TY - THES A1 - Schenkel, Alexander T1 - Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes T1 - Nichtkommutative Gravitation und Quantenfeldtheorie auf Nichtkommutativen Gekrümmten Raumzeiten N2 - Über die letzten Jahrzehnte hat sich die nichtkommutative Geometrie zu einem etablierten Teilgebiet der reinen Mathematik und der theoretischen Physik entwickelt. Die Entdeckung, dass gewisse Grenzfälle der Quantengravitation und Stringtheorie zu nichtkommutativer Geometrie führen, motivierte die Suche nach Physik jenseits des Standardmodells der Elementarteilchenphysik und der Einstein'schen allgemeinen Relativitätstheorie im Rahmen von nichtkommutativen Geometrien. Einen ergiebigen Ansatz zu letzteren Theorien, welcher Deformationsquantisierung (Sternprodukte) mit Methoden aus der Theorie der Quantengruppen kombiniert, wurde von der Gruppe um Julius Wess entwickelt. Die resultierende Gravitationstheorie ist nicht nur imstande nichtkommutative Effekte der Raumzeit zu beschreiben, sondern sie erfüllt ebenfalls ein generalisiertes allgemeines Kovarianzprinzip, welches durch eine deformierte Hopf Algebra von Diffeomorphismen beschrieben wird. Gegenstand des ersten Teils dieser Dissertation ist es Symmetriereduktion im Rahmen von nichtkommutativer Gravitation zu verstehen und damit exakte Lösungen der nichtkommutativen Einstein'schen Gleichungen zu konstruieren. Diese Untersuchungen sind von großer Bedeutung um den physikalischen Inhalt dieser Theorien herauszuarbeiten und den Kontakt zu Anwendungen, z.B. im Rahmen nichtkommutativer Kosmologie und Physik schwarzer Löcher, herzustellen. Wir verallgemeinern die übliche Methode der Symmetriereduktion, welche eine Standardtechnik im Auffinden von Lösungen der Einstein'schen Gleichungen ist, auf nichtkommutative Gravitation. Es wird gezeigt, dass unsere Methode zur nichtkommutativen Symmetriereduktion für ein gegebenes symmetrisches System zu bevorzugten Deformationen führt. Für Abelsche Drinfel'd Twists klassifizieren wir alle konsistenten Deformationen von räumlich flachen Friedmann-Robertson-Walker Kosmologien und des Schwarzschild'schen schwarzen Loches. Aufgrund der deformierten Symmetriestruktur dieser Modelle können wir viele Beispiele von exakten Lösungen der nichtkommutativen Einstein'schen Gleichungen finden, bei welchen das nichtkommutative Metrikfeld mit dem klassischen übereinstimmt. Im Fokus des zweiten Teils sind Quantenfeldtheorien auf nichtkommutativen gekrümmten Raumzeiten. Dazu entwickeln wir einen neuen Formalismus, welcher algebraische Methoden der Quantenfeldtheorie mit nichtkommutativer Differentialgeometrie verknüpft. Als Resultat unseres Ansatzes erhalten wir eine Observablenalgebra für skalare Quantenfeldtheorien auf einer großen Klasse von nichtkommutativen gekrümmten Raumzeiten. Es wird eine präzise Relation zwischen dieser Algebra und der Observablenalgebra der undeformierten Quantenfeldtheorie hergeleitet. Wir studieren ebenfalls explizite Beispiele von deformierten Wellenoperatoren und finden, dass im Gegensatz zu dem einfachsten Modell des Moyal-Weyl deformierten Minkowski-Raumes, im Allgemeinen schon die Propagation freier Felder durch die nichtkommutative Geometrie beeinflusst wird. Die Effekte von konvergenten Deformationen werden in einfachen Spezialfällen untersucht, und wir beobachten neue Aspekte in diesen Quantenfeldtheorien, welche sich in formalen Deformationen nicht zeigten. Zusätzlich zu der erwarteten Nichtlokalität finden wir, dass sich die Beziehung zwischen der deformierten und der undeformierten Quantenfeldtheorie nichttrivial verändert. Wir beweisen, dass dies zu einem verbesserten Verhalten der nichtkommutativen Theorie bei kurzen Abständen, d.h. im Ultravioletten, führt. Im dritten Teil dieser Arbeit entwickeln wir Elemente eines leistungsfähigeren, jedoch abstrakteren, mathematischen Ansatzes zur Beschreibung der nichtkommutativen Gravitation. Das Hauptaugenmerk liegt auf globalen Aspekten von Homomorphismen zwischen und Zusammenhängen auf nichtkommutativen Vektorbündeln, welche fundamentale Objekte in der mathematischen Beschreibung von nichtkommutativer Gravitation sind. Wir beweisen, dass sich alle Homomorphismen und Zusammenhänge der deformierten Theorie mittels eines Quantisierungsisomorphismus aus den undeformierten Homomorphismen und Zusammenhängen ableiten lassen. Es wird ebenfalls untersucht wie sich Homomorphismen und Zusammenhänge auf Tensorprodukte von Moduln induzieren lassen. Das Verständnis dieser Induktion erlaubt es uns die nichtkommutative Gravitationstheorie von Wess et al. um allgemeine Tensorfelder zu erweitern. Als eine nichttriviale Anwendung des neuen Formalismus erweitern wir unsere Studien zu exakten Lösungen der nichtkommutativen Einstein'schen Gleichungen auf allgemeinere Klassen von Deformationen. N2 - Over the past decades, noncommutative geometry has grown into an established field in pure mathematics and theoretical physics. The discovery that noncommutative geometry emerges as a limit of quantum gravity and string theory has provided strong motivations to search for physics beyond the standard model of particle physics and also beyond Einstein's theory of general relativity within the realm of noncommutative geometries. A very fruitful approach in the latter direction is due to Julius Wess and his group, which combines deformation quantization (star-products) with quantum group methods. The resulting gravity theory does not only include noncommutative effects of spacetime, but it is also invariant under a deformed Hopf algebra of diffeomorphisms, generalizing the principle of general covariance to the noncommutative setting. The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. These are important investigations in order to capture the physical content of such theories and to make contact to applications in e.g. noncommutative cosmology and black hole physics. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative quantum field theory at short distances, i.e. in the ultraviolet. In the third part we develop elements of a more powerful, albeit more abstract, mathematical approach to noncommutative gravity. The goal is to better understand global aspects of homomorphisms between and connections on noncommutative vector bundles, which are fundamental objects in the mathematical description of noncommutative gravity. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of modules is clarified, and as a consequence we are able to add tensor fields of arbitrary type to the noncommutative gravity theory of Wess et al. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations. KW - Nichtkommutative Geometrie KW - Quantenfeldtheorie KW - Gravitationstheorie KW - Nichtkommutative Differentialgeometrie KW - Gravitation KW - Nichtlokale Quantenfeldtheorie KW - Quantenfeldtheorie KW - Noncommutative Geometry KW - Gravity KW - Quantum Field Theory on Curved Spacetimes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65823 ER - TY - THES A1 - Adamek, Julian T1 - Classical and Quantum Aspects of Anisotropic Cosmology T1 - Klassische und Quantentheoretische Gesichtspunkte der Anisotropen Kosmologie N2 - The idea that our observable Universe may have originated from a quantum tunneling event out of an eternally inflating false vacuum state is a cornerstone of the multiverse paradigm. Modern theories that are considered as an approach towards the ultraviolet-complete fundamental theory of particles and gravity, such as the various types of string theory, even suggest that a vast landscape of different vacuum configurations exists, and that gravitational tunneling is an important mechanism with which the Universe can explore this landscape. The tunneling scenario also presents a unique framework to address the initial conditions of our observable Universe. In particular, it allows to introduce deviations from the cosmological concordance model in a controlled and well-motivated way. These deviations are a central topic of this work. An important feature in most of the theories mentioned above is the presumed existence of additional space dimensions in excess of the three which we observe in our every-day experience. It was realized that these extra dimensions could avoid our detection if they are compactified to microscopic length scales far beyond the reach of current experiments. There also seem to be natural mechanisms available for dynamical compactification in those theories. These typically lead to a vast landscape of different vacuum configurations which also may differ in the number of macroscopic dimensions, only the total number of dimensions being determined by the theory. Transitions between these vacuum configurations may hence open up new directions which were previously compact, spontaneously compactify some previously macroscopic directions, or otherwise re-arrange the configuration of compact and macroscopic dimensions in a more general way. From within the bubble Universe, such a process may be perceived as an anisotropic background spacetime - intuitively, the dimensions which open up may give rise to preferred directions. If our 3+1 dimensional observable Universe was born in a process as described above, one may expect to find traces of a preferred direction in cosmological observations. For instance, two directions could be curved like on a sphere, while the third space direction is flat. Using a scenario of gravitational tunneling to fix the initial conditions, I show how the primordial signatures in such an anisotropic Universe can be obtained in principle and work out a particular example in more detail. A small deviation from isotropy also has phenomenological consequences for the later evolution of the Universe. I discuss the most important effects and show that backreaction can be dynamically important. In particular, under certain conditions, a buildup of anisotropic stress in different components of the cosmic fluid can lead to a dynamical isotropization of the total stress-energy tensor. The mechanism is again demonstrated with the help of a physical example. N2 - Die Vorstellung von einem Multiversum baut unter anderem auf dem Gedanken auf, dass unser beobachtbares Universum in einem Tunnelprozess entstanden sein könnte. Demzufolge hätte es sich dabei von einem ewig währenden, inflationären Vakuumzustand abgekoppelt. Die so entstehende Blase gleicht einer bewohnbaren Insel inmitten eines gewaltigen Ozeans. Moderne Theorien, die als gute Ansätze bezüglich einer fundamentalen und ultraviolett-vollständigen Beschreibung von Elementarteilchen und Gravitation angesehen werden, wie etwa die verschiedenen Ausprägungen der Stringtheorie, legen sogar nahe, dass eine ganze "Landschaft" (im Englischen "landscape") verschiedener Vakuumzustände existiert, und dass Tunnelprozesse einen wichtigen Mechanismus darstellen, mit dem das Universum die Vielzahl an Möglichkeiten erforschen und realisieren kann. Das Tunnelszenario stellt auch einen einzigartigen Rahmen zur Verfügung, um die Anfangsbedingungen unseres beobachtbaren Universums zu untersuchen. Insbesondere besteht damit die Möglichkeit, geringfügige Abweichungen vom kosmologischen Standardmodell in kontrollierter und gut motivierter Art und Weise zu realisieren. Solche Abweichungen stellen eines der zentralen Themen dieser Arbeit dar. Eine wichtige Besonderheit der eben erwähnten Theorien ist die Annahme, dass neben den drei uns bekannten Raumdimensionen eine Vielzahl weiterer existieren könnte. Diese Zusatzdimensionen könnten vor uns verborgen sein, wenn sie kompakt sind und nur extrem mikroskopische Ausmaße haben, so dass sie sich weit unterhalb des Auflösungsvermögens heutiger Experimente befinden. Mechanismen, welche eine solche mikroskopische Gestalt dynamisch erklären könnten, sind in den gängigen Theorien auf ganz natürliche Weise verfügbar. Typischerweise ergibt sich daraus das eben gezeichnete Bild einer ausgedehnten "Landschaft" verschiedener Konfigurationen. Die Vakuumzustände können sich nun auch in der Anzahl und Gestalt der mikroskopischen Dimensionen unterscheiden, da nur die Gesamtzahl an Raumdimensionen von der Theorie vorgegeben wird. Übergänge zwischen diesen Zuständen können also dazu führen, dass neue Raumrichtungen entstehen, indem mikroskopische Dimensionen sich plötzlich aufblähen, alte Raumrichtungen verschwinden, indem sie sich spontan ins Mikroskopische zusammenziehen, oder dass die Konfiguration der Raumdimensionen auf eine noch kompliziertere Art und Weise verändert wird. Aus Sicht des neu entstehenden "Universums" in der Blase führt ein solcher Prozess effektiv zu einem anisotropen Hintergrund - vereinfacht ausgedrückt können die neu entstehenden Raumrichtungen eine Vorzugsrichtung ausweisen. Wenn unser 3+1 dimensionales beobachtbares Universum in einem solchen Prozess entstanden ist, kann man vermuten, dass sich in kosmologischen Beobachtungen Hinweise auf eine Vorzugsrichtung finden lassen müssten. Zum Beispiel könnten zwei Raumrichtungen gekrümmt wie eine Kugeloberfläche sein, während die dritte Richtung keinerlei Krümmung aufweist. Indem ich ein Tunnelszenario benutze, um die Anfangsbedingungen festzulegen, gelingt es mir zu zeigen wie die primordialen Spuren eines solchen anisotropen Universums prinzipiell auszusehen haben und führe eine Berechnung anhand eines speziellen Beispiels explizit vor. Eine geringfügige Abweichung von Isotropie hat ebenfalls phänomenologische Auswirkungen auf die spätere Entwicklung des Universums. Ich gehe auf die wichtigsten Effekte ein und zeige außerdem, dass Rückkopplung dynamisch relevant sein kann. Insbesondere kann sich unter gewissen Voraussetzungen ein Ungleichgewicht der Druckkräfte in verschiedenen Komponenten der "kosmischen Flüssigkeit" aufbauen, das insgesamt zu einer dynamischen Isotropisierung des kollektiven Energie-Impuls-Tensors führt. Dieser Mechanismus wird ebenfalls anhand eines konkreten Beispiels beleuchtet. KW - Kosmologie KW - Anisotropes Universum KW - Quantenkosmologie KW - Bianchi-Kosmologie KW - Anisotropic Universe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65908 ER -