TY - THES A1 - Glawion, Sebastian T1 - Spectroscopic Investigations of Doped and Undoped Transition Metal Oxyhalides T1 - Spektroskopische Untersuchungen dotierter und undotierter Übergangsmetall-Oxyhalogenide N2 - In this thesis the electronic and magnetic structure of the transition metal oxyhalides TiOCl, TiOBr and VOCl is investigated. The main experimental methods are photoemission (PES) and x-ray absorption (XAS) spectroscopy as well as resonant inelastic x-ray scattering (RIXS). The results are compared to density-functional theory, and spectral functions from dynamical mean-field theory and different kinds of model calculations. Questions addressed here are those of the dimensionality of the magnetic and electronic interactions, the suitability of the oxyhalides as prototypical strongly correlated model systems, and the possibility to induce a filling-controlled insulator-metal transition. It turns out that TiOCl is a quasi-one-dimensional system with non-negligible two-dimensional coupling, while the one-dimensional character is already quite suppressed in TiOBr. In VOCl no signatures of such one-dimensional behavior remain, and it is two-dimensional. In all cases, frustrations induced by the crystal lattice govern the magnetic and electronic properties. As it turns out, although the applied theoretical approaches display improvements compared to previous studies, the differences to the experimental data still are at least partially of qualitative instead of quantitative nature. Notably, using RIXS, it is possible for the first time in TiOCl to unambiguously identify a two-spinon excitation, and the previously assumed energy scale of magnetic excitations can be confirmed. By intercalation of alkali metal atoms (Na, K) the oxyhalides can be doped with electrons, which can be evidenced and even quantified using x-ray PES. In these experiments, also a particular vertical arrangement of dopants is observed, which can be explained, at least within experimental accuracy, using the model of a so-called "polar catastrophe". However, no transition into a metallic phase can be observed upon doping, but this can be understood qualitatively and quantitatively within an alloy Hubbard model due to the impurity potential of the dopants. Furthermore, in a canonical way a transfer of spectral weight can be observed, which is a characteristic feature of strongly correlated electron systems. Overall, it can be stated that the transition metal oxyhalides actually can be regarded as prototypical Mott insulators, yet with a rich phase diagram which is far from being fully understood. N2 - In dieser Doktorarbeit wird die elektronische und magnetische Struktur der Übergangsmetall-Oxyhalogenide TiOCl, TiOBr und VOCl untersucht. Ein Hauptaugenmerk liegt dabei auf spektroskopischen Methoden wie der Photoemissions- (PES) und Röntgenabsorptions- (XAS) Spektroskopie, sowie auf resonanter inelastischer Röntgenstreuung (RIXS). Die Resultate werden mit Dichtefunktionaltheorie, sowie Spektralfunktionen aus dynamischer Molekularfeldtheorie und verschiedenen Modellrechnungen verglichen. Die hauptsächlich zu klärenden Fragestellungen waren die der Dimensionalität magnetischer und elektronischer Wechselwirkungen, die Eignung der Oxyhalogenide als prototypische, stark korrelierte Modellsysteme, sowie die MÄoglichkeit, einen bandfüllungsinduzierten Isolator-Metall-Übergang zu erreichen. Es zeigt sich, dass TiOCl ein quasi-eindimensionales System mit nicht zu vernachlässigender zweidimensionaler Kopplung darstellt, während der eindimensionale Charakter bei TiOBr bereits stärker unterdrückt ist. In VOCl sind schließlich keine Anzeichen eindimensionalen Verhaltens mehr erkennbar, es handelt sich also um ein zweidimensionales System. In allen Fällen spielen die durch das Gitter verursachten Frustrationen eine Rolle bei der Beschreibung der elektronischen und magnetischen Eigenschaften, und es stellt sich heraus, dass die verwendeten theoretischen Ansätze zwar eine Verbesserung im Vergleich zu früheren Studien bringen, die Unterschiede zu den experimentellen Daten aber weiterhin zumindest teilweise qualitativ und nicht nur quantitativ sind. Bemerkenswert ist, dass mithilfe von RIXS erstmals in TiOCl eine Zwei-Spinon-Anregung identifiziert, und dadurch die bisher angenommene Energieskala magnetischer Anregungen in TiOCl bestätigt werden kann. Durch Interkalation von Alkaliatomen (Na, K) können die Oxyhalogenide mit Elektronen dotiert werden, was sich anhand von Röntgen-PES zeigen und sogar quantitativ auswerten lässt. Dabei zeigt sich eine bestimmte vertikale Verteilung der Dotieratome, welche im Rahmen der experimentellen Genauigkeit durch das Modell einer sog. "Polaren Katastrophe" erklärt werden kann. Allerdings kann kein Übergang in eine metallische Phase beobachtet werden, doch dies lässt sich im Rahmen eines Legierungs-Hubbard-Modells, induziert durch das Störpotential der Dotieratome, qualitativ und quantitativ verstehen. Weiterhin zeigt sich in modellhafter Art und Weise ein Transfer von spektralem Gewicht, ein charakteristisches Merkmal stark korrelierter Elektronensysteme. Letztlich kann man den Schluss ziehen, dass die Übergangsmetall-Oxyhalogenide tatsächlich als prototypische Mott-Isolatoren aufgefasst werden können, die jedoch gleichzeitig ein reiches und bei weitem nicht vollständig verstandenes Phasendiagramm aufweisen. KW - Übergangsmetall KW - Oxidhalogenide KW - Spektroskopie KW - Mott-Isolator KW - Hubbard-Modell KW - Legierungs-Hubbard-Modell KW - Elektronenkorrelation KW - Photoemission KW - Inelastische Röntgenstreuung KW - Röntgenabsorption KW - Mott insulator KW - Hubbard model KW - alloy Hubbard model Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53169 ER - TY - THES A1 - Laubach, Manuel T1 - Nichtmagnetische Isolatoren in Hexagonalen Gittermodellen T1 - Nonmagnetic insolatores in hexagonal lattice models N2 - Wir untersuchen zunächst das Hubbard-Modell des anisotropen Dreiecksgitters als effektive Beschreibung der Mott-Phase in verschiedenen organischen Verbindungen mit dreieckiger Gitterstruktur. Um die Eigenschaften am absoluten Nullpunkt zu bestimmen benutzen wir die variationelle Cluster Näherung (engl. variational cluster approximation VCA) und erhalten das Phasendiagramm als Funktion der Anisotropie und der Wechselwirkungsstärke. Wir finden für schwache Wechselwirkung ein Metall. Für starke Wechselwirkung finden wir je nach Stärke der Anisotropie eine Néel oder eine 120◦-Néel antiferromagnetische Ordnung. In einem Bereich mittlerer Wechselwirkung entsteht in der Nähe des isotropen Dreiecksgitters ein nichtmagnetischer Isolator. Der Metall-Isolator-Übergang hängt maßgeblich von der Anisotropie ab, genauso wie die Art der magnetischen Ordnung und das Erscheinen und die Ausdehnung der nichtmagnetischen Isolatorphase. Spin-Bahn Kopplung ist der ausschlaggebende Parameter, der elektronische Bandmodelle in topologische Isolatoren wandelt. Spin-Bahn Kopplung im Allgemeinen beinhaltet auch den Rashba Term, der die SU(2) Symmetrie vollständig bricht. Sobald man auch Wechselwirkungen berücksichtigt, müssen sich viele theoretische Methoden auf die Analyse vereinfachter Modelle beschränken, die nur Spin-Bahn Kopplungen enthalten, welche die U(1) Symmetrie erhalten und damit eine Rashba Kopplung ausschließen. Wir versuchen diese bisher bestehende Lücke zu schließen und untersuchen das Kane-Mele Hubbard (KMH) Modell mit Rashba Spin-Bahn Kopplung und präsentieren eine systematische Analyse des Effekts der Rashba Spin-Bahn Kopplung in einem korrelierten zweidimensionalen topologischen Isolator. Wir wenden die VCA auf dieses Problem an und bestimmen das Phasendiagramm mit Wechselwirkung durch die Berechnung der lokalen Zustandsdichte, der Magnetisierung, der Einteilchenspektralfunktion und der Randzustände. Nach einer ausführlichen Auswertung des KMH-Modells, bei erhaltener U(1) Symmetrie, finden wir auch für endliche Wechselwirkung, dass eine zusätzliche Rashba Kopplung zu neuen elektronischen Phasen führt, wie eine metallische Phase und eine topologische Isolatorphase ohne Bandlücke in der lokalen Zustandsdichte, die aber eine direkte Bandlücke für jeden Wellenvektor besitzt. Für eine Klasse von 5d Übergangsmetallen untersuchen wir ein KMH ähnliches Modell mit multidirektionaler Spin-Bahn Kopplung, das wegen seiner Relevanz für die Natrium-Iridate (engl. sodium iridate) als SI Modell bezeichnet wird. Diese intrinsische Kopplung bricht die SU(2) Symmetrie bereits vollständig und dennoch erhält man wegen der speziellen Form für starke Wechselwirkung wieder einen rotationssymmetrischen Néel-AFM Isolator. Der topologische Isolator des SIH-Modells ist adiabatisch mit dem des KMH-Modells verbunden, jedoch sind die Randströme hier nicht mehr spinpolarisiert. Wir verallgemeinern das Konzept der Klein-Transformation, das bereits erfolgreich auf Spin-Hamiltonians angewandt wurde, und wenden es auf ein Hubbard-Modell mit rein imaginären spinabhängigen Hüpfen an, das im Grenzfall unendlicher Wechselwirkung in das Kitaev-Heisenberg Modell übergeht. Dadurch erhält man ein Modell des Dreiecksgitters mit reellen spinunabhängigen Hüpfen, das aber eine mehratomige Einheitszelle besitzt. Für schwache Wechselwirkung ist das System ein Dirac Halbmetall und für starke Wechselwirkung erhält man eine 120◦-Néel antiferromagnetische Ordnung. Für mittlere Wechselwirkung findet man aber einen relativ großen Bereich in dem eine nichtmagnetische Isolatorphase stabil ist. Unsere Ergebnisse deuten auf die mögliche Existenz einer Quanten Spinflüssigkeit hin. N2 - We investigate the anisotropic triangular Hubbard model as a suggested effective description of the Mott phase in various triangular organic compounds. Employing the variational cluster approximation (VCA) to treat the zero temperature phasediagram as a function of anisotropy and interaction strength. The metal-insulator transition substantially depends on the anisotropy, so does the nature of magnetism and the emergence of a nonmagnetic insulating phase establishing a spin liquid candidate regime. For weak interactions we find a metal for all anisotropies. Depending on the strength of anisotropy we find a Néel- or a 120◦-Néel-AFM order in the limit of square and triangular lattice. The non-magnetic insulating phase is located around the isotropic triangular lattice for intermediate interaction strength and is bounded by the metallic phase to weaker interactions, the Néel-AFM insulator for less anisotropy and the 120◦-Néel-AFM insulator for stronger interaction strength [1]. Spin-orbit (SO) coupling is the crucial parameter to drive topological insulating phases in electronic band models. In particular, the generic emergence of SO coupling involves the Rashba term which fully breaks the SU(2) spin symmetry. As soon as interactions are taken into account, however, many theoretical studies have to content themselves with the analysis of a simplified U(1) conserving SO term without Rashba coupling. We intend to fill this gap by studying the Kane-Mele-Hubbard (KMH) model in the presence of Rashba SO coupling and present the first systematic analysis of the effect of Rashba SO coupling in a correlated two-dimensional topological insulator. We apply the VCAto determine the interacting phase diagram by computing local density of states, magnetization, single particle spectral function, and edge states. Preceded by a detailed VCAanalysis of the KMH model in the presence of U(1) conserving SO coupling, we find that the additional Rashba SO coupling drives new electronic phases such as a metallic regime and a direct-gap only topological insulating phase which persist in the presence of interactions [2]. In 5d transition-metal oxides, both the spin-orbit interaction and the electron correlation emerge at comparable orders of magnitude. In these systems, a variety of specifically tailored crystal structures are available, enabling the design of robust topological insulators. We study theoretically a monolayer of the 5d-compound Na2IrO3, modeled by a Hubbard-type of Hamiltonian on a honeycomb lattice where the spin symmetry is not conserved. Based on a VCAcalculation, the zero temperature phase diagram is obtained. We generalize the concept of Klein-dualities, successfully applied to spin Hamiltonians in the past, for tight-binding models and, as such, for Hubbard models. Specifically, we consider an imaginary spin-dependent hopping problem supplemented with an on-site Coulomb interaction which corresponds in the strong coupling limit to the Kitaev-Heisenberg model on the triangular lattice. After applying the Klein-transformation, we obtain a real and spin-independent model which we study in detail using the VCA. For weak interactions, the system is a Dirac semi-metal; for strong interactions, it acquires magnetic order being of 120◦-Néel type. For intermediate interactions, there is a large non-magnetic insulator phase. Our results point towards the possibility of a quantum spin liquid phase. KW - Hexagonaler Kristall KW - Topologischer Isolator KW - Dreiecksgitter KW - Honigwabengitter KW - Frustrierter Magnetismus KW - topologische Isolatoren KW - Antiferromagnetismus KW - Frustration KW - Sechsecknetz Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106987 ER - TY - THES A1 - Balzer, Matthias T1 - Füllungs- und wechselwirkungsabhängiger Mott-Übergang: Quanten-Cluster-Rechnungen im Rahmen der Selbstenergiefunktional-Theorie T1 - Filling- and interaction-driven Mott transition: Quantum cluster calculations within self-energy-functional theory N2 - Die Untersuchung stark korrelierter Elektronensysteme anhand des zweidimensionalen Hubbard-Modells bildet das zentrale Thema dieser Arbeit. Wir analysieren das Schicksal des Mott-Isolators bei Dotierung als auch bei Reduzierung der Wechselwirkungsstärke. Die numerische Auswertung erfolgt mit Hilfe von Quanten-Cluster-Approximationen, die eine thermodynamisch konsistente Beschreibung der Grundzustandseigenschaften garantieren. Der hier verwendete Rahmen der Selbstenergiefunktional-Theorie bietet eine große Flexibilität bei der Konstruktion von Cluster-Näherungen. Eine detaillierte Analyse gibt Aufschluss über die Qualität und das Konvergenzverhalten unterschiedlicher Cluster-Näherungen innerhalb der Selbstenergiefunktional-Theorie. Wir verwenden für diese Untersuchungen das eindimensionale Hubbard-Modell und vergleichen unsere Resultate mit der exakten Lösung. In zwei Dimensionen finden wir als Grundzustand des Teilchen-Loch-symmetrischen Modells bei Halbfüllung einen antiferromagnetischen Isolator unabhängig von der Wechselwirkungsstärke. Die Berücksichtigung kurzreichweitiger räumlicher Korrelationen durch unsere Cluster-Näherung führt, im Vergleich mit der dynamischen Mean-Field-Theorie, zu einer deutlichen Verbesserung des antiferromagnetischen Ordnungsparameters. Darüberhinaus beobachten wir in der paramagnetischen Phase einen Metall-Isolator-Übergang als Funktion der Wechselwirkungsstärke, der sich qualitativ vom reinen Mean-Field-Szenario unterscheidet. Ausgehend vom antiferromagnetischen Mott-Isolator zeigt sich ein füllungsgetriebener Metall-Isolator-Übergang in eine paramagnetische metallische Phase. Abhängig von der verwendeten Cluster-Approximation tritt dabei zunächst eine antiferromagnetische metallische Phase auf. Neben langreichweitiger antiferromagnetischer Ordnung haben wir in unseren Rechnungen auch Supraleitung berücksichtigt. Das Verhalten des supraleitenden Ordnungsparameters als Funktion der Dotierung ist dabei in guter Übereinstimmung sowohl mit anderen numerischen Verfahren als auch mit experimentellen Ergebnissen. N2 - The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable im\-prove\-ment of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results. KW - Festkörpertheorie KW - Hubbard-Modell KW - Metall-Isolator-Phasenumwandlung KW - Mott-Übergang KW - Hochtemperatursupraleitung KW - Selbstenergiefunktional-Theorie KW - Self-energy-functional theory KW - Variational cluster approximation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35266 ER - TY - THES A1 - Hochkeppel, Stephan T1 - One- and Two-Particle Correlation Functions in the Dynamical Quantum Cluster Approach T1 - Ein- und Zwei-Teilchen Korrelationsfunktionen in der Dynamischen Quanten Cluster Näherung N2 - This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes are dressed by spin-excitations to allow for a coherent motion. By increasing doping, all features which are linked to the spin-polaron vanish in the single-particle as well as two-particle spin response spectrum. In the second part of the thesis an analysis of superconductivity in the Hubbard model is presented. The superconducting instability is implemented within the Dynamical Cluster Approximation by essentially allowing U(1) symmetry breaking baths in the QMC calculations for the cluster. The superconducting transition temperature T_c is derived from the d-wave order parameter which is directly estimated on the Monte Carlo cluster. The critical temperature T_c is in astonishing agreement with the temperature scale estimated by the divergence of the pair-field susceptibility in the paramagnetic phase. A detailed study of the pseudo and superconducting gap is continued by the investigation of the local and angle-resolved spectral function. N2 - In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereich stark wechselwirkender Elektronen mit Hilfe der Dynamischen Cluster Approximation (DCA) untersucht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster, der selbst-konsistent in einem effektiven Medium eingebettet ist, abgebildet. Somit stellt die DCA eine Erweiterung zur Dynamischen Molekularfeld-Theorie dar, indem nicht-lokale Korrelationen berücksichtigt werden. Ein Ziel dieser Arbeit stellt die Untersuchung von dynamischen Korrelationsfunktionen für das Hubbard Modell dar. Dazu wird die Dynamische Cluster Approximation auf die Untersuchung von Zwei-Teilchen Korrelationsfunktionen erweitert. Der volle irreduzible Zweiteilchen-Vertex mit drei Impulsen und Frequenzen wird durch einen effektiven Vertex, dessen Impuls und Frequenzabhängigkeit durch das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der effektive Vertex wird mit Hilfe der Quanten Monte Carlo Technik auf einem endlichen Cluster bestimmt, wobei die dynamischen Grössen durch eine stochastische Version der Maximum Entropie Methode auf die reelle Frequenz-Achse analytisch fortgesetzt werden. Ein Vergleich mit dem gewöhnlichen BSS Quanten Monte Carlo Verfahren dient als Maßstab für unsere Näherung der Zwei-Teilchen Korrelationsfunktionen. Der Vergleich zeigt auf, dass unsere Methode grundlegende Eigenschaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für optimale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwischen Ladungs-, Spin-, und Ein-Teilchen-Anregungsspektrum: bei optimaler Dotierung und hinreichend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrum auf und zeigt einen Energiezweig mit der Energieskala J, wobei J die magnetische Austauschenergie beschreibt. Gleichzeitig werden die Niederenergie-Anregungen im Ein-Teilchen-Spektrum durch ein Quasiteilchenband mit Bandbreite J beschrieben. Der Ursprung des Quasiteilchens lässt sich durch das Bild eines mehr oder weniger geordneten antiferromagnetischen Hintergrundes erklären, in dem sich Löcher umgeben von einer Wolke von Spin-Anregungen kohärent durch das Gitter bewegen. Bei zunehmender Dotierung verschwinden sowohl im Ein-Teilchen, als auch im Zwei-Teilchen Spin-Spektrum alle Anzeichen, die im Zusammenhang mit der Niederenergie-Skala J und dem oben beschriebenen Spin-Polaron stehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem Gewicht im Ein-Teilchen Spektrum, der sich ebenfalls im Ladungs-Anregungsspektrum bemerkbar macht. Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigenschaften des Hubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dynamischen Cluster Approximation durch die Implementierung eines U(1)-Symmetrie brechenden Mediums in der Monte Carlo Rechnung für den Cluster berücksichtigt. Die supraleitende Übergangstemperatur T_c wird von dem Wert des auf dem Cluster bestimmten d-Wellen Ordnungsparameters abgeleitet. Die kritische Temperatur T_c ist in überraschend guter Übereinstimmung mit der Energieskala, die durch eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetischen Phase bestimmt worden ist. Die Temperaturabhängigkeit der Pseudo- und supraleitenden Lücke wird mit der Bestimmung der Zustandsdichte und der Impuls-aufgelösten Spektralfunktion untersucht. Im Gegensatz zur der Herausbildung einer supraleitenden Lücke unterhalb der Sprungtemperatur, kann die Bildung einer Pseudo-Lücke in der Impuls-abhängigen Spektraldichte nicht aufgelöst werden. KW - Festkörpertheorie KW - Hubbard-Modell KW - Magnetismus KW - Cuprate KW - Hochtemperatursupraleiter KW - Dynamische Cluster Approximation KW - Maximum Entropie Methode KW - Korrelationsfunktionen KW - Dynamical Cluster Approximation KW - Maximum Entropy Method KW - Correlation Functions Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28705 ER - TY - THES A1 - Kowalski, Alexander Anton T1 - Multi-orbital quantum phenomena: from magnetic impurities to lattice models with strong Hund's coupling T1 - Mehrorbital-Quantenphänomene: von magnetischen Störstellen zu Gittermodellen mit starker Hundscher Kopplung N2 - Strong correlations caused by interaction in systems of electrons can bring about unusual physical phenomena due to many-body quantum effects that cannot properly be captured by standard electronic structure methods like density functional theory. In this thesis, we apply the state-of-the-art continuous-time quantum Monte Carlo algorithm in hybridization expansion (CT-HYB) for the strongly correlated multi-orbital Anderson impurity model (AIM) to the solution of models of magnetic impurities on metallic surfaces and, via dynamical mean-field theory (DMFT), to the solution of a lattice model, the multi-orbital Hubbard model with Hund's coupling. A concise introduction to the theoretical background focuses on information directly relevant to the understanding of applied models, methods, and the interpretation of results. It starts with a discussion of the AIM with its parameters and its solution in the path integral formalism, the basis of the CT-HYB algorithm. We consider its derivation and implementation in some detail before reviewing the DMFT approach to correlated lattice models and the interpretation of the single-particle Green's function. We review two algorithmic developments for the CT-HYB algorithm that help to increase the performance of calculations especially in case of a complex structure of the interaction matrix and allow the precise calculation of self-energies and vertex functions also at intermediate and higher frequencies. Our comparative analysis of Kondo screening in the cobalt on copper impurity system points out the importance of an accurate interaction matrix for qualitatively correct Kondo temperatures and the relevance of all d-orbitals in that case. Theoretical modeling of cobalt impurities in copper "atomic wires" fails to reproduce variations and partial absence of Kondo resonances depending on the wire size. We analyze the dependence of results on parameters and consider possible reasons for the discrepancy. Different Kondo temperatures of iron adatoms adsorbed on clean or oxygen-reconstructed niobium in the normal state are qualitatively reproduced, with the adsorption distance identified as major factor and implications for the superconducting state pointed out. Moving on to lattice problems, we demonstrate the connection between Hund's coupling, shown to cause first-order character of the interaction-driven Mott transition at half-filling in the two-orbital Hubbard model, and a phase separation zone ending in a quantum critical point at finite doping. We touch on similarities in realistic models of iron-pnictide superconductors. We analyze the manifestation of the compressibility divergence at the finite-temperature critical points away from half-filling in the eigenbasis of the two-particle generalized susceptibility. A threshold for impurity susceptibility eigenvalues that indicates divergence of the DMFT lattice compressibility and distinguishes thermodynamic stability and instability of DMFT solutions is determined. N2 - Wechselwirkungsbedingt stark korrelierte Elektronensysteme können wegen Mehrteilcheneffekten ungewöhnliche Physik aufweisen, die Standardmethoden für elektronische Struktur wie die Dichtefunktionaltheorie nicht erfassen. Diese Dissertation handelt von der Anwendung des Quanten-Monte Carlo Algorithmus in kontinuierlicher Zeit mit Reihenentwicklung in der Hybridisierung (CT-HYB), aktuellster Stand der Technik für das stark korrelierte Anderson-Modell für Störstellen (AIM), auf magnetische Adatome auf Metalloberflächen und, im Rahmen der dynamischen Molekularfeldtheorie (DMFT), auf das Mehrorbital-Hubbard-Modell mit Hundscher Kopplung. Eine kurze Einführung fokussiert den für das Verständnis der Modelle, Methoden, und Interpretationen relevanten theoretischen Hintergrund. Sie beginnt mit dem AIM, seinen Parametern, und seiner Lösung im Pfadintegralformalismus, welche Grundlage des CT-HYB Algorithmus ist. Wir betrachten dessen Herleitung und Implementation im Detail, bevor wir einen Überblick über den DMFT-Zugang zu korrelierten Gittermodellen und die Interpretation der Einteilchen-Greenschen Funktion geben. Wir berichten von zwei algorithmischen Entwicklungen für CT-HYB, die helfen, die Geschwindigkeit der Rechnungen besonders in Fällen einer lokalen Wechselwirkung komplexer Form zu erhöhen und die präzise Berechnung von Selbstenergien und Vertexfunktionen auch bei mittleren und höheren Frequenzen erlauben. Unsere Analyse der Kondo-Abschirmung in Kobalt-Adatomen auf Kupfer weist auf die Bedeutung einer akkuraten Wechselwirkungsmatrix für korrekte Kondo-Temperaturen und die Relevanz aller d-Orbitale hin. Die Variation der Kondo-Resonanz von Kobalt in "atomaren Drähten" aus Kupfer mit der Anzahl der Atome kann unsere theoretische Modellierung nicht nachvollziehen. Wir untersuchen die Abhängigkeit der Ergebnisse von Parametern und diskutieren mögliche Ursachen. Kondo-Temperaturen von Eisen-Adatomen auf sauberer oder Sauerstoff-rekonstruierter Niob-Oberfläche werden im Normalzustand qualitativ reproduziert, der Adsorptionsabstand als wichtiger Faktor identifiziert, und auf die Folgen für den supraleitenden Zustand hingewiesen. Wir wenden uns dem Hubbard-Modell eines Gitters mit zwei Orbitalen pro Platz zu und zeigen den Zusammenhang zwischen Hundscher Kopplung, Ursache der Diskontinuität des Mott-Übergangs bei halber Füllung, und einer Phasenseparationszone endend in einem quantenkritischen Punkt bei endlicher Dotierung. Wir reißen Parallelen in realistischeren Eisenpniktid-Modellen an. Zuletzt sehen wir, wie sich die Kompressibilitätsdivergenz an den kritischen Punkten bei endlicher Temperatur abseits halber Füllung in den Eigenwerten der verallgemeinerten lokalen Suszeptibilität ausprägt und bestimmen für sie eine Schwelle, an der die DMFT-Gitterkompressibilität divergiert und deren Unterschreitung eine thermodynamisch instabile DMFT-Lösung anzeigt. KW - Starke Kopplung KW - Mott-Übergang KW - Kondo-Effekt KW - Dynamische Molekularfeldtheorie KW - Magnetische Störstelle KW - strong electronic correlations KW - Hubbard model KW - Anderson impurity model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-345878 ER -