TY - RPRT A1 - Gallenmüller, Sebastian A1 - Scholz, Dominik A1 - Stubbe, Henning A1 - Hauser, Eric A1 - Carle, Georg T1 - Reproducible by Design: Network Experiments with pos T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - In scientific research, the independent reproduction of experiments is the source of trust. Detailed documentation is required to enable experiment reproduction. Reproducibility awards were created to honor the increased documentation effort. In this work, we propose a novel approach toward reproducible research—a structured experimental workflow that allows the creation of reproducible experiments without requiring additional efforts of the researcher. Moreover, we present our own testbed and toolchain, namely, plain orchestrating service (pos), which enables the creation of such experimental workflows. The experiment is documented by our proposed, fully scripted experiment structure. In addition, pos provides scripts enabling the automation of the bundling and release of all experimental artifacts. We provide an interactive environment where pos experiments can be executed and reproduced, available at https://gallenmu.github.io/single-server-experiment. KW - Datennetz KW - Reproducibility KW - Testbed KW - Network Experiments KW - plain orchestrating service KW - pos Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280834 ER - TY - RPRT A1 - Odhah, Najib A1 - Grass, Eckhard A1 - Kraemer, Rolf T1 - Effective Rate of URLLC with Short Block-Length Information Theory T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - Shannon channel capacity estimation, based on large packet length is used in traditional Radio Resource Management (RRM) optimization. This is good for the normal transmission of data in a wired or wireless system. For industrial automation and control, rather short packages are used due to the short-latency requirements. Using Shannon’s formula leads in this case to inaccurate RRM solutions, thus another formula should be used to optimize radio resources in short block-length packet transmission, which is the basic of Ultra-Reliable Low-Latency Communications (URLLCs). The stringent requirement of delay Quality of Service (QoS) for URLLCs requires a link-level channel model rather than a physical level channel model. After finding the basic and accurate formula of the achievable rate of short block-length packet transmission, the RRM optimization problem can be accurately formulated and solved under the new constraints of URLLCs. In this short paper, the current mathematical models, which are used in formulating the effective transmission rate of URLLCs, will be briefly explained. Then, using this rate in RRM for URLLC will be discussed. KW - Datennetz KW - URLLC KW - RRM KW - delay QoS exponent KW - decoding error rate KW - delay bound violation probability KW - short block-length KW - effective Bandwidth Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280859 ER - TY - RPRT A1 - Raffeck, Simon A1 - Geißler, Stefan A1 - Hoßfeld, Tobias T1 - DBM: Decentralized Burst Mitigation for Self-Organizing LoRa Deployments T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - This work proposes a novel approach to disperse dense transmission intervals and reduce bursty traffic patterns without the need for centralized control. Furthermore, by keeping the mechanism as close to the Long Range Wide Area Network (LoRaWAN) standard as possible the suggested mechanism can be deployed within existing networks and can even be co-deployed with other devices. KW - Datennetz KW - LoRa Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280809 ER - TY - RPRT A1 - Savvidis, Dimitrios A1 - Roth, Robert A1 - Tutsch, Dietmar T1 - Static Evaluation of a Wheel-Topology for an SDN-based Network Usecase T2 - Würzburg Workshop on Next-Generation Communication Networks (WueWoWas'22) N2 - The increased occurrence of Software-Defined-Networking (SDN) not only improves the dynamics and maintenance of network architectures, but also opens up new use cases and application possibilities. Based on these observations, we propose a new network topology consisting of a star and a ring topology. This hybrid topology will be called wheel topology in this paper. We have considered the static characteristics of the wheel topology and compare them with known other topologies. KW - Datennetz KW - SDN KW - topology KW - wheel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280715 ER -