TY - THES A1 - Zeller, Wolfgang T1 - Entwicklung und Charakterisierung von Hochleistungslaserdioden bei 980 nm Wellenlänge T1 - Development and characterization of high-power laser diodes at 980 nm wavelength N2 - Ziel der Arbeit war die Entwicklung von lateral gekoppelten DFB-Halbleiterlasern für Hochleistungsanwendungen. Besonderes Augenmerk war dabei auf hohe COD-Schwellen und schmale Fernfeldverteilungen gerichtet. Ausgehend von einem LOC-Design wurden Simulationsrechnungen durchgeführt und ein neues Epitaxiedesign mit einer 2.5 μm dicken LOC, in welcher die aktive Schicht asymmetrisch positioniert ist, entwickelt. Durch die asymmetrische Anordnung der aktiven Schicht kann die im Falle von lateral gekoppelten DFB-Lasern sehr kritische Kopplung der Lichtmode an das modenselektive Gitter gewährleistet werden. Zudem reichen die Ausläufer der Lichtmode in diesem Design weiter in den Wellenleiter hinab als dies bei herkömmlichen Wellenleitern der Fall ist, so dass sich die Fernfeldeigenschaften der Laser verbessern. Die Fernfeldverteilungen solcher Laser weisen Halbwertsbreiten von 14° in lateraler und nur 19° in transversaler Richtung auf. Im Vergleich mit Standardstrukturen konnte die Ausdehnung des transversalen Fernfeldes also um mehr als 50 % reduziert werden. Außerdem ergibt sich eine nahezu runde Abstrahlcharakteristik, was die Einkopplungseffizienz in optische Systeme wie Glasfasern oder Linsen signifikant verbessert. Unter Ausnutzung der entwickelten Epitaxiestruktur mit asymmetrischer LOC wurde ein neues Lateraldesign entwickelt. Es handelt sich hierbei um Wellenleiterstege welche im Bereich der Facetten eine Verjüngung aufweisen. Durch diese wird die optische Mode tief in die 2.5 μm dicke Wellenleiterschicht geführt, welche sie in transversaler Richtung komplett ausfüllt. Durch den größeren Abstand der Lasermode vom Wellenleitersteg ergibt sich zudem eine deutliche schwächere laterale Führung, so dass sich die Mode auch parallel zur aktiven Schicht weiter ausdehnt. Die Lichtmode breitet sich folglich über eine deutlich größere Fläche aus, als dies bei einem gleichbleibend breiten Wellenleitersteg der Fall ist. Die somit signifikant kleinere Leistungsdichte auf der Laserfacette ist gleichbedeutend mit einem Anstieg der COD-Schwelle der Laser der im Einzelnen von den jeweiligen Designparametern von Schicht- und Lateralstruktur abhängig ist. Außerdem bewirkt die in lateraler und transversaler Richtung deutlich schwächere Lokalisation der Mode eine weitere Abnahme der Halbwertsbreiten der Laserfernfelder. Durch die im Vergleich zu herkömmlichen Laserstrukturen schwächere Lokalisation der Lichtmode im Bereich der Facetten ergeben sich äußerst schmale Fernfelder. Ein 1800 μm langer Laser, dessen Stegbreite über 200 μm hinweg auf 0.4 μm verringert wurde, zeigt Halbwertsbreiten von 5.2° in lateraler und 13.0° in transversaler Richtung. Damit sind die Fernfelder dieser Laser bedeutend kleiner als die bislang vorgestellter Laserdioden mit LOC. Die Geometrie der Taperstrukturen bestimmt, wie vollständig sich die Mode in den unteren Wellenleiterbereich ausbreiten kann und nimmt damit Einfluss auf die Laserfernfelder. Im CW-Modus durchgeführte Messungen an Lasern mit Taperstrukturen zeigen maximale Ausgangsleistung von 200 mW bevor die Laser in thermisches Überrollen übergehen. Bei einer Ausgangsleistung von 185 mW beträgt das Seitenmodenunterdrückungsverhältnis 33 dB. Im gepulsten Modus (50 ns Pulsdauer, 1MHz Wiederholungsrate) betriebene Laser zeigen hohe COD-Schwellen von mehreren hundert bis hin zu 1600 mW, die eine deutliche Abhängigkeit von der Endbreite der Taperstrukturen zeigen: Mit abnehmender Taperbreite ergibt sich eine starke Zunahme der COD-Schwelle. An einem 1800 μm langen Laser mit 200 μm langen Taperstrukturen die eine Endbreite von 0.3 μm aufweisen konnte eine COD-Schwelle von 1.6 W nachgewiesen werden. Im Gegensatz zu anderen Ansätzen, die ebenfalls longitudinal und lateral mono-modige DFB-Laser mit hohen Ausgangsleistungen zum Ziel haben, kann jedoch bei dem hier präsentierten Konzept aufgrund des Einsatzes von lateralen DFB-Gittern auf eine Unterbrechung des epitaktischen Wachstums verzichtet werden. Dies vereinfacht die Herstellung der Schichtstrukturen deutlich. Die hier vorgestellten Konzepte sind mit weiteren üblichen Vorgehensweisen zur Herstellung von Hochleistungslaserdioden, wie z.B. speziellen Facettenreinigungs- und Passivierungsverfahren oder Materialdurchmischung im Facettenbereich, kombinierbar. Zudem kann das hier am Beispiel des InGaAs/GaAs Materialsystems entwickelte Konzept auf alle zur Herstellung von Halbleiterlaserdioden üblichen Materialsysteme übertragen werden und eröffnet so eine völlig neue, material- und wellenlängenunabhängige Möglichkeit Abstrahlcharakteristik und Ausgangsleistung von Laserdioden zu optimieren. N2 - The primary objective of this work was the development of laterally coupled DFB semiconductor laser diodes for high-power applications. Special attention was turned to high COD thresholds and narrow farfield distributions. Based on a LOC design, simulations were undertaken and a new epitaxial design was devised featuring an active layer positioned asymmetrically in a LOC with a height of 2.5 μm. This design guarantees good coupling between the light mode and the lateral grating, something that is especially critical in the case of laterally coupled DFB lasers. Furthermore, due to this design the fringes of the light mode extend farther into the waveguide layers than possible in conventional waveguides, thereby improving the farfield characteristics of the devices. The farfield distributions of these laser diodes exhibit FWHM values of 14° in lateral and only 19° in transversal direction. Compared to standard designs the dimension of the transversal farfield could be reduced by more than 50 %, resulting in an almost circular farfield pattern, hence improving the coupling efficiency into optical fibers or lenses significantly. Based on the developed epitaxial design with an asymmetrical LOC, a new ridge design was devised. It features RWGs that are tapered down to a width of only several hundred nanometers at both ends of the laser cavity. Due to this tapered sections, the optical mode is pushed down into the 2.5 μm thick waveguide, filling it out completely in transversal direction. Because of the increased distance between the lasing mode and the RWG, the lateral mode guiding is also decreased, resulting in an expansion parallel to the epitaxial layers as well. Consequently the light spreads over a significantly larger area than in the case of a RWG of constant width. The thusly reduced power density at the laser facet is tantamount to an increase in COD threshold the extent of which depends on the particular design parameters of layer and ridge design respectively. Furthermore, the weaker localisation of the light mode causes a further decrease of the farfields’ FWHM values. Due to the localisation of the light mode being weaker than in conventional laser structures, the measured lasers’ farfield distributions are very narrow. A 1800 μm long laser with a 2.0 μm wide RWG tapered down to 0.4 μm over a length of 200 μm yields FWHM values of 5.2° in lateral and 13.0° in transversal direction. These values are considerably smaller than those achieved with other laser diodes based on LOC structures presented up to now. The layout of the taper structures determines the degree of the spread into the lower waveguide and therefore influences the farfield distributions. When measured in CW mode, the tapered lasers show a maximum optical output power of 200 mW before exhibiting thermal roll-over. Measured at an output power of 185 mW, the spectral characteristics yield a SMSR of 33 dB. Operated in pulsed mode (50 ns pulse length, 1 MHz repetition rate), the laser diodes show high COD thresholds of several hundred up to 1600 mW. The COD thresholds exhibit a strong dependence on the taper width viz. a fast increase of COD threshold with decreasing taper width. Data derived from measurements conducted with a 1800 μm long laser that was tapered down to a ridge width of only 0.3 μm over a length of 200 μm, yield a COD threshold of 1.6 W. Other approaches aiming at laterally and longitudinally mono-mode high-power DFB lasers are based on an epitaxial overgrowth step. This highly risky procedure could be foregone due to the use of DFB gratings positioned laterally to the RWG. The concepts presented here are fully compatible with other procedures usually used for manufacturing high power laser diodes with high COD thresholds, such as special facet cleaning and passivation procedures or quantum-well-intermixing. Above all, although the concept developed in this work was based on the InGaAs/GaAs material system, it can be transferred to virtually every material system used for the fabrication of semiconductor laser diodes. Thus the presented concept establishes a new way of optimizing both farfield and output power of laser diodes that is independent of both material system and emission wavelength. KW - DFB-Laser KW - mono-mode laser KW - quantum-well laser KW - DFB laser KW - high-power laser KW - large optical cavity KW - tapered laser KW - Einmodenlaser KW - Quantenwell-Laser KW - Quantenpunktlaser KW - Galliumarsenidlaser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73409 ER - TY - THES A1 - Schwertberger, Ruth T1 - Epitaxie von InAs-Quanten-Dash-Strukturen auf InP und ihre Anwendung in Telekommunikationslasern T1 - Epitaxy of InAs quantum dash structures on InP and their application in telecommunication lasers N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von niedrigdimensionalen Strukturen für den Einsatz als aktive Schicht in InP-Halbleiterlasern. Quantenpunktstrukturen als Lasermedium weisen gegenüber herkömmlichen Quantenfilmlasern einige Vorteile auf, wie beispielsweise geringe Schwellenstromdichten, breites Verstärkungsspektrum und geringe Temperatursensitivität der Emissionswellenlänge. Ziel dieser Arbeit ist es, diese speziellen Vorteile, die im GaAs-System größtenteils nachgewiesen sind, auch auf das InP-System zu übertragen, da dieses für die Telekommunikationswellenlänge 1.55 µm prädestiniert ist. Die vorgestellten Strukturen wurden mittels einer Gasquellen-Molekularstrahlepitaxie-Anlage unter Verwendung der alternativen Gruppe-V-Precursor Tertiärbutylphosphin (TBP) und -arsin (TBA) hergestellt. Die Bildung der Quantenpunktstrukturen wurde zunächst an Hand von Teststrukturen optimiert. Scheidet man InAs auf einem InP(100)-Substrat ab, so bilden sich – anders als auf GaAs – keine runden InAs-Quantenpunkte, sondern unregelmäßige, strichförmige Strukturen mit einer klaren Vorzugsorientierung, sogenannte Dashes. Verschiedene Wachstumsparameter, wie die Menge an deponiertem InAs, der Strukturaufbau oder der Wachstumsmodus, lassen eine Beeinflussung der Emissionseigenschaften zu, die mittels Photolumineszenz (PL)-Spektroskopie untersucht wurden. So kann die Emissionswellenlänge der Dashes sehr genau und über einen großen Bereich zwischen 1.2 und 2.0 µm über die nominelle Dicke der Dash-Schicht festgelegt werden. Dieser Zusammenhang lässt sich auch nutzen, um durch die Kombination von Schichten unterschiedlicher Dash-Größe eine extreme Verbreiterung des Verstärkungsspektrums auf über 300 nm zu erzielen. Neben der Hauptanwendung als Telekommunikationslaser sind auch Einsatzmöglichkeiten in der Gassensorik für einen Wellenlängenbereich zwischen 1.8 und 2.0 µm denkbar. Dieser ist neben der Verwendung extrem dicker Schichten durch das Prinzip des migrationsunterstützten Wachstums (engl. migration enhanced epitaxy) oder durch die Einbettung der Dash-Schichten in einen InGaAs-Quantenfilm ("Dash-in-a-Well"-Struktur) realisierbar. Letzteres zieht eine starke Rotverschiebung um etwa 130 meV bei gleichzeitiger schmaler und intensiver Emission nach sich. Da die Dashes einige sehr interessante Eigenschaften aufweisen, wurde ihre Eignung als aktive Schicht eines InP-Halbleiterlasers untersucht. Zunächst wurden der genaue Schichtaufbau, speziell die Fernfeldcharakteristik, und die Wachstumsparameter optimiert. Ebenso wurde der Effekt eines nachträglichen Ausheilschritts diskutiert. Da die speziellen Vorteile der Quanten-Dash(QD)-Strukturen nur Relevanz haben, wenn auch ihre Grunddaten einem Quantenfilmlaser (QW-Laser) auf InP ebenbürtig sind, wurde besonderer Wert auf einen entsprechenden Vergleich gelegt. Dabei zeigt sich, dass die Effizienzen ebenso wie die Absorption der QD-Laser nahezu identisch mit QW-Lasern sind. Die Schwellenstromdichten weisen eine stärkere Abhängigkeit von der Länge des Laserresonators auf, was dazu führt, dass ab einer Länge von 1.2 mm QD-Laser geringere Werte zeigen. Die Temperaturabhängigkeit der Schwellenstromdichte, die sich in der charakteristischen Temperatur T0 äussert, zeigt dagegen für QD-Laser eine stärkere Sensitivität mit maximalen T0-Werten von knapp über 100 K. Betrachtet man das Emissionsspektrum der QD-Laser, so fällt die starke Blauverschiebung mit abnehmender Bauteillänge auf. Gleichzeitig zeigen diese Laser im Vergleich zu QW-Lasern eine deutlich größere Temperaturstabilität der Emissionswellenlänge. Beide Eigenschaften haben ihre Ursache in der flachen Form des Verstärkungsspektrums. Zusätzlich wurden einige der an Hand der Teststrukturen gezeigten Dash-Eigenschaften auch an Laserstrukturen nachgewiesen. So lässt sich durch Variation der Dash-Schichtdicke von 5 auf 7.5 ML eine Verschiebung der Emissionswellenlänge um bis zu 230 nm realisieren, wobei dieses Verfahren damit noch nicht ausgereizt ist. Ebenso wurde auch ein Überlapp aus sechs jeweils verschieden dicken Dash-Schichten in eine Laserstruktur eingebaut. An Hand von Subschwellspektren wurde eine Verstärkungsbreite von etwa 220 nm nachgewiesen, die eine Abdeckung des gesamten Telekommunikationsbandes durch eine einzige Laserstruktur erlauben würde. Aus Quanten-Dash-Material prozessierte Stegwellenleiter (RWG)-Laser weisen sehr vielversprechende Daten mit hohen Ausgangsleistungen bis 15 mW pro Facette und niedrigen Schwellenströmen auf. Damit schafft diese Arbeit die Grundvoraussetzungen, um InAs-Quanten-Dashes als echte Alternative zu herkömmlichen Quantenfilmen in InP-Halbleiterlasern zu etablieren. Besonders das breite Verstärkungsspektrum und die hohe Temperaturstabilität der Emissionswellenlänge zeichnen dieses Material aus. N2 - In this work the fabrication and characterisation of low-dimensional structures that can be used as active regions in InP semiconductor lasers are presented. Compared to conventional quantum well lasers quantum dot material shows some advantages like low threshold current density, broad gain spectrum and low temperature sensitivity of the emission wavelength. Most of these special advantages have already been demonstrated in the GaAs system and should be transferred to the InP system which is the material of choice for the telecommunication wavelength 1.55 µm. The presented structures were grown in a gas source molecular beam epitaxy system using the alternative group-V-precursors tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA). In a first step the formation of the quantum dot-like structures was optimised in test samples. When InAs is deposited on an InP(100) substrate unlike on GaAs there are no circular InAs quantum dots formed, but irregular dash-like structures with a preferred orientation. Growth parameters like the amount of InAs deposited, the design of the structure or the growth mode allow an influence on the emission properties which were investigated by photoluminescence (PL) spectroscopy. Thus the emission wavelength of the dashes can be defined very accurately over a large region between 1.2 and 2.0 µm by varying the thickness of the dash layer. This dependence can be used to achieve an extreme broadening of the gain spectrum of over 300 nm by overlapping layers with different thicknesses. Beside the major application in telecommunication lasers the usage for gas sensing detectors in the wavelength range between 1.8 and 2.0 µm is also possible. In addition to the employment of extremely thick dash layers this region can be reached by the growth principle of migration enhanced epitaxy or by embedding the dash layers in an InGaAs quantum well in a so-called DWell structure. The latter involves a large red-shift of about 130 meV accompanied by a small and intense emission. With the dashes showing a very interesting behaviour their suitability as an active layer of an InP semiconductor laser needs to be investigated. The exact layer design, especially the farfield characteristic, and the growth parameters had to be optimised. Also the effect of a subsequent annealing step was discussed. As the special advantages of quantum dash (QD) lasers are only of importance if their basic data are comparable to a quantum well (QW) laser on InP much attention was paid to a corresponding comparison. It can be shown that the efficiencies and the absorption of the QD lasers are nearly similar to QW lasers. The threshold current densities have a stronger dependence on the resonator length resulting in lower values for quantum dash lasers above 1.2 mm cavity length. The temperature dependence of the threshold current density corresponding to the characteristic temperature T0 shows a stronger sensitivity for QD lasers with maximum T0 values of about 100 K. In the emission spectra of the dash lasers a strong blue-shift with decreasing device length is recognised. At the same time these lasers have a much larger temperature stability of the emission wavelength. Both effects have their reason in the smaller slope of the gain spectrum. Some of the dash properties shown for test structures were also demonstrated for laser structures. By varying the thickness of the dash layers from 5 to 7.5 MLs a shift of the emission wavelength of about 230 nm was realised bearing potential for an even further extension of this method. Also a stack of six dash layers all slightly different in thickness was embedded in a laser structure. Using subthreshold spectra a gain width of 220 nm was measured giving the opportunity to cover the whole telecommunication band with a single device. Ridge waveguide lasers processed from quantum dash material show promising results with high maximum output powers of up to 15 mW per facet and low threshold currents. This work creates the basis for establishing InAs quantum dash lasers as an alternative for conventional quantum well lasers in the InP system. Especially the broad gain spectrum and the high temperature stability of the emission wavelength distinguish this material. KW - Halbleiterlaser KW - Indiumphosphid KW - Indiumarsenid KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Optoelektronik KW - Halbleiterlaser KW - Epitaxie KW - Quanten-Dash KW - InP KW - optoelectronics KW - semiconductor laser KW - epitaxy KW - quantum dash KW - InP Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14609 ER - TY - THES A1 - Müller, Martin T1 - Abstimmbare Halbleiterlaser und schmalbandige Laserarrays mit verteilter lateraler Rückkopplung T1 - tunable semiconductor lasers and narrowband laser arrays with distributed lateral feedback N2 - Im Rahmen dieser Arbeit wurden zwei verschiedene Typen von Halbleiterlasern mit verteilter Rückkopplung (DFB-Laser) entwickelt. Die Laser basieren auf Rippenwellenleitern und verfügen zusätzlich über ein dazu senkrecht orientiertes Metallgitter. Der evaneszente Teil der im Rippenwellenleiter geführten Lichtwelle überlappt mit dem Gitter. Durch diese periodische Variation des effektiven Brechungsindex wird die verteilte Rückkopplung gewährleistet, was eine longitudinal monomodige Laseremission zur Folge hat. Beiden Lasertypen ist gemeinsam, dass der Herstellungsprozess auf einem vom Materialsystem unabhängigen Konzept basiert. Diese Tatsache ist von besonderem Interesse, da so entsprechende Laser für unterschiedlichste Wellenlängenbereiche gefertigt werden können, ohne hierfür neue Herstellungsverfahren zu entwickeln. Den ersten Schwerpunkt der Arbeit bilden Untersuchungen zu sog. abstimmbaren Lasern, deren Emissionswellenlänge innerhalb eines relativ großen Bereichs quasikontinuierlich einstellbar ist. Der Abstimmmechanismus kann mit dem Vernier-Prinzip erklärt werden. Der Laser besteht hierbei aus zwei gekoppelten Segmenten, die jeweils über eine Reihe von Moden (Modenkamm) verfügen. Der Abstand der Moden innerhalb eines Segments ist konstant, wohingegen die Modenabstände der beiden Segmente leicht unterschiedlich sind. Die Emissionswellenlänge des Lasers ist bestimmt durch den Überlapp zweier Moden aus den beiden Segmenten, wobei die Modenkämme so ausgelegt sind, dass gleichzeitig maximal ein Modenpaar überlappt. Eine kleine relative Verschiebung der beiden Modenkämme führt zu einer vergleichsweise großen Verschiebung der Emissionswellenlänge auf Grund des veränderten Überlapps. Die Modenkämme wurden durch spezielle DFB-Gitter, sog. binary superimposed gratings (BSG), realisiert, die, anders als bei konventionellen DFB-Lasern, für mehrere Bragg-Wellenlängen konstruktive Interferenz zulassen und erstmalig bei DFB-Lasern eingesetzt wurden. BSGs zeichnen sich durch sehr gute optische Eigenschaften bei gleichzeitig einfacher Herstellung aus. Zum Abstimmen der Wellenlänge wurde der Brechungsindex des Lasers gezielt durch den Injektionsstrom bzw. die Bauteiltemperatur verändert. Im Rahmen dieser Arbeit konnten abstimmbare Laser auf unterschiedlichen Materialsystemen (InGaAs/GaAs, GaInNAs/GaAs, InGaAsP/InP) hergestellt werden. Der maximale diskrete Abstimmbereich beträgt 38 nm bzw. 8,9 THz und ist durch die Breite des Verstärkungsspektrums limitiert. Quasikontinuierlich konnte ein Abstimmbereich von 15 nm bzw. 3,9 THz erreicht werden. Die typische minimale Seitenmodenunterdrückung (SMSR) beträgt 30 bis 35 dB. Durch Hinzufügen eines dritten Segments ohne Gitter konnte die Ausgangsleistung unabhängig von der Wellenlänge konstant gehalten werden. Den zweiten Schwerpunkt der Arbeit bildet die Entwicklung von DFB-Laser-Arrays mit dem Ziel, longitudinal monomodige Laser mit hoher Ausgangsleistung zu erhalten. Die DFB-Laser-Arrays basieren auf dem oben beschriebenen Prinzip von DFB-Lasern mit lateralem Metallgitter und verfügen über mehrere Rippenwellenleiter, die im lateralen Abstand von wenigen Mikrometern angeordnet sind. Für große Abstände zwischen den einzelnen Lasern des Arrays (Elemente) emittieren diese, weitgehend unabhängig von einander, jeweils longitudinal monomodiges Licht (quasimonochromatische Emission). Die spektrale Breite beträgt hierbei typischerweise 50 bis 70 GHz. Für kleine Elementabstände koppeln die einzelnen Lichtwellen miteinander, was zu einer mit einem konventionellen DFB-Laser vergleichbaren Linienbreite führt. Während die ungekoppelten Arrays über ein gaußförmiges Fernfeld verfügen, ergibt sich für die gekoppelten Arrays ein Interferenzmuster, das stark von verschiedenen Laserparametern (wie z. B. dem Elementabstand) abhängt. Bei InGaAs/GaAs basierenden Arrays (Wellenlänge ca. 980 nm) ergibt sich für DFB-Laser-Arrays mit vier Elementen eine Ausgangsleistung von ca. 200 mW pro Facette, die durch die Wärmeabfuhr begrenzt wird. Trotz der starken thermischen Limitierung (die Laser waren nicht aufgebaut) konnte die 3,5-fache Ausgangsleistung eines Referenzlasers erzielt werden. Bei InGaSb/GaSb basierenden Arrays mit vier Elementen (Wellenlänge ca. 2,0 µm) konnte eine Ausgangsleistung von ca. 30 mW pro Facette erreicht werden, was dem 3,3-fachen eines Referenzlasers entspricht. Die Verwendung von DFB-Laser-Arrays führt folglich zu einer signifikanten Leistungssteigerung, die sich durch geeignete Maßnahmen (Facettenvergütung, Montage, Skalierung) noch weiter erhöhen ließe. N2 - This thesis covers the development of two different types of semiconductor lasers with distributed feedback (DFB). The lasers are based on ridge waveguides and possess an additional metal grating that is oriented perpendicular to the ridge waveguide. The evanescent part of the guided light overlaps with the grating. Due to periodic modulation of the effective refractive index a distributed feedback is accomplished which leads to a longitudinal single mode laser emission. Both lasers have in common, that the manufacturing process is independent of the material system. This fact is of particular interest because one can easily fabricate lasers in different wavelength ranges without having to develop a new manufacturing process. The first part of the thesis covers investigations on tunable lasers. The emission wavelength can be tuned quasi continuous within a relatively large range. The tuning mechanism can be described by the Vernier effect. The laser consists of two coupled cavities, each having a series of well defined modes. The modes are equally spaced within a cavity, whereas the mode spacing between the two cavities is slightly different. The emission wavelength of the device is determined by the overlap of two modes from either cavity. By applying this concept, one can use a relatively small shift of the cavity modes to obtain a rather large shift of the emission wavelength of the laser. The mode spectra have been realized by using so called binary superimposed gratings (BSG). This allows constructive interference for several Bragg wavelengths. BSGs show excellent optical properties as well as an easy fabrication process and have been applied to DFB-lasers for the first time. The wavelength tuning is accomplished by a well directed way of varying the injection currents and the device temperature, respectively. In this thesis, tunable lasers have been demonstrated on a variety of material systems (InGaAs/GaAs, GaInNAs/GaAs, InGaAsP/InP). The maximum discrete tuning range is 38 nm and 8.9 THz, respectively and is limited by the width of the gain spectrum. The maximum quasi continuous tuning range is 15 nm and 3,9 THz, respectively. The typical minimum side mode suppression ratio (SMSR) is 30 to 35 dB. By adding a third segment without any grating, one can keep the output power at a constant level independent of the emission wavelength. The second part of this thesis covers the development of DFB laser arrays resulting in a laser source with high output power and small spectral width. The DFB laser arrays are based on the above described principle of a DFB laser with a lateral metal grating and consists of several parallel ridge waveguides with a lateral distance of a few microns. For a relatively large distance between two adjacent lasers (emitters) the lasers are independent, each emitting single mode light. The total spectral width is around 50 to 70 GHz. Regarding smaller distances between two emitters, light from adjacent lasers interacts which leads to a total spectral width comparable to a conventional DFB laser. Regarding an InGaAs/GaAs based DFB laser array (wavelength around 980 nm), an array with four emitters shows a maximum output power of around 200 mW. Despite the strong thermal limitation (the lasers were not mounted), this is 3.5 times the output power of a reference laser with only one emitter. Regarding the InGaSb/GaAs based DFB laser arrays with four emitters (wavelength around 2.0 µm) the output power is around 3.3 times as high as the output power of a reference device. This shows that the proposed concept of DFB laser arrays with lateral gratings is suitable to improve the output power of a DFB laser and can be further enhanced by means of facet coating, proper mounting and scaling. KW - DFB-Laser KW - Halbleiterlaser KW - DFB-Laser KW - Abstimmbare Laser KW - Laserarray KW - semiconductor lasers KW - dfb-laser KW - tunable laser KW - laser array Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16922 ER - TY - THES A1 - Mahnkopf, Sven T1 - Photonic crystal based widely tunable laser diodes and integrated optoelectronic components T1 - Weit abstimmbare Laserdioden und integrierte optoelektronische Bauelemente auf Basis photonischer Kristalle N2 - In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work. N2 - In einem ersten Aspekt der vorliegenden Arbeit wird die Entwicklung von weit abstimmbaren Halbleiterlasern auf der Basis photonischer Kristalle sowie deren monolithische Integration mit passiven, auf photonischen Kristallen basierenden Wellenleiter- und Kopplerstrukturen theoretisch und experimentell untersucht. In diesen Bauelementen werden die photonischen Kristalle im Bereich der photonischen Bandlücke betrieben, was zur Realisierung effektiver Reflektoren und Wellenleiterstrukturen ausgenutzt werden kann. Kompakte, weit abstimmbare Halbleiterlaser sind für die Entwicklung von optischen Netzwerksystemen, die auf dem wavelength division multiplexing (WDM) beruhen, von fundamentaler Bedeutung. In einem zweiten Aspekt der Arbeit wird der Betrieb von photonischen Kristallen im Bereich der photonischen Bandkante im Hinblick auf den sogenannten Superprisma-Effekt untersucht. Nach einigen einleitenden Worten, die diese Arbeit motivieren, werden in Kapitel 3 die für das Verständnis der Arbeit wesentlichen Grundlagen von Halbleiterlasern und photonischen Kristallen rekapituliert. KW - Laserdiode KW - Abstimmbarer Laser KW - Photonischer Kristall KW - Photonische Kristalle KW - Laser KW - Superprisma KW - Koppler KW - Photonic crystals KW - laser KW - superprism KW - coupler Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13860 ER - TY - THES A1 - Krebs, Roland T1 - Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen T1 - Fabrication and Characterization of edge and vertical emitting (Ga)InAs/Ga(In)As quantum dot (laser) structures N2 - Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenströme zu erreichen sind und die Emissionswellenlänge über einen größeren Bereich abgestimmt werden kann, da diese aufgrund der Größenfluktuation im Quantenpunktensemble über ein breites Verstärkungsspektrum verfügen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser für Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verstärkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (für den Grundzustandsübergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorlänge von 0.8 mm möglich. Für eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelvergütungen wiesen im Dauerstrichbetrieb Schwellenströme um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. Für Telekommunikationsanwendungen werden Bauteile benötigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verstärkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenlänge über einen Wellenlängenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgeführt. Für Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verstärkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zunächst im Wellenlängenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zunächst wurden undotierte Mikroresonatorstrukturen für Grundlagenuntersuchungen hergestellt, um die Qualität der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavität aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen Güten über 8000 realisiert werden. Für die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage möglich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgemäß zeigten die VCSEL mit der höheren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu können, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavität zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenlängenbereich um 1 µm mit komplett dotierten Spiegeln ohne größere Abstriche bei den Bauteildaten möglich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verstärkung Probleme. N2 - In comparison to quantum well lasers, quantum dot lasers provide (among others) the advantages that lower threshold currents are achievable and that the emission wavelength can be tuned over a larger range because the gain spectrum is wider due to the inhomogeneous broadening of the size distribution. The first part of the thesis deals with the theoretical basics and the preliminary investigations which were done before the fabrication of 1.3 µm quantum dot lasers as well as the characteristics of these lasers. The objective of this part of the thesis was the fabrication of single mode 1.3 µm quantum dot lasers for telecommunication applications and the optimization of their properties. Six quantum dot layers were included in the active region of a laser structure with a large optical cavity. The measurement of the optical gain of such a laser structure with six quantum dot layers yielded a value of 16.6 1/cm (for the ground state transition) at a current density of 850 A/cm^2. Thus, laser operation on the ground state is possible down to a cavity length of 0.8 mm. For a laser structure with six asymmetric DWELL layers and optimized growth parameters, a transparency current density of about 20 A/cm^2 per quantum dot layer and an internal quantum efficiency of 0.47 at an internal absorption as low as 1.0 1/cm could be obtained. Based on the laser structures ridge waveguide lasers were processed. With a 0.8 mm x 4 µm large device, laser operation in pulsed mode until 156 °C could be demonstrated. 400 µm x 4 µm large devices with highly reflective mirror coatings operated in continuous wave mode showed threshold currents as low as 6 mA and external quantum efficiencies at the front facet of 0.23 W/A. With these devices continuous wave operation up to 80 °C at an output power above 1 mW is possible. For telecommunication applications devices are needed that show lateral and longitudinal single mode emission. In the case of edge emitting lasers this can be realized with the DFB principle (DFB: distributed feedback). In the scope of this thesis the worldwide first DFB lasers on 1.3 µm quantum dot laser structures were fabricated. During the process, metal gratings lateral to the ridges were defined by electron beam lithography which cause the mode selection by absorption. Due to the 100 nm broad gain spectrum of the laser structures, the emission wavelength could be tuned over a range of about 80 nm without a significant degradation of the device properties. With 0.8 mm long DFB lasers the worldwide first high frequency measurements on lasers of this kind were performed. For quantum dot lasers one theoretically expects a small static linewidth and a small chirp because of the high differential gain. This was confirmed by the experiment. The second part of the thesis deals with vertical cavity surface emitting quantum dot structures. The main objective of this part of the thesis was to fabricate quantum dot VCSELs with doped mirrors in wavelength range around 1 µm and to examine on this basis the realizability of 1.3 µm quantum dot VCSELs. At first, undoped microresonator structures for fundamental studies were fabricated in order to test and to optimize the quality of the mirror layers. These structures consisted of 23.5 periods of AlAs and GaAs mirror layers in the lower DBR (DBR: Distributed Bragg Reflector), a lambda thick GaAs cavity with a single quantum dot layer in the center and an upper DBR with 20 periods. Resonators with high quality factors well above 8000 could be realized. For the further workings concerning the fabrication of quantum dot VCSEL structures the investigations on the microresonator samples have shown that with the MBE system used it is possible to fabricate high quality mirror structures. Based on the results from the fabrication and characterization of the microresonator structures, quantum dot VCSEL structures were fabricated. The VCSEL structures were designed as bottom emitters, which means that they emit from the substrate side. This design permits the epi-side down mounting of the samples on a heat sink. Samples with 17.5 periods in the lower and 21 periods in the upper DBR as well as samples with 20.5 periods in the lower and 30 periods in the upper DBR were fabricated. To be able to operate the VCSELs in continuous wave mode, devices with oxide aperture were processed. For that purpose, on 30 µm pillars both aperture layers consisting of AlAs adjacent to the cavity were oxidized down to a diameter of 6 µm to confine the current path. It could be demonstrated that the realization of quantum dot VCSELs in the 1 µm wavelength range with doped mirrors is possible without having to accept a trade-off as to the device performance. When trying to realize 1.3 µm quantum dot VCSELs with doped mirrors one runs into problems with the optical gain which is rather low as compared to the absorption losses. KW - Drei-Fünf-Halbleiter KW - Halbleiterlaser KW - Halbleiterlaser KW - GaAs KW - Quantenpunkte KW - VCSEL KW - DFB-Laser KW - semiconductor lasers KW - GaAs KW - quantum dots KW - VCSEL KW - DFB laser Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11328 ER -