TY - JOUR A1 - Boivin, Valérie A1 - Beyersdorf, Niklas A1 - Palm, Dieter A1 - Nikolaev, Viacheslav O. A1 - Schlipp, Angela A1 - Müller, Justus A1 - Schmidt, Doris A1 - Kocoski, Vladimir A1 - Kerkau, Thomas A1 - Hünig, Thomas A1 - Ertl, Georg A1 - Lohse, Martin J. A1 - Jahns, Roland T1 - Novel Receptor-Derived Cyclopeptides to Treat Heart Failure Caused by \(Anti-β_1-Adrenoceptor\) Antibodies in a Human-Analogous Rat Model JF - PLoS One N2 - Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the \(β_1\) adrenergic receptor \((β_1EC2)\). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195–225) every 4 weeks; n = 38/114 rats were control-injected with 0.9% NaCl. Intravenous application of a novel cyclic peptide mimicking \(β_1EC2\) (\(β_1EC2-CP\), 1.0 mg/kg every 4 weeks) or administration of the \(β_1-blocker\) bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received \(β_1EC2-CP/bisoprolol\) co-treatment. We found that \(β_1EC2-CP\) prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, \(β_1EC2-CP\) mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free \(anti-β_1EC2-antibodies\) and by targeting \(β_1EC2\)-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful \(anti-β_1EC2-antibodies\) and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to \(β_1\)-blockade represents a promising new therapeutic option in immune-mediated heart failure. KW - memory B cells KW - antibodies KW - T cells KW - B cells KW - heart KW - heart failure KW - kidneys KW - enzyme-linked immunoassays Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126028 VL - 10 IS - 2 ER - TY - JOUR A1 - Hohmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - INTRODUCTION: B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). RESULTS: Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). CONCLUSIONS: Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - ELISPOT KW - MS KW - predictive value KW - relapse KW - B cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120580 SN - 2051-5960 VL - 2 IS - 138 ER - TY - JOUR A1 - Hohnmann, Christopher A1 - Milles, Bianca A1 - Schinke, Michael A1 - Schroeter, Michael A1 - Ulzheimer, Jochen A1 - Kraft, Peter A1 - Kleinschnitz, Christoph A1 - Lehmann, Paul V. A1 - Kuerten, Stefanie T1 - Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood JF - Acta Neuropathologica Communications N2 - Introduction B cells are attracting increasing attention in the pathogenesis of multiple sclerosis (MS). B cell-targeted therapies with monoclonal antibodies or plasmapheresis have been shown to be successful in a subset of patients. Here, patients with either relapsing-remitting (n = 24) or secondary progressive (n = 6) MS presenting with an acute clinical relapse were screened for their B cell reactivity to brain antigens and were re-tested three to nine months later. Enzyme-linked immunospot technique (ELISPOT) was used to identify brain-reactive B cells in peripheral blood mononuclear cells (PBMC) directly ex vivo and after 96 h of polyclonal stimulation. Clinical severity of symptoms was determined using the Expanded Disability Status Scale (EDSS). Results Nine patients displayed B cells in the blood producing brain-specific antibodies directly ex vivo. Six patients were classified as B cell positive donors only after polyclonal B cell stimulation. In 15 patients a B cell response to brain antigens was absent. Based on the autoreactive B cell response we categorized MS relapses into three different patterns. Patients who displayed brain-reactive B cell responses both directly ex vivo and after polyclonal stimulation (pattern I) were significantly younger than patients in whom only memory B cell responses were detectable or entirely absent (patterns II and III; p = 0.003). In one patient a conversion to a positive B cell response as measured directly ex vivo and subsequently also after polyclonal stimulation was associated with the development of a clinical relapse. The evaluation of the predictive value of a brain antigen-specific B cell response showed that seven of eight patients (87.5%) with a pattern I response encountered a clinical relapse during the observation period of 10 months, compared to two of five patients (40%) with a pattern II and three of 14 patients (21.4%) with a pattern III response (p = 0.0005; hazard ratio 6.08 (95% confidence interval 1.87-19.77). Conclusions Our data indicate actively ongoing B cell-mediated immunity against brain antigens in a subset of MS patients that may be causative of clinical relapses and provide new diagnostic and therapeutic options for a subset of patients. KW - predictive value KW - MS KW - ELISPOT KW - B cells KW - relapse Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126124 VL - 2 IS - 138 ER -