivo, it seems obvious to further reduce this release to a minimum. This can be achieved by covalent coupling which in the past was already elaborated using mainly classical EDC/NHS chemistry. Using this technique coupling of the protein occurs non-site-directedly leading mainly to an unpredictable product outcome with variable osteogenic activities. In order to improve the reproducibility of scaffold functionalization by BMP2 we created variants one of which contains a unique unnatural amino acid substitution within the mature polypeptide sequence (BMP2-K3Plk) and another, BMP2-A2C, in which an N-terminal alanine has been substituted by cysteine. These modifications enable site-specific and covalent immobilization of BMP2 e.g. onto polymeric beads. Both proteins were expressed in E. coli, renatured and purified by cation-exchange chromatography. Both variants were extensively analyzed in terms of purity and biological activity which was tested by in vitro interaction analyses as well as in cell based assays. Both proteins could be successfully coupled to polymeric beads. The different BMP2 functionalized beads were shown to interact with the ectodomain of the type I receptor BMPR-IA in vitro indicating that the biological activity of both BMP2 variants retained upon coupling. Both functionalized beads induced osteogenic differentiation C2C12 cells but only of those cells which have been in close contact to the particular beads. This strongly indicates that the BMP2 variant are indeed covalently coupled and not just adsorbed. We claim that we have developed a system for a site-specific and covalent immobilization of BMP-2 onto solid scaffolds, potentially eliminating the necessity of high-dose scaffold loading. Since immobilized proteins are protected from removal by extracellular fluids, their activities now rely mainly on the half-life of the used scaffold and the rate of proteolytic degradation. Assuming that due to prolonged times much lower loading capacities might be required we propose that the immobilization strategy employed in this work may be further refined and optimized to replace the currently used BMP2-containing medical products. N2 - Knochenbrüche heilen typischerweise ohne die Notwendigkeit chirurgischer Eingriffe. Es gibt jedoch pathologische Situationen, in denen keine Heilung erfolgt was zur Ausbildung sogenannter non-union Frakturen führt. Solche Frakturen werden heutzutage mit Trägermaterialen versorgt, welche in die Defektzonen eingebracht werden. Diese Trägermaterialien können mit osteogen wirkenden Faktoren dotiert sein, z.B. mit bone morphogenetic protein (BMP)2. BMP2 gehört zu den am meisten osteogen wirkenden Faktoren, welche derzeit bekannt sind. Die Nutzung dieses Faktors als Medikament, wurde aufgrund seiner Effizienz und der Sicherheit in der Anwendung von der FDA für bestimmte Anwendungsgebiete zugelassen. Derzeit wird BMP2 mit einer stabilisierenden Trägerstruktur vertrieben, wobei diese einfach mit dem Wachstumsfaktor getränkt wird. Aufgrund schneller Freisetzungskinetiken werden unphysiologisch hohe Mengen von BMP2 gebraucht, welche in Beziehung zu extremen Nebeneffekten gebracht werden, die bei verschiedenen Anwendungen, speziell im Wirbelsäulenbereich, beobachtet werden konnten. Die Nebeneffekte umfassen Endzündungen, einhergehend mit Schwellungen und Atemprobleme, welche weitere Operationen nach sich ziehen können. Da bereits gezeigt werden konnte, dass eine Verzögerung der BMP2 Freisetzung aus der Trägerstruktur eine Verbesserung der osteogenen Wirkung mit sich bringt erscheint es offensichtlich, diese Freisetzung auf ein Minimum zu reduzieren. Dies kann durch kovalente Anbindung erreicht werden, was bereits in der Vergangenheit durch die Verwendung klassischer EDC/NHS Kopplungschemie versucht wurde. Bei dieser Art der Anbindung wird das Protein ungerichtet gekoppelt, was zu unvorhersagbaren Produktqualitäten mit variablen osteogenen Aktivitäten führt. Um eine Reproduktion solcher Funktionalisierungen mit BMP2 zu ermöglichen wurden zwei BMP-2 Varianten erzeigt, wobei bei einer der Varianten eine Aminosäure im N-terminalen Teil des reifen Proteinteils gegen eine unnatürliche Aminosäure BMP2-Plk), bei der anderen ein Alanin gegen ein Cystein ausgetauscht wurde BMP2-A2C. Durch diesen Austausch wird es möglich, diese Varianten gerichtet an polymere Strukturen anzubinden. Beide Proteine wurden in E. coli exprimiert, renaturiert und mittels Kationenaustausch-Chromatographie aufgereinigt. Die resultierenden Proteinprodukte wurden intensiv bzgl. ihres Reinheitsgrades sowie ihrer biologischen Aktivität überprüft. Letzteres erfolgte sowohl durch In-vitro Interaktions-Analysen als auch durch zellbasierte Untersuchungen. Beide Proteine konnten erfolgreich an polymere Strukturen ("beads") gekoppelt werden. Es konnte gezeigt werden, dass die verschiedenen BMP2 funktionalisierten beads mit isolierten Ektodomänen des BMP Typ I Rezeptors (BMPR-IA) interagieren. Dies belegt, dass die biologische Aktivität auch nach der Kopplung erhalten bleibt. Die funktionalisierten beads induzieren die osteogene Differenzierung von C2C12 Zellen. Die Differenzierung erfolgt aber nur in jenen Zellen die im direkten Kontakt zu den beads stehen. Dies legt nahe, dass beide BMP2 Varianten wirklich kovalent gekoppelt und nicht nur adsorbiert sind. Es kann behauptet werden, dass im Rahmen dieser Arbeit ein System entwickelt wurde, durch das eine gerichtete Immobilisierung von BMP2 an solide Oberflächen möglich ist. Dadurch können möglicherweise die notwendigen BMP2 Mengen reduziert werden, da bereits Subnanogram Mengen der gekoppelten BMP2 Varianten Osteogenese auslösen können. Da gekoppelte Proteine nicht durch interstitielle Flüssigkeiten entfernt werden können unterliegt die Fortdauer ihrer biologischen Aktivität der Halbwertszeit des verwendeten Trägermaterials, was durch die verlängerten Wirkzeiten eine Verringerung der verwendeten Wachstumsfaktormenge ermöglicht. Es wird beabsichtigt diese Kopplungsstrategie weiterzuentwickeln um die derzeit am Markt befindlichen BMP2 beinhaltenden Medizinprodukte ersetzen zu können. KW - Protein chemistry KW - BMP-2 KW - protein immobilization KW - site-specific immobilization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153766 ER - TY - THES A1 - Jannasch, Maren Annika T1 - In vitro Fremdkörpermodellsysteme zur Vorhersage von biomaterialinduzierten Immunreaktionen T1 - In vitro foreign body model systems for prediction of immune reactions to biomaterials N2 - Die Implantation eines Medizinprodukts in den menschlichen Körper ruft eine Immunreaktion hervor, die zur fibrösen Einkapselung führen kann. Makrophagen in direktem Kontakt mit der Oberfläche des Implantats erfassen sensorisch den Fremdkörper und übersetzten das Signal in die Freisetzung zahlreicher löslicher Mediatoren. Das generierte Entzündungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erhöhung der Matrixsyntheserate in der Wundumgebung führen. Eine dichte fibröse Kapsel um ein Medizinprodukt beeinträchtigt den Ersatz von Körperstrukturen, das Unterstützen physiologischer Körperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterstützt werden. Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begründet die Komplexi-tät der ablaufenden Fremdkörperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verfügbarkeit validierter, verlässlicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen während einer Fremdkörperreaktion abbildet und sich zur Testung über längere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch können in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine höhere Übertragbarkeit auf den Menschen aufweisen. Zusätzlich adressiert die Präferenz zu in vitro Testmethoden den Aspekt „Reduzierung“ der 3R-Prinzipien „Replacement, Reduction, Refinement“ (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begründeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium für die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellulärer Matrix in der Wundumgebung stellen wichtige Teilprozesse während einer Fremdkörperreaktion dar. Für beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von löslichen Mediatoren durch materialadhärente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden. Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialständige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberflächenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix ermöglichte die Übersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Darüber hinaus konnte in einem dreidimensionalen Fremdkörpermodell die komplexe dreidimensionale Struktur der extrazellulären Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdkörpermodelle ermöglichten die Testung von Biomaterialien über längere Testphasen und können in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen ermöglichen, (II) die Identifizierung verlässlicher Testbedingungen unterstützen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verlässliche Unterscheidungskapazität zwischen Biomaterialien aufweist. N2 - The implantation of a medical product into the human body induces an immune reaction, which may lead to its fibrous encapsulation. Macrophages in direct contact to the surface sense the foreign body and translate the signal in the secretion of multiple soluble mediators. This generated inflammatory milieu modulates the healing reaction, may induce the accumulation of fibroblasts and lead in the wound microenvironment to an increased matrix synthesis rate. A dense fibrous capsule surrounding a medical product is able to impair the replacement of body structures, the support of physiological body functions as well as the efficiency of a medical therapy. To identify potential biomaterial candidates with optimal characteristics an evidence-based decision making process is necessary and furthermore affords the support by appropriate test procedures. To study local effects after implantation of biomaterials, the complexity of the foreign body reaction justifies the application of animal models as gold standard. The integration of in vitro test procedures into standardized test strategies often fails by the availability of validated, reliable and reproducible methods. According to that there is no standardized test procedure, which resembles the three-dimensional tissue structures during a foreign body reaction and is suited for longer contact phases in between blood components and biomaterials. In vitro tests are often more cost and time efficient and show as well by applying human cells a high transferability on human beings. Additionally the preference to in vitro test procedures addresses the “reduction” aspect of the Russel and Burch’s (1959) 3R-principles “replace-ment, reduction and refinement” to a conscious and reasoned use of animal models in science. Aim of this research project was the development of human in vitro model systems, which resemble the contact to blood components and the reaction of the surrounding soft tissue following implantation of a biomaterial. Reference materials, whose tissue integration after implantation in animals or humans is described, were applied for the developed model systems as validation criterion. The accumulation of cells and the synthesis of extracellular matrix in the surrounding wound are relevant sub processes during a foreign body reaction. In an indirect cell-based model system the influence of the cell-mediated conditioning initiated by the material-induced and macrophage-mediated liberation of soluble mediators was shown on both sub processes the aligned migration of fibroblasts as well as the remodeling of a three-dimensional tissue model. Additionally, the cytokine secretion profile by material-adherent macrophages was characterized under different test conditions such as the contamination with LPS, the surface treatment with human plasma and the presence of IL-4. The following comparative statistical modelling allowed a transformation of the generated complex multi-factorial data matrix to a biomaterial ranking. The here developed test procedure was suitable for the validation of in vitro test conditions as well as the evaluation of the reference biomaterials. Last, by the combination of different cells and matrix structures the complex three-dimensional structure of the extracellular matrix in a wound was biomimetically reconstructed. Those novel three-dimensional foreign body models enabled the testing of biomaterials over longer test phases and might be applied in following studies to investigate dynamic processes. Summarizing in this research project three different test strategies were developed, which (I) enable the evaluation of sub processes, (II) support the identification of reliable test conditions and (III) biomimetically reconstruct a wound tissue. Most important is, that a three-dimensional tissue model was biomimetically developed, which showed a reliable discriminatory capacity in between biomaterials. KW - Biomaterial KW - Zellkultur KW - In vitro KW - Fremdkörpermodell KW - Gewebemodell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162893 ER -