TY - JOUR A1 - Britz, Sebastian A1 - Markert, Sebastian Matthias A1 - Witvliet, Daniel A1 - Steyer, Anna Maria A1 - Tröger, Sarah A1 - Mulcahy, Ben A1 - Kollmannsberger, Philip A1 - Schwab, Yannick A1 - Zhen, Mei A1 - Stigloher, Christian T1 - Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy JF - Frontiers in Neuroanatomy N2 - At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments. KW - FIB-SEM KW - 3D reconstruction KW - neuroanatomy KW - IL2 branching KW - amphids KW - Caenorhabditis elegans (C. elegans) KW - dauer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249622 SN - 1662-5129 VL - 15 ER - TY - JOUR A1 - Pauli, Martin A1 - Paul, Mila M. A1 - Proppert, Sven A1 - Mrestani, Achmed A1 - Sharifi, Marzieh A1 - Repp, Felix A1 - Kürzinger, Lydia A1 - Kollmannsberger, Philip A1 - Sauer, Markus A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections JF - Communications Biology N2 - Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution. KW - mossy fiber synapses KW - CA3 pyrimidal cells KW - CA2+ channels KW - active zone KW - hippocampal KW - release KW - plasticity KW - proteins KW - platform KW - reveals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259830 VL - 4 ER - TY - JOUR A1 - Vedder, Daniel A1 - Ankenbrand, Markus A1 - Sarmento Cabral, Juliano T1 - Dealing with software complexity in individual‐based models JF - Methods in Ecology and Evolution N2 - Individual-based models are doubly complex: as well as representing complex ecological systems, the software that implements them is complex in itself. Both forms of complexity must be managed to create reliable models. However, the ecological modelling literature to date has focussed almost exclusively on the biological complexity. Here, we discuss methods for containing software complexity. Strategies for containing complexity include avoiding, subdividing, documenting and reviewing it. Computer science has long-established techniques for all of these strategies. We present some of these techniques and set them in the context of IBM development, giving examples from published models. Techniques for avoiding software complexity are following best practices for coding style, choosing suitable programming languages and file formats and setting up an automated workflow. Complex software systems can be made more tractable by encapsulating individual subsystems. Good documentation needs to take into account the perspectives of scientists, users and developers. Code reviews are an effective way to check for errors, and can be used together with manual or automated unit and integration tests. Ecological modellers can learn from computer scientists how to deal with complex software systems. Many techniques are readily available, but must be disseminated among modellers. There is a need for further work to adapt software development techniques to the requirements of academic research groups and individual-based modelling. KW - software development KW - ecological modelling KW - individual-based models KW - model complexity KW - research software engineering KW - software complexity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258214 VL - 12 IS - 12 ER - TY - JOUR A1 - Trinkl, Moritz A1 - Kaluza, Benjamin F. A1 - Wallace, Helen A1 - Heard, Tim A. A1 - Keller, Alexander A1 - Leonhardt, Sara D. T1 - Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee JF - Insects N2 - Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality. KW - floral resources KW - plant-insect interactions KW - nutrition KW - biodiversity KW - bee decline Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200605 SN - 2075-4450 VL - 11 IS - 2 ER - TY - JOUR A1 - Too, Chin Chin A1 - Keller, Alexander A1 - Sickel, Wiebke A1 - Lee, Sui Mae A1 - Yule, Catherine M. T1 - Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth JF - Frontiers in Microbiology N2 - Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems. KW - tropical peat swamp forest KW - metabarcoding KW - microbial diversity and composition KW - tree species KW - depth KW - methanogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229000 VL - 9 ER -