TY - THES A1 - Schäfer [geb. Stichler], Simone T1 - Thiol-ene Cross-linked Poly(glycidol) / Hyaluronic Acid Based Hydrogels for 3D Bioprinting T1 - Thilo-En vernetzte Hydrogele basierend auf Poly(glyzidolen) und Hyaluronsäure für das 3D-Biodrucken N2 - The aim of the work was the development of thiol-ene cross-linked hydrogels based on functionalized poly(glycidol)s (PG) and hyaluronic acid (HA) for extrusion based 3D bioprinting. Additionally, the functionalization of the synthesized PG with peptides and the suitability of these polymers for physically cross-linked gels were investigated, in a proof of principle study in order to demonstrate the versatile use of PG polymers in hydrogel development. First, the precursor polymers of the different hydrogel systems were synthesized. For thiol-ene cross-linked hydogels, linear allyl-functionalized PG (P(AGE-co-G)) and three different thiol-(SH-)functionalized polymers, ester-containing PG-SH (PG SHec), ester-free PG-SH (PG-SHef) and HA-SH were synthesized and analysed, The degree of functionalization of these polymers was adjustable. For physically cross-linked hydrogels, peptide-functionalized PG (P(peptide-co-G)), was synthesized through polymer analogue thiol-ene modification of P(AGE-co-G). Subsequently, thiol-ene cross-linked hydrogels were prepared with the synthesized thiol- and allyl-functionalized polymers. Depending on the origin of the used polymers, two different systems were obtained: on the one hand synthetic hydrogels consisting of PG-SHec/ef and P(AGE-co-G) and on the other hand hybrid gels, consisting of HA-SH and P(AGE-co-G). In synthetic gels, the degradability of the gels was determined by the applied PG-SH. The use of PG-SHec resulted in hydrolytically degradable hydrogels, whereas the cross-linking with PG-SHef resulted in non-degradable gels. The physical properties of these different hydrogel systems were determined by swelling, mechanical and diffusion studies and subsequently compared among each other. In swelling studies the differences of degradable and non-degradable synthetic hydrogels as well as the differences of synthetic compared to hybrid hydrogels were demonstrated. Next, the stiffness and the swelling ratios (SR) of the established hydrogel systems were examined in dependency of different parameters, such as incubation time, polymer concentration and UV irradiation. In general, these measurements revealed the same trends for synthetic and hybrid hydrogels: an increased polymer concentration as well as prolonged UV irradiation led to an increased network density. Moreover, it was demonstrated that the incorporation of additional non-bound HMW HA hampered the hydrogel cross-linking resulting in gels with decreased stiffness and increased SR. This effect was strongly dependent on the amount of additional HMW HA. The diffusion of different molecular weight fluorescein isothiocyanate-dextran (FITC-dextran) through hybrid hydrogels (with/without HMW HA) gave information about the mesh size of these gels. The smallest FITC-dextran (4 kDa) completely diffused through both hydrogel systems within the first week, whereas only 55 % of 40 kDa and 5-10 % HMW FITC-dextrans (500 kDa and 2 MDa) could diffuse through the networks. The applicability of synthetic and hybrid hydrogels for cartilage regeneration purpose was investigated through by biological examinations. It was proven that both gels support the survival of embedded human mesenchymal stromal cells (hMSCs) (21/28 d in vitro culture), however, the chondrogenic differentiation was significantly improved in hybrid hydrogels compared to synthetic gels. The addition of non-bound HMW HA resulted in a slightly less distinct chondrogenesis. Lastly the printability of the established hydrogel systems was examined. Therefore, the viscoelastic properties of the hydrogel solutions were adjusted by incorporation of non-bound HMW HA. Both systems could be successfully printed with high resolution and high shape fidelity. The introduction of the double printing approach with reinforcing PCL allowed printing of hydrogel solutions with lower viscosities. As a consequence, the amount of additional HMW HA necessary for printing could be reduced allowing successful printing of hybrid hydrogel solutions with embedded cells. It was demonstrated that the integrated cells survived the printing process with high viability measured after 21 d. Moreover, by this reinforcing technique, robust hydrogel-containing constructs were fabricated. In addition to thiol-ene cross-linked hydrogels, hydrogel cross-linking via ionic interactions was investigated with a hybrid hydrogel based on HMW HA and peptide-functionalized PG. Rheological measurements revealed an increase in the viscosity of a 2 wt.% HMW HA solution by the addition of peptide-functionalized PG. The increase in viscosity could be attributed to the ionic interactions between the positively charge PG and the negatively charge HMW HA. In conclusion, throughout this thesis thiol-ene chemistry and PG were introduced as promising cross-linking reaction and polymer precursor for the field of biofabrication. Furthermore, the differences of hybrid and synthetic hydrogels as well as chemically and physically cross-linked hydrogels were demonstrated. Moreover, the double printing approach was demonstrated to be a promising tool for the fabrication of robust hydrogel-containing constructs. It opens the possibility of printing hydrogels that were not printable yet, due to too low viscosities. N2 - Ziel der Arbeit war die Entwicklung von Thiol-En-vernetzten Hydrogelen basierend auf funktionalisierten Poly(glyzidolen) (PG) und Hyaluronsäure (HA) für das extrusionsbasierte 3D-Biodrucken. Um die vielseitigen Anwendungsmöglichkeiten von PG-Polymeren für die Hydrogelentwicklung zu zeigen, wurde darüber hinaus, in einer Proof-of-Principle-Studie, PG mit Peptiden funktionalisiert und die Eignung dieser Polymere für die Herstellung von physikalisch vernetzten Gelen untersucht. Zunächst wurden die Vorläuferpolymere für die verschiedenen Hydrogelsysteme synthetisiert. Für die Thiol-En-vernetzten Hydrogele wurde lineares Allyl-funktionalisiertes PG (P(AGE-co-G)) und drei verschiedene Thiol-(SH )funktionalisierte Polymere, Ester haltiges PG-SH (PG-SHec), Ester freies PG SH (PG-SHef) und HA-SH synthetisiert und analysiert. Dabei war der Funktionalisierungsgrad dieser Polymere einstellbar. Für physikalisch vernetzte Hydrogele wurde Peptid-funktionalisierte PGs (P(Peptid co-G)) mittels polymeranaloger Thiol-En-Modifikation von P(AGE-co-G) synthetisiert. Anschließend wurden Thiol-En-vernetzte Hydrogele auf Basis der synthetisierten Thiol- und Allyl-funktionalisierten Polymeren hergestellt. Je nach Ursprung der verwendeten Polymere wurden zwei verschiedene Systeme erhalten: einerseits synthetische Hydrogele bestehend aus PG-SHec/ef und P(AGE-co-G) und andererseits hybride Gele, bestehend aus HA-SH und P(AGE-co-G). Bei den synthetischen Gelen wurde die Abbaubarkeit der Gele durch das verwendete PG-SH bestimmt. Die Verwendung von PG-SHec resultierte in hydrolytisch abbaubaren Hydrogelen, während die Vernetzung mit PG-SHef zu nicht abbaubaren Gelen führte. Die physikalischen Eigenschaften der verschiedenen Hydrogelsysteme wurden mittels Quell-, mechanischen und Diffusionsexperimenten bestimmt und anschließend miteinander verglichen. Die Quellungsstudien zeigten die Unterschiede von abbaubaren und nicht abbaubaren synthetischen Hydrogelen, sowie die Unterschiede von synthetischen gegenüber hybriden Hydrogelen. Als nächstes wurden die Steifigkeit und das Quellverhältnis (SR) der etablierten Hydrogelsysteme in Abhängigkeit von verschiedenen Parametern wie Inkubationszeit, Polymerkonzentration und UV-Bestrahlung untersucht. Im Allgemeinen zeigten diese Messungen für synthetische und hybride Hydrogele die gleichen Trends: eine erhöhte Polymerkonzentration sowie eine verlängerte UV-Bestrahlung führten zu einer erhöhten Netzwerkdichte. Darüber hinaus wurde gezeigt, dass das Einbringen zusätzlicher, nicht gebundener HMW HA die Hydrogelvernetzung behinderte, was zu Gelen mit verringerter Steifigkeit und erhöhtem SR führte. Dieser Effekt war stark abhängig von der Menge an zusätzlich eingebrachter HMW HA. Die Diffusion von Fluorescein-Isothiocyanat-Dextran (FITC-Dextran) mit unterschiedlichem Molekulargewichten durch hybride Hydrogele (mit/ohne HMW HA) lieferte Informationen über die Maschengröße dieser Gele. Das kleinste FITC-Dextran (4 kDa) diffundierte innerhalb der ersten Woche vollständig durch beide Hydrogelsysteme, während nur 55 % der 40 kDa und 5-10 % HMW FITC-Dextrane (500 kDa und 2 MDa) durch die Netzwerke diffundieren konnten. Die Anwendbarkeit von synthetischen und hybriden Hydrogelen für Knorpelregenerationszwecke wurde durch biologische Experimente untersucht. Es wurde bewiesen, dass beide Gele das Überleben von eingebetteten humanen mesenchymalen Stromazellen (hMSCs) unterstützen (21/28 d in vitro Kultur), jedoch war die chondrogene Differenzierung in hybriden Hydrogelen im Vergleich zu synthetischen Gelen signifikant verbessert. Die Zugabe von nicht gebundenem HMW HA führte zu einer etwas weniger ausgeprägten Chondrogenese. Zuletzt wurde die Druckbarkeit der etablierten Hydrogelsysteme untersucht. Dafür wurden die viskoelastischen Eigenschaften der Hydrogellösungen durch das Einbringen von nicht gebundener HMW HA eingestellt. Beide Systeme konnten erfolgreich mit hoher Auflösung und hoher Formgenauigkeit gedruckt werden. Die Einführung des Doppeldruck-Konzeptes mit verstärkendem PCL ermöglichte das Drucken von Hydrogellösungen mit niedrigeren Viskositäten. Infolgedessen konnte die für den Druck notwendige Menge an HMW HA reduziert und hybride Hydrogellösungen mit eingebetteten Zellen erfolgreich gedruckt werden. Es wurde gezeigt, dass die integrierten Zellen den Druckprozess mit hoher Vitalität überlebten (gemessen nach 21 d). Darüber hinaus wurden mit dieser Verstärkungstechnik robuste Hydrogel-enthaltende Konstrukte hergestellt. Zusätzlich zu den Thiol-En-vernetzten Hydrogelen wurde die Hydrogelvernetzung mittels elektrostatischen Wechselwirkungen mit einem hybriden Gel auf der Basis von HMW HA und Peptid-funktionalisiertem PG untersucht. Rheologische Messungen ergaben eine Erhöhung der Viskosität einer 2 wt.% HMW HA Lösungen durch die Zugabe von Peptid-funktionalisiertem PG. Der Viskositätsanstieg konnte auf die elektrostatischen Wechselwirkungen zwischen dem positiv geladenen PG und der negativ geladenen HMW HA zurückgeführt werden. Zusammenfassend wurde in dieser Arbeit die Thiol-En-Chemie und PG als vielversprechende Vernetzungsreaktion bzw. Polymervorstufe für die Biofabrikation eingeführt. Des Weiteren wurden die Unterschiede von hybriden und synthetischen Hydrogelen sowie von chemisch und physikalisch vernetzten Hydrogelen aufgezeigt. Darüber hinaus wurde gezeigt, dass das Doppeldruck-Konzept eine vielversprechende Methode für die Herstellung von robusten Hydrogel-enthaltenden Konstrukten ist. Es eröffnet die Möglichkeit, Hydrogele zu drucken, die aufgrund zu geringer Viskositäten bis jetzt nicht druckbar waren. KW - Hyaluronsäure KW - thiol-ene KW - Hyaluronic Acid KW - poly(glycidol) KW - hydrogels KW - Hydrogel KW - Glycidol KW - 3D-Druck KW - 3D printing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174713 ER - TY - THES A1 - Bertlein, Sarah T1 - Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication T1 - Hydrogele als biofunktionale Beschichtungen und Thiol-Ene-clickbare Biotinten für die Biofabrikation N2 - Ziel dieser Arbeit war die Entwicklung von funktionalisierbaren Hydrogel Beschichtungen für Schmelz-elektrogeschriebene PCL Gerüste und von Bio-druckbaren Hydrogelen für die Biofabrikation. Hydrogel Beschichtungen von Schmelz-elektrogeschriebenen Konstrukten ermöglichten die Kontrolle der Oberflächen-Hydrophilie und damit Zell-Material Interaktionsstudien in minimal Protein-adhäsiven Umgebungen. Zu diesem Zweck wurde ein hydrophiles sternförmiges vernetzbares Polymer verwendet und eine Optimierung der Beschichtungsbedingungen durchgeführt. Außerdem boten neu entwickelte photosensitive Konstrukte eine Zeit- und pH-unabhängige Biofunktionalisierung. Bio-druckbare Hydrogele für die Biofabrikation basierten auf der Allyl-Funktionalisierung von Gelatine (GelAGE) und modifizierten Hyaluronsäure-Produkten, die das Hydrogel-Vernetzen mittels Thiol-En Click Chemie ermöglichen. Die Optimierung der GelAGE Hydrogel-Eigenschaften wurde durch eine detaillierte Analyse der Syntheseparameter, variierender En:SH Verhältnisse, unterschiedlicher Vernetzungsmoleküle und Photoinitiatoren erreicht. Die Homogenität der Thiol-En Netzwerke wurde mit denen der freien radikalischen Polymerisation verglichen und die Verwendbarkeit von GelAGE als Bio-Tinte für den Extrusions-basierten Bio-Druck wurde untersucht. Es wurde angenommen, dass reine Hyaluronsäure-basierte Bio-Tinten eine Beibehaltung der mechanischen und rheologischen Eigenschaften, der Zellviabilität und der Prozessierbarkeit ermöglichen trotz geringerem Polymer- und Thiol-Anteil der Hydrogele. Hydrogel-Beschichtungen: Hoch definierte PCL Gerüste wurden mittels MEW hergestellt und anschließend mit sechs armigen sternförmigen vernetzbaren Polymeren (sP(EO-stat-PO)) beschichtet. Die Vernetzung wird durch die wässrig-induzierte Hydrolyse reaktiver Isocyanatgruppen (NCO) von sP(EO-stat-PO) bedingt. Diese Beschichtung erhöhte die Oberflächen-Hydrophilie und stellte eine Plattform für weitere Biofunktionalisierungen, in minimal Protein-adhäsiven Umgebungen, dar. Nicht nur das Beschichtungsprotokoll wurde hinsichtlich der sP(EO-stat-PO) Konzentrationen und der Beschichtungsdauern optimiert, sondern auch Vorbehandlungen der Gerüste wurden entwickelt. Diese waren essentiell um die finale Hydrophilie von sP(EO-stat-PO) beschichteten Gerüste so zu erhöhen, dass unspezifische Protein-Adhäsionen vollständig unterbunden wurden. Die sP(EO-stat-PO) Schichtdicke, von ungefähr 100 nm, ermöglicht generell in vitro Studien nicht nur in Abhängigkeit der Gerüst-Biofunktionalisierung, sondern auch in Abhängigkeit der Gerüst-Architektur durchzuführen. Das Ausmaß der Hydrogel-Beschichtung wurde mittels einer indirekten Quantifizierung der NCO-Hydrolyse-Produkte ermittelt. Kenntnis über die NCO-Hydrolyse-Kinetik ermöglichte ein Gleichgewicht zwischen ausreichend beschichteten Gerüsten und der Präsenz der NCO-Gruppen herzustellen, welche für die anschließenden Biofunktionalisierungen genutzt wurden. Diese Zeit- und pH-abhängige Biofunktionalisierung war jedoch nur für kleine Biomoleküle möglich. Um diese Beschränkung zu umgehen und auch hochmolekulare Biomoleküle kovalent anzubinden, wurde ein anderer Reaktionsweg entwickelt. Dieser basierte auf der Photolyse von Diazirin-Gruppen und ermöglichte eine Zeit- und pH-unabhängige Biofunktionalisierung der Gerüste mit Streptavidin und Kollagen Typ I. Die Fibrillen bildende Eigenschaft von Kollagen wurde genutzt um auf den Gerüsten verschiedene Kollagen-Konformationen zu erhalten und eine erste in vitro Studie bestätigte die Anwendbarkeit für Zell-Material Interaktionsstudien. Die hier entwickelten Gerüste könnten verwendet werden um tiefere Einblicke in die Grundlagen der zellulären Wahrnehmung zu erhalten. Insbesondere die Komplexität mit der Zellen z.B. Kollagen wahrnehmen bleibt weiterhin klärungsbedürftig. Hierfür könnten diverse Hierarchien von Kollagen-ähnlichen Konformationen an die Gerüste gebunden werden, z.B. Gelatine oder Kollagen-abgeleitete Peptidsequenzen. Dann könnte die Aktivierung der DDR-Rezeptoren in Abhängigkeit der Komplexität der angebundenen Substanzen bestimmt werden. Aufgrund der starken Streptavidin-Biotin Bindung könnten Streptavidin funktionalisierte Gerüste eine vielseitige Plattform für die Immobilisierung von jeglichen biotinylierten Molekülen darstellen. Gelatine-basierte Bio-Tinten: Zuerst wurden die GelAGE-Produkte hinsichtlich der Molekulargewichts-Verteilung und der Integrität der Aminosäuren-Zusammensetzung synthetisiert. Eine detailliert Studie, mit variierenden molaren Edukt-Verhältnissen und Synthese-Zeitspannen, wurde durchgeführt und implizierte, dass der Gelatine Abbau am deutlichsten für stark alkalische Synthesebedingungen mit langen Reaktionszeiten war. Gelatine beinhaltet mehrere funktionalisierbare Gruppen und anhand diverser Model-Substanzen und Analysen wurde die vorrangige Amingruppen-Funktionalisierung ermittelt. Die Homogenität des GelAGE-Polymernetzwerkes, im Vergleich zu frei radikalisch polymerisierten GelMA-Hydrogelen, wurde bestätigt. Eine ausführliche Analyse der Hydrogel-Zusammensetzungen mit variierenden funktionellen Gruppen Verhältnissen und UV- oder Vis-Licht induzierbaren Photoinitiatoren wurde durchgeführt. Die UV-Initiator Konzentration ist aufgrund der Zell-Toxizität und der potenziellen zellulären DNA-Beschädigung durch UV-Bestrahlung eingeschränkt. Das Zell-kompatiblere Vis-Initiator System hingegen ermöglichte, durch die kontrollierte Photoinitiator-Konzentration bei konstanten En:SH Verhältnissen und Polymeranteilen, die Einstellung der mechanischen Eigenschaften über eine große Spanne hinweg. Die Flexibilität der GelAGE Bio-Tinte für unterschiedliche additive Fertigungstechniken konnte, durch Ausnutzung des temperaturabhängigen Gelierungsverhaltens unterschiedlich stark degradierter GelAGE Produkte, für Stereolithographie und Extrusions-basiertem Druck bewiesen werden. Außerdem wurde die Viabilität zellbeladener GelAGE Konstrukte bewiesen, die mittels Extrusions-basiertem Bio-Druck erhalten wurden. Die Verwendung diverser multifunktioneller und makromolekularer Thiol-Vernetzungsmoleküle ermöglichte eine Verbesserung der mechanischen und rheologischen Eigenschaften und ebenso der Prozessierbarkeit. Verglichen mit dem kleinen bis-Thiol-funktionellen Vernetzungsmolekül waren geringere Thiol-Vernetzer-Konzentrationen notwendig um bessere mechanische Festigkeiten und physikochemische Eigenschaften der Hydrogele zu erhalten. Der Extrusions-basierte Bio-Druck unterschiedlicher eingekapselter Zellen verdeutlichte die Notwendigkeit der individuellen Optimierung von Zell-beladenen Hydrogel-Formulierungen. Nicht nur die Zellviabilität von eingekapselten Zellen in Extrusions-basierten biogedruckten Konstrukten sollte bewertet werden, sondern auch andere Parameter wie die Zellmorphologie oder die Kollagen- oder Glykosaminoglykan-Produktion, da diese einige der essentiellen Voraussetzungen für die Verwendung in Knorpel Tissue Engineering Konzepten darstellen. Außerdem sollten diese Studien auf die stereolithographischen Ansätze erweitert werden und letztlich wäre die Flexibilität und Zellkompatibilität der Formulierungen mit makromolekularen Vernetzern von Interesse. Makromolekulare Vernetzer ermöglichten die Reduktion des Polymeranteils und des Thiol-Gehalts und können, insbesondere in Kombination mit dem Zell-kompatibleren Vis-Initiator-System, voraussichtlich zu einer gesteigerten Zellkompatibilität beitragen, was zu klären bleibt. Hyaluronsäure-basierte Bio-Tinten: Unterschiedliche Hyaluronsäure-Produkte (HA) wurden synthetisiert, sodass diese En- (HAPA) oder Thiol-Funktionalitäten (LHASH) beinhalteten, um reine HA Thiol-En vernetzte Hydrogele zu erhalten. In Abhängigkeit des Molekulargewichts der HA-Produkte, der Polymeranteile und des En:SH Verhältnisses, konnte eine große Spanne an mechanischen Festigkeiten abgedeckt werden. Aufgrund der hohen Viskosität war allerdings im Falle von hochmolekularen HA (HHAPA) Produkt-Lösungen (HHAPA + LHASH) die Handhabbarkeit auf 5.0 wt.-% beschränkt. Die Verwendung der gleichen HA Thiol-Komponenten (LHASH) ermöglichte Hybrid-Hydrogele, mit HA und GelAGE, mit reinen HA-Hydrogelen zu vergleichen. Obwohl der Polymeranteil von HHAPA + LHASH Hydrogelen signifikant geringer war, als im Vergleich zu Hybrid-Hydrogelen (GelAGE + LHASH), wurden für gleiche En:SH Verhältnisse ähnliche mechanische und physikochemische Eigenschaften reiner HA-Hydrogele bestimmt. Aufgrund der geringen Viskosität niedermolekularer HA Lösungen (LHAPA + LHASH) konnten diese nicht für den Extrusions-basierten Druck verwendet werden. Das nicht temperaturabhängige HHAPA + LHASH System hingegen konnte mit nur einem Viertel des Polymeranteils der Hybrid Formulierungen gedruckt werden. Im Vergleich zu der Hybrid Bio-Tinte wurde angenommen, dass das hoch viskose Verhalten von HHAPA + LHASH Lösungen, der geringere Polymeranteil, der geringere Druck für das Drucken und eine demzufolge geringere Scherspannung, maßgeblich zu der hohen Zellviabilität in Extrusions-basiert-biogedruckten Konstrukten beisteuerten. Die niedrigmolekulare HA Formulierung (LHAPA + LHASH) konnte zwar nicht für den Extrusions-basierten Druck verwendet werden, allerdings besitzt dieses System Potential für andere additive Fertigungstechniken wie z.B. der Stereolithographie. Um dieses System weiterzuentwickeln wäre, analog zu dem GelAGE System, eine detailliertere Studie zu den Funktionen eingekapselter Zellen hilfreich. Außerdem sollte die Initiierung dieses Systems mit dem Vis-Initiator untersucht werden. N2 - Aim of this thesis was the development of functionalizable hydrogel coatings for melt electrowritten PCL scaffolds and of bioprintable hydrogels for biofabrication. Hydrogel coatings of melt electrowritten scaffolds enabled to control the surface hydrophilicity, thereby allowing cell-material interaction studies of biofunctionalized scaffolds in minimal protein adhesive environments. For this purpose, a hydrophilic star- shaped crosslinkable polymer was used and the coating conditions were optimized. Moreover, newly developed photosensitive scaffolds facilitated a time and pH independent biofunctionalization. Bioprintable hydrogels for biofabrication were based on the allyl-functionalization of gelatin (GelAGE) and modified hyaluronic acid-products, to enable hydrogel crosslinking by means of the thiol-ene click chemistry. Optimization of GelAGE hydrogel properties was achieved through an in-depth analysis of the synthesis parameters, varying Ene:SH ratios, different crosslinking molecules and photoinitiators. Homogeneity of thiol-ene crosslinked networks was compared to free radical polymerized hydrogels and the applicability of GelAGE as bioink for extrusion-based bioprinting was investigated. Purely hyaluronic acid-based bioinks were hypothesized to maintain mechanical- and rheological properties, cell viabilities and the processability, upon further decreasing the overall hydrogel polymer and thiol content. Hydrogel coatings: Highly structured PCL scaffolds were fabricated with MEW and subjected to coatings with six-armed star-shaped crosslinkable polymers (sP(EO-stat-PO)). Crosslinking results from the aqueous induced hydrolysis of reactive isocyanate groups (NCO) of sP(EO-stat-PO) and increased the surface hydrophilicity and provided a platform for biofunctionalizations in minimal protein adhesive environments. Not only the coating procedure was optimized with respect to sP(EO-stat-PO) concentrations and coating durations, instead scaffold pre-treatments were developed, which were fundamental to enhance the final hydrophilicity to completely avoid unspecific protein adsorption on sP(EO-stat-PO) coated scaffolds. The sP(EO-stat-PO) layer thickness of around 100 nm generally allows in vitro studies not only in dependence on the scaffold biofunctionalization but also on the scaffold architecture. The hydrogel coating extent was assessed via an indirect quantification of the NCO-hydrolysis products. Knowledge of NCO-hydrolysis kinetics enabled to achieve a balance of sufficiently coated scaffolds while maintaining the presence of NCO-groups that were exploited for subsequent biofunctionalizations. However, this time and pH dependent biofunctionalization was restricted to small biomolecules. In order to overcome this limitation and to couple high molecular weight biomolecules another reaction route was developed. This route was based on the photolysis of diazirine moieties and enabled a time and pH independent scaffold biofunctionalization with streptavidin and collagen type I. The fibril formation ability of collagen was used to obtain different collagen conformations on the scaffolds and a preliminary in vitro study demonstrated the applicability to investigate cell-material interactions. The herein developed scaffolds could be applied to gain deeper insights into the fundamentals of cellular sensing. Especially the complexity by which cells sense e.g. collagen remain to be further elucidated. Therefore, different hierarchies of collagen-like conformations could be coupled to the scaffolds, e.g. gelatin or collagen-derived peptide sequences, and the activation of DDR receptors in dependence on the complexity of the coupled substances could be determined. Due to the strong streptavidin-biotin bond, streptavidin functionalized scaffolds could be applied as a versatile platform to allow immobilization of any biotinylated molecules. Gelatin-based bioinks: First the GelAGE products were synthesized with respect to molecular weight distributions and amino acid composition integrity. A detailed study was conducted with varying molar ratios of reactants and synthesis durations and implied that gelatin degradation was most dominant for high alkaline synthesis conditions with long reaction times. Gelatin possesses multiple functionalizable groups and the predominant functionalization of amine groups was confirmed via different model substances and analyses. Polymer network homogeneity was proven for the GelAGE system compared to free radical polymerized hydrogels with GelMA. A detailed analysis of hydrogel compositions with varying functional group ratios and UV- or Vis-light photoinitiators was executed. The UV-initiator concentration is restricted due to cytotoxicity and potential cellular DNA damages upon UV-irradiation, whereas the more cytocompatible Vis- initiator system enabled mechanical stiffness tuning over a wide range by controlling the photoinitiator concentration at constant Ene:SH ratios and polymer weight percentages. Versatility of the GelAGE bioink for different AM techniques was proved by exploiting the thermo-gelling behavior of differently degraded GelAGE products for stereolithography and extrusion-based printing. Moreover, the viability of cell-laden GelAGE constructs was demonstrated for extrusion-based bioprinting. By applying different multifunctional thiol-macromolecular crosslinkers the mechanical and rheological properties improved concurrently to the processability. Importantly, lower thiol-crosslinker concentrations were required to yield superior mechanical strengths and physico-chemical properties of the hydrogels as compared to the small bis-thiol-crosslinker. Extrusion-based bioprinting with distinct encapsulated cells underlined the need for individual optimization of cell-laden hydrogel formulations. Not only the viability of encapsulated cells in extrusion-based bioprinted constructs should be assessed, instead other parameters such as cell morphology or production of collagen or glycosaminoglycans should be considered as these represent some of the crucial prerequisites for cartilage Tissue Engineering applications. Moreover, these studies should be expanded to the stereolithographic approach and ultimately the versatility and cytocompatibility of formulations with macromolecular crosslinkers would be of interest. Macromolecular crosslinkers allowed reducing polymer weight percentages and amounts of thiol groups and are thus expected to contribute to increased cytocompatibility, especially in combination with the more cytocompatible Vis-initiator system, which remains to be elucidated. Hyaluronic acid-based bioinks: Different molecular weight hyaluronic acid (HA) products were synthesized to bear ene- (HAPA) or thiol-functionalities (LHASH) to enable pure HA thiol-ene crosslinked hydrogels. Depending on the molecular weight of modified HA products, polymer weight percentages and Ene:SH ratios, a wide range of mechanical stiffness was covered. However, the manageability of high molecular weight HA (HHAPA) product solutions (HHAPA + LHASH) was restricted to 5.0 wt.-% as a consequence of the high viscosity. Based on the same HA thiol component (LHASH), hybrid hydrogels of HA with GelAGE were compared to pure HA hydrogels. Although the overall polymer weight percentage of HHAPA + LHASH hydrogels was significantly lowered compared to hybrid hydrogels (GelAGE + LHASH), similar mechanical and physico-chemical properties of pure HA hydrogels were determined with maintained Ene:SH ratios. Low viscous low molecular weight HA precursor solutions (LHAPA + LHASH) prevented the applicability for extrusion-based bioprinting, whereas the non-thermoresponsive HHAPA + LHASH system could be bioprinted with only one-fourth of the polymer content of hybrid formulations. The high viscous behavior of HHAPA + LHASH solutions, lower polymer weight percentages, decreased printing pressures and consequently declined shear stress during printing, were hypothesized to contribute to high cell viabilities in extrusion-based bioprinted constructs compared to the hybrid bioink. The low molecular weight HA precursor formulation (LHAPA + LHASH) was not applicable for extrusion-based printing, but this system has potential for other AM techniques such as stereolithography. Similar to the GelAGE system a more detailed study on the functions of encapsulated cells would be useful to further develop this system. Moreover, the initiation with the Vis-initiator should be conducted. KW - Biomaterial KW - Bioink KW - hydrogel KW - biofabrication KW - Hydrogel Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174225 ER - TY - THES A1 - Liebscher [geb. Blöhbaum], Julia T1 - Side chain functional poly(2-oxazoline)s for biomedical applications T1 - Seitenkettenfunktionalisierte Poly(2-oxazoline) für biomedizinische Anwendungen N2 - The aim of the thesis was to develop water soluble poly(2-oxazoline) (POx) copolymers with new side group functionalities, which can be used for the formation of hydrogels in biomedical applications and for the development of peptide-polymer conjugates. First, random copolymers of the monomer MeOx or EtOx with ButEnOx and EtOx with DecEnOx were synthesized and characterized. The vinyl functionality brought into the copolymer by the monomers ButEnOx and DecEnOx would later serve for post-polymerization functionalization. The synthesized copolymers were further functionalized with thiols via post-polymerization functionalization using a newly developed synthesis protocol or with a protected catechol molecule for hydrogel formation. For the formation of peptide-polymer conjugates, a cyclic thioester, namely thiolactone acrylamide and an azlactone precursor, whose synthesis was newly developed, were attached to the side chain of P(EtOx-co-ButEnOx) copolymers. The application of the functionalized thiol copolymers as hydrogels using thiol-ene chemistry for cross-linking was demonstrated. The swelling behavior and mechanical properties were characterized. The hydrophilicity of the network as well as the cross-linking density strongly influenced the swelling behavior and the mechanical strength of the hydrogels. All hydrogels showed good cell viability results. The hydrogel networks based on MeOx and EtOx were loaded with two dyes, fluorescein and methylene blue. It was observed that the uptake of the more hydrophilic dye fluorescein depended more on the ability of the hydrogel to swell. In contrast, the uptake of the more hydrophobic dye methylene blue was less dependent on the swelling degree, but much more on the hydrophilicity of the network. For the potential application as cartilage glue, (biohybrid) hydrogels were synthesized based on the catechol-functionalized copolymers, with and without additional fibrinogen, using sodium periodate as the oxidizing agent. The system allowed for degradation due to the incorporated ester linkages at the cross-linking points. The swelling behavior as well as the mechanical properties were characterized. As expected, hydrogels with higher degrees of cross-linking showed less swelling and higher elastic modulus. The addition of fibrinogen however increased the elasticity of the network, which can be favorable for the intended application as a cartilage glue. Biological evaluation clearly demonstrated the advantage of degradable ester links in the hydrogel network, where chondrocytes were able to bridge the artificial gap in contrast to hydrogels without any ester motifs. Lastly, different ways to form peptide-polymer conjugates were presented. Peptides were attached with the thiol of the terminal cysteine group to the vinyl side chain of P(EtOx-co-ButEnOx) copolymers by radical thiol-ene chemistry. Another approach was to use a cyclic thioester, thiolactone, or an azlactone functionality to bind a model peptide via native chemical ligation. The two latter named strategies to bind peptides to POx side chains are especially interesting as one and in the case of thiolactone two free thiols are still present at the binding site after the reaction, which can, for example, be used for further thiol-ene cross-linking to form POx hydrogels. In summary, side functional poly(oxazoline) copolymers show great potential for numerous biomedical applications. The various side chain functionalities can be introduced by an appropriate monomer or by post-polymerization functionalization, as demonstrated. By their multi-functionality, hydrogel characteristics, such as cross-linking degree and mechanical strength, can be fine-tuned and adjusted depending on the application in the human body. In addition, the presented chemoselective and orthogonal reaction strategies can be used in the future to synthesize polymer conjugates, which can, for example, be used in drug delivery or in tissue regeneration. N2 - Das Ziel der Arbeit war es, wasserlösliche Poly(2-oxazolin) (POx) Copolymere mit neuen Seitenkettenfunktionalitäten zu entwickeln, welche zur Synthese von Hydrogelen für biomedizinische Anwendungen und zur Entwicklung von Peptid-Polymer Konjugaten genutzt werden können. Zunächst wurden Copolymere aus den Monomeren MeOx oder EtOx mit ButEnOx und EtOx mit DecEnOx synthetisiert und anschließend charakterisiert. Die Monomere wurden statistisch miteinander copolymerisiert, indem sie zusammen zum Start der Reaktion in das Reaktionsgefäß gegeben wurden. Die Vinyl Funktionalität, die durch die Monomere ButEnOx und DecEnOx eingebracht wurde, kann später zur nachträglichen Funktionalisierung am Polymer verwendet werden. Die synthetisierten Copolymere wurden weiterhin mit Thiolen oder mit funktionellen Catecholgruppen ausgestattet, um Hydrogele herzustellen. Um Peptid-Polymer Konjugate zu bilden, wurden zyklische Thioester, genauer Thiolacton acrylamid und ein Azlacton Präkursor, dessen Synthese neu entwickelt wurde, an die Seitenkette von P(EtOx-co-ButEnOx) Copolymere angebunden. Im Folgenden wurde die Anwendung der thiol funktionalisierten Copolymere als Hydrogele, welche mittels radikalischer Thiol-ene Chemie vernetzt wurden, präsentiert. Das Quellverhalten und die mechanischen Eigenschaften wurden analysiert. Sowohl die Hydrophilie des Netzwerkes als auch die Vernetzungsdichte beeinflusste das Quellverhalten und die mechanische Festigkeit stark. Alle Hydrogele zeigten gute Zellverträglichkeit. Die Hydrogele basierend auf MeOx und EtOx wurden außerdem mit den Farbstoffen Fluorescein und Methylenblau beladen. Es wurde beobachtet, dass von den beiden Farbstoffen die Aufnahme des hydrophileren Farbstoffs Fluorescein stärker vom Quellungsgrad des Hydrogels abhing. Hingegen war die Aufnahme des hydrophoberen Farbstoffs Methylenblau weniger davon abhängig wie sehr das Hydrogel quellen konnte, sondern stärker von der Hydrophilie des Hydrogel-Netzwerkes. Um die potenzielle Anwendung als Knorpelkleber zu testen, wurden (biohybrid) Hydrogele basierend auf Catechol-funktionalisiertem Copolymeren mit und ohne zusätzliches Fibrinogen und dem Oxidationsmittel Natriumperiodat hergestellt. Das System war durch die eingebauten Ester Vernetzungspunkte abbaubar. Das Quellverhalten und die mechanischen Eigenschaften wurden charakterisiert. Wie zu erwarten, zeigten Hydrogele mit stärkerer Vernetzung eine geringe Quellung und einen höheren elastischen Modulus. Die Zugabe von Fibrinogen jedoch erhöhte die Elastizität des Netzwerkes, welches förderlich für die avisierte Anwendung als Knorpelkleber sein kann. Die biologische Auswertung zeigte, dass die Ester-haltigen, abbaubaren Vernetzungspunkte von großem Vorteil sind. Die Chondrozyten konnten ohne Probleme den Defektspalt überbrücken, was nicht möglich war, sobald keine Ester Funktionalitäten im Hydrogel eingebunden waren. Zuletzt wurden verschiedene Möglichkeiten Peptid-Polymer Konjugate zu synthetisieren präsentiert. Zum einen wurden Peptide mit der Thiolgruppe des endständigen Cysteins an die Vinyl Seitenkette der P(EtOx-co-ButEnOx) Copolymere mittels radikalischer Thiol-en Chemie angebunden. Des Weiteren wurde ein zyklischer Thioester, das Thiolacton, und eine Azlacton Funktionalität verwendet, um ein Modell Peptid mittels nativer chemischer Ligation zu binden. Die zwei zuletzt genannten Strategien, um Peptide an Polymere zu binden, sind besonders interessant, da hier ein beziehungsweise im Fall der Thiolacton Funktionalität zwei freie Thiole an der Bindungsstelle nach der Reaktion entstehen. Diese könnten genutzt werden, um zum Beispiel über Thiol-en Chemie Peptid-haltige Hydrogele herzustellen. Zusammenfassend zeigen seitenkettenfunktionale Poly(oxazolin) Copolymere ein großes Potenzial für biomedizinische Anwendungen. Die vielen verschiedenen Seitenkettenfunktionalitäten können durch das passende Monomer oder durch Post-Polymerisationsfunktionalisierung eingebracht werden, wie in dieser Arbeit gezeigt. Durch ihre Multifunktionalität können Hydrogel Charakteristika, wie der Vernetzungsgrad und die mechanische Festigkeit, fein eingestellt und angepasst werden, je nach Anwendungsbereich im menschlichen Körper. Die entwickelten chemoselektiven und orthogonalen Reaktionswege können in der Zukunft genutzt werden, um Polymer Konjugate zu synthetisieren, welche zum Beispiel für das Drug Delivery oder im Bereich der Geweberegneration zum Einsatz kommen. KW - Polymere KW - Ringöffnungspolymerisation KW - Hydrogel KW - hydrogel KW - poly(2-oxazoline)s KW - ring-opening polymerization KW - polymer-peptide-conjugate KW - thiol-ene KW - Dihydrooxazole Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203960 ER - TY - THES A1 - Rödel, Michaela T1 - Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties T1 - Entwicklung dual härtender Zemente als Komposit-Biomaterialien mit duktilen Eigenschaften N2 - Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements’ (CPCs’) mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 % were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability. N2 - Synthetische Knochenersatzmaterialien finden ihre Anwendung im Bereich nicht lasttragender Defekte zum Wiederaufbau und Ersatz von defekter oder verlorener Knochensubstanz. Diese stellt aufgrund ihres Aufbaus aus mineralisierten Kollagen-Fibrillen selbst ein biologisches Komposit-Material dar, welches die mechanische Festigkeit des Minerals mit der Duktilität der organischen Matrix kombiniert. Eine Nachahmung dieser herausragenden Eigenschaften des Knochens wird im Sinne eines Ersatzmaterials durch geeignete Polymer-Zement-Komposite ermöglicht. Ein vielversprechender Ansatz für solche Komposite sind hierbei dual härtende Systeme, bei denen die Lösungs-Fällungs-Reaktion der Zementbildung parallel zur Polymerisation oder Gelierung der organischen Phase zu einem kohärenten Hydrogelnetzwerk abläuft. Die hohe Sprödigkeit und Bruchanfälligkeit rein anorganischer Netzwerke sollte dabei durch die Integration elastischer Polymerkomponenten hin zu mehr Flexibilität und Elastizität modifiziert werden. In der vorliegenden Arbeit wurden verschiedene dual härtende Hybrid-Materialien entwickelt, um etablierte Calciumphosphatzemente durch Einbringen von zusätzlicher Hydrogel-Matrizes bezüglich ihrer mechanischen Eigenschaften zu modifizieren. In ein dual härtendes System aus Hydroxylapatit (HA) und radikalisch vernetztem 2-Hydroxyethlymethacrylat (HEMA), wurde ein abbaubarer Cross-linker aus Polyethylenglykol (PEG) und Polymilchsäure (PLA)-Einheiten homogen inkorporiert, der mittels einer Reaktion der terminalen Methacrylatfunktionen (PEG-PLLA-DMA) zur Ausbildung der Vernetzungen führte und mittels PLLA hydrolytisch labile Esterbindungen ins System integrierte. Durch Einbringen dieser hochmolekularen Polymere in das engmaschige HEMA-Hydrogelnetzwerk kam es zu einer signifikanten Erhöhung der Energieaufnahme des Konstruktes unter 4-Punkt-Biegebelastung im Vergleich zum bereits etablierten System. Durch Zusatz von 10 Gew% hochmolekularem Hydrogel Präkursor (bezogen auf die flüssige Phase) konnte über einen Zeitraum von acht Tagen ein zweifach höherer Bruchwiderstand erhalten werden, verbunden mit einer bis zu sechsfach höheren Elastizität gegenüber reinem HA Zement. Zur Steigerung der Bioabbaubarkeit wurde in einem zweiten Ansatz durch Austausch der anorganischen Komponente mit einem in vivo leichter resorbierbaren Bruschit Zement das dual härtende System modifiziert. Dabei wurden dimethacrylierte PEGs verschiedener Molekulargewichte in unterschiedlichen Konzentrationen mit dem Zementpulver kombiniert. Die Reaktionsbedingungen im sauren Milieu erforderten den Austausch des radikalischen Initiator-Systems, wobei sich eine Kombination aus Ascorbinsäure und Wasserstoffperoxid als geeignet erwies. Die so erhaltenen dual härtenden Komposite zeigten eine sehr hohe Duktilität und Flexibilität bei insgesamt niedriger Festigkeit im Vergleich zu HA-basierenden Systemen. So fand im Druckversuch eine vollständige Relaxation zu den Ausgangsabmessungen des Prüfkörpers bei einem hohen Polymeranteil an PEG-PLLA-DMA (50 Gew%) statt. Die homogene Verteilung der inkorporierten Polymerphase wurde mittels Decalcifizierung durch Ethylendiamintetraessigsäure bewiesen. Hierbei wurden durchgängige Hydrogele nach Herauslösen der anorganischen Phase durch Komplexierung von Calcium-Ionen erhalten. Abschließend wurde die auf synthetischen Polymeren basierende Hydrogel-Matrix durch das natürliche Biopolymer Gelatine ersetzt. Neben der Bruschit-bildenden Zement-Reaktion wurde das Polymernetzwerk sowohl durch eine physikalische Gelierung als auch eine chemische Vernetzung mit Genipin stabilisiert. Durch die zusätzliche organische Phase wurden die Eigenschaften des Zementes hinsichtlich Elastizität erhöht, wobei bei einer Gelatine-Konzentration von 10,0 Gew% eine erneute Kohäsion der Prüfkörper nach mechanischer Druckbelastung beobachtet werden konnte. Diese zerfielen nicht in einzelne Teile, sondern wurden trotz Auftreten von Rissen als weitestgehend intakte Quader zusammengehalten. Weiterhin wurde die Wirkstoff-Freisetzung zweier antibiotisch aktiver Substanzen (Vancomycin und Rifampicin) über einen Zeitraum von fünf Wochen untersucht. Mittels Bestimmung des Freisetzungsexponenten nach Korsmeyer-Peppas konnte eine verzögerte Wirkstoffliberation für das Antibiotikum Vancomycin gemäß Wurzel-t-Kinetik (Higuchi-Modell) mit n = 0,5 für ein Pulverflüssigkeitsverhältnis von 2,5 g/mL bei einer Gelatinekonzentration von 10,0 Gew% erhalten werden. Im Hinblick auf die Entwicklung verschiedener Formulierungen als dual härtende Systeme wurden in der vorliegenden Arbeit drei Varianten etabliert, die durch Polymerisation von Monomeren beziehungsweise Hydrogel-Präkursoren zu einer inkorporierten, homogenen Hydrogel-Matrix im Calciumphosphatnetzwerk führten. Bei allen Ansätzen wurde ein wesentlicher Transfer der mechanischen Eigenschaften in Richtung Flexibilität und Biegsamkeit erzielt. KW - Calciumphosphate KW - Knochenzement KW - Hydrogel KW - Dual setting system KW - Ceramic polymer composite KW - Calciumphosphatzemente Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-182776 ER - TY - THES A1 - Haschke, Sebastian T1 - Untersuchung Thiol-En vernetzter Gelatine Hydrogele und Vergleich mit Alginat-Gelatine in Bezug auf das in vitro Zellverhalten von Fibroblasten T1 - Analysis of thiol-ene crosslinked gelatin hydrogels and comparison with alginate-gelatin regarding the in vitro cell behaviour of fibroblasts N2 - Hydrogele stehen als Material für den 3D-Biodruck zunehmend im Fokus aktueller Forschung, da sie aufgrund ihrer wasserhaltigen Struktur optimale Voraussetzungen für Anwendungen der Zellkultur aufweisen. Durch die Verarbeitung solcher Biotinten mittels additiver Fertigungstechniken der Biofabrikation erhofft man sich beschädigtes oder krankes Gewebe zu heilen oder zu ersetzen. Allerdings wird der Fortschritt in diesem Bereich durch einen Mangel an geeigneten Materialien gebremst, weshalb die Entwicklung neuer Biotinten von zentraler Bedeutung ist. Das Polymer GelAGE ist ein am Lehrstuhl für Funktionswerkstoffe der Medizin und Zahnheilkunde der Universität Würzburg synthetisiertes Hydrogelsystem. Zu diesem über eine Thiol-En Reaktion vernetzenden Material stehen systematische Untersuchungen der für die in vitro Zellkultur relevanten Eigenschaften noch aus. Das Ziel dieser Arbeit war daher die biologische Evaluation von GelAGE und der Vergleich mit der Biotinte Alginat-Gelatine. Zu diesem Zweck wurden L929-Zellen für 7 Tage in verschiedenen Hydrogelzusammensetzungen in vitro kultiviert. Um die zytokompatiblen Eigenschaften in den verschiedenen Versuchsgruppen zu untersuchen, wurden die Proben mittels der in vitro Testverfahren Live/Dead Färbung, DNA-Assay, CCK-8-Assay und Phalloidin-Färbung analysiert. Im Rahmen dieser Arbeit konnte ein Herstellungsprotokoll für das Material GelAGE etabliert werden, welches eine Grundlage für die Durchführung weiterer biologischer Experimente bietet. Das Resultat der biologischen Untersuchungen war, dass das Polymer GelAGE als zytokompatibel bewertet werden kann, es jedoch nicht die Qualität des Alginat-Gelatine Hydrogelsystems aufweist. Allerdings konnten die Eigenschaften der GelAGE Proben teilweise durch eine Modifikation mit Humanem Plättchenlysat verbessert werden. Des Weiteren konnten deutliche Unterschiede in der Zell-Material- Interaktion zwischen den verschiedenen GelAGE Varianten nachgewiesen werden. N2 - Hydrogels are in the focus of current research as a material for 3D-bioprinting, as they provide optimal conditions for cell culture applications. By processing such bioinks through additive manufacturing techniques, researchers aim to heal or replace damaged or diseased tissue. However, progress in this field is hampered by a lack of suitable materials, which is why the development of new bioinks is crucial. The polymer GelAGE is a hydrogel system synthesised at the Department for Functional Materials in Medicine and Dentistry at the University of Würzburg, which cross-links via a thiol-ene reaction. Systematic investigations of the properties that are relevant for the in vitro cell culture of this material are still pending. Therefore, the aim of this thesis was the biological evaluation of GelAGE and the comparison with the bioink alginate-gelatine. For this purpose, L929 cells were cultured in vitro for 7 days in different hydrogel compositions. In order to investigate the cytocompatibility the samples were analysed using the in vitro assays Live/Dead staining, DNA-assay, CCK-8-assay and Phalloidin staining. Within the scope of this project, it was possible to establish a protocol for the material GelAGE, which provides a basis for conducting further biological experiments. The result of the biological investigations was that the polymer GelAGE can be evaluated as cytocompatible, although it does not have the quality of the alginate-gelatine hydrogel system. However, the properties of the GelAGE samples could be partially improved by modification with human platelet lysate. Furthermore, clear differences in the cell-material interaction between the different GelAGE variants could be demonstrated. KW - Hydrogel KW - Biotinte KW - 3D-Biodruck KW - Biodruck KW - Biofabrikation KW - GelAGE KW - Alginate-Gelatine KW - L929 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248727 ER - TY - THES A1 - Shan, Junwen T1 - Tailoring Hyaluronic Acid and Gelatin for Bioprinting T1 - Modifikation von Hyaluronsäure und Gelatine für die Anwendung im Biodruck N2 - In the field of biofabrication, biopolymer-based hydrogels are often used as bulk materials with defined structures or as bioinks. Despite their excellent biocompatibility, biopolymers need chemical modification to fulfill mechanical stability. In this thesis, the primary alcohol of hyaluronic acid was oxidized using TEMPO/TCC oxidation to generate aldehyde groups without ring-opening mechanism of glycol cleavage using sodium periodate. For crosslinking reaction of the aldehyde groups, adipic acid dihydrazide was used as bivalent crosslinker for Schiff Base chemistry. This hydrogel system with fast and reversible crosslinking mechanism was used successfully as bulk hydrogel for chondrogenic differentiation with human mesenchymal stem cells (hMSC). Gelatin was modified with pentenoic acid for crosslinking reaction via light controllable thiol-ene reaction, using thiolated 4-arm sPEG as multivalent crosslinker. Due to preservation of the thermo responsive property of gelatin by avoiding chain degradation during modification reaction, this gelatin-based hydrogel system was successfully processed via 3D printing with low polymer concentration. Good cell viability was achieved using hMSC in various concentrations after 3D bioprinting and chondrogenic differentiation showed promising results. N2 - Im Bereich der Biofabrikation werden Hydrogele auf Biopolymerbasis häufig als Bulkmaterial mit definierten Strukturen oder als Biotinten verwendet. Obwohl Biopolymere eine hervorragende Biokompatibilität aufweisen, müssen sie jedoch chemisch modifiziert werden, um gewisse mechanische Stabilität für den Einsatz in der Biofabrikation zu erreichen. In dieser Arbeit wurde der primäre Alkohol der Hyaluronsäure mit Hilfe der TEMPO/TCC-Oxidation oxidiert, um Aldehydgruppen zu generieren. Dabei findet kein Ringöffnungsmechanismus statt, wie er bei der Glykolspaltung mit Natriumperiodat vorkommt. Für die Vernetzungsreaktion der Aldehydgruppen wurde Adipinsäuredihydrazid als bivalenter Vernetzer für die Bildung der Schiffschen Base verwendet. Dieses Hydrogelsystem mit schnellem und reversiblem Vernetzungsmechanismus wurde erfolgreich als Bulkhydrogel für die chondrogene Differenzierung mit humanen mesenchymalen Stammzellen (hMSC) erfolgreich eingesetzt. Als Mikrogele könnte das System in künftigen Forschungsarbeiten auf seine Verdruckbarkeit getestet werden. Gelatine wurde mit Pentensäure modifiziert, um die Vernetzungsreaktion über eine lichtkontrollierbare Thiol-En-Reaktion durchzuführen, bei der thioliertes 4-armiges sPEG als multivalenter Vernetzer verwendet wurde. Da die thermoresponsive Eigenschaft der Gelatine erhalten blieb, indem der Kettenabbau während der Modifizierungsreaktion vermieden wurde, konnte dieses Hydrogelsystem auf Gelatinebasis erfolgreich im 3D-Druck mit niedriger Polymerkonzentration verarbeitet werden. Mit hMSC in verschiedenen Konzentrationen wurde nach dem 3D-Biodruck eine gute Zellviabilität erreicht und die chondrogene Differenzierung zeigte vielversprechende Ergebnisse. KW - Hydrogel KW - Biomaterial KW - Biofabrication of hydrogels KW - Biomaterial KW - Chemical modification of biopolymers KW - Chondrogenic differentiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298256 ER - TY - THES A1 - Smolan, Willi T1 - Linear Multifunctional PEG-Alternatives for Bioconjugation and Hydrogel Formation T1 - Lineare Multifunktionelle PEG-Alternativen für Biokonjugation und Hydrogelbildung N2 - The objective of this thesis was the synthesis and characterisation of two linear multifunctional PEG-alternatives for bioconjugation and hydrogel formation: i) Hydrophilic acrylate based copolymers containing peptide binding units and ii) hydrophilic polyether based copolymers containing different functional groups for a physical crosslinking. In section 3.1 the successful synthesis of water soluble and linear acrylate based polymers containing oligo(ethylene glycol) methyl ether acrylate with either linear thioester functional 2-hydroxyethyl acrylate, thiolactone acrylamide, or vinyl azlactone via the living radical polymerisation technique Reversible Addition Fragmentation Chain Transfer (RAFT) and via free-radical polymerisation is described. The obtained polymers were characterized via GPC, 1H NMR, IR and RAMAN spectroscopy. The RAFT end group was found to be difficult to remove from these short polymer chains and accordingly underwent the undesired side reaction aminolysis with the peptide during the conjugation studies. Besides that, polymers without RAFT end groups did not show any binding of the peptide at the thioester groups, which can be improved in future by using higher reactant concentrations and higher amount of binding units at the polymer. Polymers containing the highly reactive azlactone group showed a peptide binding of 19 %, but unfortunately this function also underwent spontaneous hydrolysis before the peptide could even be bound. In all cases, oligo(ethylene glycol) methyl ether acrylate was used with a relatively high molecular weight (Mn = 480 Da) was used, which eventually was efficiently shielding the introduced binding units from the added peptide. In future, a shorter monomer with Mn = 300 Da or less or hydrophilic N,N’-dialkyl acrylamide based polymers with less steric hindrance could be used to improve this bioconjugation system. Additionally, the amount of monomers containing peptide binding units in the polymer can be increased and have an additional spacer to achieve higher loading efficiency. The water soluble, linear and short polyether based polymers, so called polyglycidols, were successfully synthesized and modified as described in section 3.2. The obtained polymers were characterized using GPC, 1H NMR, 31P{1H} NMR, IR, and RAMAN spectroscopy. The allyl groups which were present up to 20 % were used for radical induced thiol-ene chemistry for the introduction of functional groups intended for the formation of the physically crosslinking hydrogels. For the positively charged polymers, first a chloride group had to be introduced for the subsequent nucleophilic substitution with the imidazolium compound. There, degrees of modifications were found in the range 40-97 % due to the repulsion forces of the charges, decreased concentration of active chloride groups, and limiting solution concentrations of the polymer for this reaction. For the negatively charged polymers, first a protected phosphonamide moiety was introduced with a deprotection step afterwards showing 100 % conversion for all reactions. Preliminary hydrogel tests did not show a formation of a three-dimensional network of the polymer chains which was attributed to the short backbone length of the used polymers, but the gained knowledge about the synthetic routes for the modification of the polymer was successfully transferred to longer linear polyglycidols. The same applies to the introduction of electron rich and electron poor compounds showing π-π stacking interactions by UV-vis spectroscopy. Finally, long linear polyglycidyl ethers were synthesised successfully up to molecular weights of Mn ~ 30 kDa in section 3.3, which was also proven by GPC, 1H NMR, IR and RAMAN spectroscopy. This applies to the homopolymerisation of ethoxyethyl glycidyl ether, allyl glycidyl ether and their copolymerisation with an amount of the allyl compound ~ 10 %. Attempts for higher molecular weights up to 100 kDa showed an uncontrolled polymerisation behaviour and eventually can be improved in future by choosing a lower initiation temperature. Also, the allyl side groups were modified via radical induced thiol-ene chemistry to obtain positively charged functionalities via imidazolium moieties (85 %) and negatively charged functionalities via phosphonamide moieties (100 %) with quantitative degree of modifications. Hydrogel tests have still shown a remaining solution by using long linear polyglycidols carrying negative charges with long/short linear polyglycidols carrying positive charges. The addition of calcium chloride led to a precipitate of the polymer instead of a three-dimensional network formation representing a too high concentration of ions and therefore shielding water molecules with prevention from dissolving the polymer. These systems can be improved by tuning the polymers structure like longer polymer chains, longer spacer between polymer backbone and charge, and higher amount of functional groups. The objective of the thesis was partly reached containing detailed investigated synthetic routes for the design and characterisation of functional polymers which could be used in future with improvements for bioconjugation and hydrogel formation tests. N2 - Das Ziel dieser Arbeit war es zwei lineare multifunktionale PEG-Alternativen für die Bioconjugation und Hydrogelbildung herzustellen und zu charakterisieren: i) Wasserlösliche Acrylat-basierte Copolymere mit Peptidbindungseinheiten und ii) wasserlösliche Polyether-basierte Copolymere mit verschiedenen funktionalen Gruppen für eine physikalische Vernetzung. In Abschnitt 3.1 wurde die erfolgreiche Synthese von wasserlöslichen und linearen Acrylat-basierten Polymeren, die Oligo(ethylen glycol) methyl ether acrylat mit jeweils 2-Hydroxyethyl acrylate modifiziert mit linearem Thioester, Thiolactonacrylamid und Vinylazlacton enthielten, mittels der lebenden Polymerisationstechnik Reversible Additions-Fragmentierungs Kettenübertragung (RAFT) und mittels freier radikalischer Polymerisation durch GPC, 1H NMR, IR und RAMAN Spektroskopie bewiesen. Es erwies sich als schwer die RAFT-Endgruppe von den kurzen Polymerketten zu entfernen und führte zur Nebenreaktion Aminolyse mit dem Peptid während des Konjugationsprozesses. Außerdem zeigten Polymere ohne RAFT-Endgruppen keine Peptidbindung an den Thioestergruppen, was durch höhere Konzentration der Reaktanten und größeren Anteil an Peptidbindungseinheiten am Polymer in Zukunft verbessert werden könnte. Polymere mit Azlaktongruppen zeigten eine Bindung von 19 %, wobei dies eine sehr reaktive Gruppe ist und vor der Peptidbindung noch hydrolysieren kann. In allen Fällen wurde Oligo(ethylen glycol) methyl ether acrylat mit Mn = 480 Da verwendet, welches die Peptidbindungsstellen abschirmen kann. Daher können in Zukunft Monomere mit Mn = 300 Da oder N,N’-Dialkylacrylamid-basierte Monomere mit weniger sterischer Hinderung für dieses System verwendet werden. Zusätzlich kann der Anteil an Monomeren mit Peptidbindungseinheiten im Polymer und zusätzlicher Seitenkette erhöht werden, um höhere Bindungseffektivitäten zu erreichen. Die erfolgreiche Synthese und Modifikation von wasserlöslichen, linearen und kurzen Polyether-basierten Polymeren, sogenannten Polyglycidolen, konnte in Abschnitt 3.2 mittels GPC, 1H NMR, 31P{1H} NMR, IR und RAMAN Spektroskopie bewiesen werden. Die Allylgruppe, die bis zu 20 % vorhanden war, wurde für die radikalisch induzierte Thiol-En Chemie zur Einführung von funktionellen Gruppen verwendet. Für die positiv geladenen Polymere, wurde zuerst eine Chloridgruppe generiert, die anschließend für die nukleophile Substitution mit einer Imidazolkomponente verwendet wurde. Dabei wurden Substitutionsgrade von 40-97 % gefunden, was an den Abstoßungskräften der Ladungen, verringerter Konzentration der aktiven Chloridgruppen und der begrenzten Löslichkeitskonzentration bei dieser Reaktion liegt. Für die negativ geladenen Polymere wurde zuerst eine geschützte Phosphonamidgruppe eingeführt, die anschließend entschützt wurde und bei allen Reaktionen einen Umsatz von 100 % zeigte. Vorläufige Hydrogeltests zeigten keine Bildung eines dreidimensionales Netzwerks der Polymerketten aber es wurden Erkenntnisse über die synthetischen Routen für die Modifikation der Polymere für den Transfer auf lange lineare Polyglycidole gewonnen. Das gleiche gilt für die Einführung von elektronreichen und elektronarmen Komponenten, die eine π-π Stapelwechselwirkung mittels UV-vis Spektroskopie zeigte. Letztlich wurden lange lineare Polyglycidole bis zu Molmassen von Mn ~ 30 kDa erfolgreich in Abschnitt 3.3 hergestellt und mittels GPC, 1H NMR, IR and RAMAN Spektroskopie bewiesen. Dies gilt für die Homopolymerisation von Ethoxyethyl glycidyl ether, Ally glycidyl ether und deren Copolymerisation mit einem Anteil der Allylkomponente von ~ 10 %. Versuche um höhere Molekulargewichte bis zu 100 kDa zeigten ein unkontrolliertes Polymerisationsverhalten, welches durch eine niedrigere Initiierungstemperatur weiter verbessert werden kann. Ebenso wurden die Allylseitengruppen mittels radikalisch induzierter Thiol-En Chemie modifiziert, um positivgeladene Funktionalitäten durch Imidazolgruppen (85 %) und negativgeladene Funktionalitäten durch Phosphonamidgruppen (100 %) in quantitativen Umsätzen einzuführen. Hydrogeltests von langen linearen Polyglycidolen, die negativ geladene Gruppen haben, mit langen/kurzen linearen Polyglycidolen, die positiv geladene Gruppen haben, haben eine verbleibende Lösung gezeigt. Die Zugabe von Calciumchlorid führte zum Ausfall des Polymers anstatt zu einem dreidimensionalen Netzwerk repräsentiert durch eine zu hohe Ionenkonzentration. Dies führte zu einer Abschirmung der Wassermoleküle vom Polymer und verhinderte, dies aufzulösen. Das System kann verbessert werden, indem die Polymerstruktur variiert wird, z.B. durch längere Polymerketten, größere Abstände zwischen Polymerhauptkette und Ladung und einen größeren Anteil an funktionellen Gruppen. Das Ziel der Arbeit wurde teilweise erreicht, welches detailliert untersuchte Syntheserouten für das Design und die Charakterisierung von funktionellen Polymeren beinhaltet, welche in Zukunft mit Verbesserungen für Bioconjuations- und Hydrogelformulierungstests verwendet werden können. KW - Wasserlösliche Polymere KW - Ringöffnungspolymerisation KW - Hydrogel KW - polyglycidol KW - RAFT KW - polymer-peptide-conjugate KW - ring opening polymerisation KW - thiol-ene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278734 ER - TY - THES A1 - Brand, Jessica Sieglinde T1 - Mucin and Gelatin Based Granular Hydrogels for Biofabrication T1 - Muzin- und Gelatine basierte granulare Hydrogele für die Biofabrikation N2 - The present work deals with the preparation of hydrogels in different size scales for various applications. Thus, macroscopic bulk hydrogels were prepared from differently modified pig gastric mucin (PGM), microgels were made from PGM in combination with hyaluronic acid (HA), as well as from gelatin in combination with poly(ethylene glycol) (PEG), and nanogels were fabricated from poly(glycidol) (PG). According to their size, each hydrogels have different applications. First, it was investigated whether previously existing studies involving the preparation of covalently crosslinked hydrogels via free radical polymerization from bovine submaxillary gland mucin (BSM) could also be carried out with the much cheaper alternative PGM. After this was successfully demonstrated and the hydrogels were systematically investigated for their mechanical properties and biocompatibility, a second hydrogel system was established. Here, PGM was functionalized with allyl glycidyl ether (AGE) and crosslinked in combination with thiolated HA via thiol-ene reaction. These hydrogels were also systematically evaluated and compared with the hydrogels prepared via free radical polymerization. It was confirmed that the more random free radical polymerization leads to more disordered networks than the thiol-ene reaction. In both systems, biocompatibility was demonstrated with both L929 CCL1 murine fibroblasts and human mesenchymal stem cells (hMSCs). Using this knowledge as background and the request to make mucin printable, microgels were prepared via the emulsion technique using the previously established thiol-ene hydrogel precursor solution. Here, applying the recently used photoinitiator 2-hydroxy-4-(2-hydroxyethoxy)-2- methylpropiophenone (Irgacure 2959), which is more soluble in oil than in water, was challenging and did not result in well-crosslinked microgels. Therefore, a third hydrogel system was established, which was based on thiol-ene crosslinked AGE functionalized pig gastric mucin (PGM-AGE)-thiolated hyaluronic acid (HASH) hydrogels and with lithium phenyl-2,4,6- trimethylbenzoylphosphinate (LAP) being used as photoinitiator. Hereby, stably crosslinked microgels could be prepared via the emulsion technique. After the jamming process, which means the extraction of the microgel solution by vacuum, the resulting so-called granular ink could be successfully printed via extrusion-based printing. The widely known challenge of printing living cells was also successfully managed. Cells were encapsulated in the microgels during microgel synthesis. Here, the stirring velocity had to be adjusted to avoid harming the cells during the manufacturing process. The cell-loaded microgels were successfully printed in the same way as the empty microgels in multiple layers resulting in dimensionally stable constructs. Live/dead experiments verified that many viable cells were printable after 24 hours. In the next part of this thesis, microgels were prepared from AGE-functionalized gelatin and thiol-functionalized PEG by the same procedure. Again, cells were incorporated and printed by extrusion-based printing. After the addition of hydroxypropyl-methylcellulose, the right conditions for viable cells and stable constructs were found. The printed constructs were further secondarily crosslinked by immersion in initiator solution after the printing process followed by re-irradiating with light. Hereafter, a strongly increased stability of the constructs could be observed. Microgels for use as cell sensor particles were produced as part of this thesis. Here, microfluidic was applied to prepare microgels with a monodisperse size distribution. After adjusting the oil phase, as well as optimizing the manufacturing parameters to the mucin hydrogel system, the microfluidic setup established by Ilona Paulus in this research group could be used. By setting very fast flow rates, microgels in the size range of cells could be obtained. Furthermore, various parameters affecting the stiffness of the particles were varied. This laid the foundation for follow-up studies within the framework of the SFB TRR225 to be able to produce cellmimicking particles. Further follow-up experiments could include the investigation of hydrogels being based only on mucin, like a crosslinking of thiolated mucin and mucin modified with an allyl function such as the PGM-AGE. Furthermore, the granular mucin ink could serve as a supporting material for other microgels or less stable inks during the printing process and thus expand the field of applicable materials for three dimensional (3D) printing. N2 - Die vorliegende Arbeit befasst sich mit der Herstellung von Hydrogelen unterschiedlicher Größe für verschiedene Anwendungen. So wurden makroskopische Bulk-Hydrogele aus verschieden modifiziertem Muzin aus dem Schweinemagen (engl. PGM) hergestellt, während Mikrogele aus PGM in Kombination mit Hyaluronsäure (engl. HA), sowie aus Gelatine in Kombination mit PEG, und Nanogele aus PG synthetisiert wurden. Jedes Hydrogel hat entsprechend seiner Größe andere Funktionalitäten und damit auch andere Anwendungsmöglichkeiten. Zunächst wurde untersucht, ob bereits bestehende Studien zur Herstellung von kovalent vernetzten Hydrogelen durch radikalische Polymerisation aus Muzin aus Rinderspeicheldrüsen (engl. BSM) auch mit der wesentlich günstigeren Alternative PGM durchgeführt werden können. Nachdem dies erfolgreich nachgewiesen wurde und die Hydrogele systematisch auf ihre mechanischen Eigenschaften sowie auf Biokompatibilität untersucht wurden, folgte die Etablierung eines weiteren Hydrogelsystems. Hierfür wurde PGM mit Allylglycidylether funktionalisiert und in Kombination mit thiylierter HA über die Thiol-En-Reaktion vernetzt. Auch diese Hydrogele wurden systematisch untersucht und mit den Hydrogelen, die über die freie radikalische Polymerisation hergestellt wurden, verglichen. Es konnte bestätigt werden, dass die mehr zufällig ablaufende, freie radikalische Polymerisation zu ungeordneteren Netzwerken führt als die Thiol- En Reaktion. In beiden Systemen konnte sowohl mit L929 CCL1 Mausfibroblaten sowie mit humanen mesenchymalen Stammzellen eine gute Biokompatibilität nachgewiesen werden. Mit diesem Wissen als Grundlage und dem Ziel, Muzin druckbar zu machen, wurden mit der zuvor etablierten Thiol-En-Hydrogel-Lösung Mikrogele über die Emulsionstechnik hergestellt. Hier war die Anwendung des zuvor verwendeten Photoinitiators Irgacure 2959, der in Öl löslicher ist als in Wasser, eine Herausforderung und führte nicht zu gut vernetzten Mikrogelen. Deshalb wurde ein drittes Hydrogelsystem etabliert, welches auf Thiol-En vernetzten PGMAGE- HASH Hydrogelen basierte, jedoch LAP als Photoinitiator verwendete. Hiermit konnten stabil vernetzte Mikrogele über die Emulsionsmethode hergestellt werden. Nach dem Jamming Prozess, dem Absaugen der Mikrogellösung über Vakuum, konnte die resultierende sogenannte granulare Tinte erfolgreich über den Extrusions-basierten Druckprozess gedruckt werden. Für die im Bereich der Biofabrikation nach wie vor bestehende Herausforderung, lebendige Zellen zu drucken, konnte ebenfalls erfolgreich ein Lösungsansatz geliefert werden. Zellen wurden während der Mikrogelsynthese in die Mikrogele eingekapselt. Hierbei musste die Rührgeschwindigkeit angepasst werden, um den Zellen während des Herstellungsprozesses nicht zu schaden. Die zellbeladenen Mikrogele konnten erfolgreich, in gleicher Weise wie die leeren Mikrogele, in mehreren Lagen zu formstabilen Konstrukten gedruckt werden. In einem weiteren Teil dieser Doktorarbeit wurden auf dem selben Wege Mikrogele aus AGEfunktionalisierter Gelatine und thiol-funktionalisiertem PEG hergestellt. Auch hier wurden Zellen eingekapselt und über den Extrusions-basierten Druckprozess gedruckt. Nach Zugabe vonHydroxypropylmethylcellulose waren die richtigen Bedingungen für lebensfähige Zellen und stabile Konstrukte gefunden. Des Weiteren wurden die gedruckten Konstrukte sekundär vernetzt, indem sie nach dem Druckprozess in die Initiatorlösung gegeben und erneut mit Licht bestrahlt wurden. Hiernach konnte eine stark erhöhte Stabilität der Konstrukte beobachtet werden. Für eine Anwendung als Zell-Sensor-Partikel, wurden in einem weiteren Teil dieser Arbeit ebenfalls Mikrogele synthetisiert. Hierfür war eine monodisperse Größenverteilung der Mikrogele notwendig, weshalb diese über Mikrofluidic hergestellt wurden. Nach Anpassung der Ölphase, sowie der Optimierung der Herstellungsparameter an das Muzin-Hydrogel-System, konnte der in dieser Arbeitsgruppe von Ilona Paulus etablierte Mikrofluidic-Aufbau genutzt werden. Durch die Verwendung von sehr schnellen Flussraten konnten Mikrogele in der Größenordnung von Zellen hergestellt werden. Darüber hinaus wurden verschiedene Parameter variiert, die die Festigkeit der Partikel beeinflussen. So wurde die Grundlage für Folgestudien im Rahmen des SFB TRR225 gelegt, um zell-imitierende Partikel herstellen zu können. Weitere an diese Arbeit anschließende Experimente könnten die Untersuchung von einem rein Muzin-basierten Hydrogel sein, wie beispielsweise eine Vernetzung von thioliertem Muzin und einem mit einer Allylfunktion modifiziertem Muzin, wie dem PGM-AGE. Darüber hinaus könnte die körnige Muzin-Tinte während des Druckvorgangs als Trägermaterial für andere Mikrogele oder weniger stabile Tinten dienen und damit das Feld der anwendbaren Materialien für den 3D-Druck erweitern. KW - Hydrogels KW - Hydrogele KW - Biofabrication KW - Mucin KW - Gelatin KW - granular inks KW - Biofabrikation KW - Muzin KW - granulare Tinten KW - Hydrogel KW - Gelatine Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287559 ER -