TY - THES A1 - Schramm, Claudia T1 - Ultraschneller Ladungstransfer und Energierelaxation an Grenzflächen T1 - Ultrafast charge transfer and energy relaxation at interfaces N2 - Ziel der vorliegenden Arbeit ist es, den ultraschnellen Transport und die Energierelaxation von Ladungsträgern an der Grenzfläche von heterogenen Systemen zu untersuchen. Dabei wird gezeigt, dass zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsspektroskopie eine gute Methode ist, um Einblick in das Relaxationsverhalten und den dynamischen Ladungsträgertransport in den untersuchten Systemen zu erhalten. Es werden Messungen an zwei unterschiedlichen Systemen vorgestellt: Silbernanoteilchen auf Graphit und ultradünne Silberfilme auf Silizium. Die Untersuchung von heterogenen Systemen erfordert einen selektiven Photoemissionsprozess, d.h. es muss möglich sein, Photoemission von den Nanoteilchen bzw. vom Silberfilm und vom Substrat zu trennen. Für Silbernanoteilchen auf Graphit kann dies erreicht werden, indem die Abfragewellenlänge auf die Resonanz des Plasmon-Polaritons abgestimmt wird. So erhält man dominant Photoemission von den Nanoteilchen, Photoemission vom Graphit kann dagegen vernachlässigt werden. Die transiente Elektronenverteilung in den Nanoteilchen kann aus der Form der Photoemissionsspektren bestimmt werden. Die transiente Verschiebung der Spektren gibt Aufschluss über die Auf- oder Entladung des Nanoteilchens. Dadurch wird es hier möglich, zeitaufgelöste Photoemissionsspektroskopie als ultraschnelle Sonde im Nanometerbereich zu verwenden. Zusammen mit einem Modell für die Relaxation und den Ladungstransfer ist es möglich, quantitative Ergebnisse für die Kopplung zwischen Nanoteilchen und Substrat zu erhalten. Das vorgestellte semiempirische Modell enthält dabei zusätzlich zu Termen für die Relaxation in Nanoteilchen und Substrat die Möglichkeit eines zeitabhängigen Ladungstransfers zwischen Teilchen und Substrat. Die Kopplung wird durch eine Tunnelbarriere beschrieben, deren starke Energieabhängigkeit der Transferwahrscheinlichkeit die experimentellen Ergebnisse gut wiedergibt. Die Stärke des Ladungstransfers und das zeitabhängige Verhalten sind dabei stark von den gewählten Parametern für die Tunnelbarriere abhängig. Insbesondere zeigt der Vergleich der Simulationsergebnisse mit dem Experiment, dass transienter Ladungstransfer ein wichtiger Effekt ist und die Kühlungsdynamik, die im Elektronengas der Nanoteilchen beobachtet wird, wesentlich beeinflusst. Auch im Fall der ultradünnen Silberfilme auf Silizium ist es durch gezielte Wahl der Wellenlängen möglich, die Photoelektronenausbeute selektiv dem Silberfilm oder dem Siliziumsubstrat zuzuordnen. Bei Anregung mit 3.1 eV Photonenenergie dominiert Photoemission aus dem Silberfilm, während es bei Anregung mit 4.65 eV möglich ist, Informationen über die Grenzschicht und das Siliziumsubstrat zu erhalten. Intensitätsabhängige Messungen zeigen den Einfluss der optischen Anregung auf den Verlauf der Schottkybarriere an der Metall-Halbleiter-Grenzschicht. Dieser Effekt ist als Oberflächen-Photospannung bekannt. Die Anregung mit 4.65 eV Photonenenergie bewirkt zusätzlich eine Sättigung langlebiger Zustände an der Metall-Halbleiter-Grenzfläche, was zu einer linearen Abhängigkeit der Photoemissionsausbeute von der Laserfluenz führt. Zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsmessungen machen es möglich, die Elektronendynamik an der Metall-Halbleiter-Grenzschicht und im Siliziumsubstrat zu untersuchen. Das Relaxationsverhalten der Ladungsträger zeigt dabei eine komplexe Dynamik, die auf die Anregung von Ladungsträgern in unterschiedlichen Bereichen zurückgeführt werden kann. Dabei dominiert für verschiedene Zwischenzustandsenergien die Dynamik entweder aus dem Film, der Grenzschicht oder dem Siliziumsubstrat, so dass das Relaxationsverhalten grob in drei unterschiedliche Energiebereiche eingeteilt werden kann. Im Silizium können aufgrund der Bandlücke mit 3.1 eV Photonenenergie Elektronen nur bis zu Zwischenzustandsenergien von EF + 2.0 eV angeregt werden. In der Tat stimmen die Relaxationszeiten, die man in diesem Bereich aus den zeitaufgelösten Messungen bestimmt, mit Werten von reinen Siliziumsubstraten überein. Für Zwischenzustandsenergien oberhalb von EF + 2.0 eV findet man überwiegend Anregung im Silberfilm. Die Relaxationszeiten für diese Energien entsprechen Werten von Silberfilmen auf einem isolierenden Substrat. Für sehr niedrige Zwischenzustandsenergien unterhalb von EF + 0.6 eV sind die Zustände wegen der vorliegenden experimentellen Bedingungen permanent besetzt. Der Anregepuls regt Elektronen aus diesen Zuständen an und führt daher in diesem Bereich zu einer Reduktion der Besetzung nach der Anregung mit Licht. Die Zeitkonstante für die Wiederbesetzung liegt im Bereich von mehreren 100 ps bis Nanosekunden. Solch lange Zeiten sind aus Rekombinationsprozessen an der Dipolschicht von Metall-Halbleiter-Grenzflächen bekannt. Zeitaufgelöste Mehrphotonen-Photoemissionsspektroskopie ist also sehr gut geeignet, das komplexe Relaxationsverhalten und den Ladungsträgertransfer an der Grenzfläche eines Schichtsystems zu untersuchen. N2 - The goal of the present work is the investigation of ultrafast transport and energy relaxation of excited carriers at interfaces. It is shown that time-resolved two-color multi-photon photoemission spectroscopy is a powerful method to get insight in relaxation dynamics and transient charge transfer. Measurements at two different systems were presented: Ag nanoparticles on graphite and ultraflat Ag films on Si(100). The investigation of a heterogeneous system requires a selective photoemission processes, i.e. the photoemission yield can be attributed to emission either from the nanoparticles/film or from the substrate. In measurements on Ag nanoparticles on graphite this can be achieved by tuning the probe wavelength to the plasmon polariton resonance. This results in predominate photoemission from the nanoparticles. Photoemission from the graphite can be neglected. The transient electron distribution can be extracted from the shape of the photoemission spectra. The transient shift of the spectra gives information on the charging and decharging of the nanoparticle. This makes it possible to use time-resolved photoemission spectroscopy as ultrafast probe on a nanometer scale. It is shown that the combination of the experimental results with a model yields quantitative results for the coupling of nanoparticle and substrate. Therefore, the presented semi-empirical model includes terms for transient charge transfer between particle and substrate in addition to terms for the relaxation dynamics in both the Ag nanoparticle and the graphite. The coupling is described by a tunnel barrier. The strong energy dependence of the transfer rate of such a barrier is needed to reproduce the experimental findings. The charge transfer dynamics depend strongly on the parameters used in the simulation. Especially, it is shown that transient charge transfer can not be neglected in our measurements and influences significantly the electron gas cooling dynamics in nanoparticles. On ultraflat Ag films on silicon selective photoemission can be achieved as well using adequate wavelengths. Excitation at 3.1 eV photon energy leads prominently to photoemission from the Ag film while at 4.65 eV excitation photoemission from the Si substrate or the interface is dominating. Intensity dependent measurements show that optical excitation influences the Schottky barrier at the metal-semiconductor-interface. This effect is known as surface photovoltage. In addition excitation at 4.65 eV leads to saturation of long lived interface states which results in a linear intensity dependence of the photoemission yield. Time-resolved two-color multi-photon photoemission spectroscopy on Ag films on Si gives insight in the electron dynamics at the metal-silicon interface. The relaxation dynamics show a complex behavior as excitation and relaxation in different parts of the system contribute to the signal. For different intermediate state energies the results can be attributed to either the Ag film, the Si substrate or the interface. Because of the band gap in silicon electrons can be excited in intermediate states up to EF + 2.0 eV. Indeed, the extracted effective relaxation times match values which are reported for uncovered Si substrates. At intermediate state energies above EF + 2.0 eV excitation takes place predominantly in the Ag film. Thus, the extracted effective relaxation times match values reported for 15 nm Ag films on a isolating substrate. At intermediate state energies below EF + 0.6 eV the states are permanently populated due to our experimental conditions. Thus, the pump excitation leads to a reduction of the population in these states. The repopulation has a time constant of several 100 ps up to nanoseconds. These time constant matches values for recombination processes at the dipol layer near a metal-semiconductor interface. Therefore, time-resolved multi-photon photoemission spectroscopy is a good method to investigate the complex relaxation behavior and charge transfer dynamics at the interface of a heterogeneous system. KW - Elektronischer Transport KW - Ultraschneller Prozess KW - Grenzfläche KW - Mehrphotonen-Spektroskopie KW - Elektronenzustand KW - Relaxation KW - Zweiphotonen-Photoemissionsspektroskopie KW - ultraschnell KW - Dynamik KW - heterogen KW - Transport KW - 2-photon-photoemission KW - ultrafast KW - dynamics KW - heterogeneous KW - transport Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18344 ER - TY - THES A1 - Heßler, Markus T1 - Elektronenspektroskopie an Übergangsmetallclustern T1 - Electron spectroscopy on transition metal clusters N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-Übergangsmetalle Fe, Co und Ni durchgeführt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-Dünnfilme nicht nur zur fragmentationsfreien Probenpräparation genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die Übereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gewählten Bedingungen die intrinsischen magnetischen Clustereigenschaften tatsächlich experimentell zugänglich sind. Die synchrotroninduzierte Mobilität von Clustern und Argon manifestiert sich in der Veränderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, für seinen Beitrag bei Co-Clustern eine obere Schranke von 10% anzugeben. Erwartungsgemäß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festkörper deutlich erhöhte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden können. Allen Clustern in der Argonumgebung ist jedoch eine starke Erhöhung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zurückzuführen ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter Übereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfläche des Graphits führt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Veränderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, häufig bis unter die Nachweisgrenze. Unter diesen Umständen ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Veränderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch für die ausführlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration begünstigt die Ausbildung von "low-spin" - Zuständen, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zustände von Cluster und Substrat äußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Veränderung des resonant-Raman-Verhaltens in der 2p-RESPES könnte wertvolle komplementäre Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten lässt den Schluss zu, dass die tatsächliche Besetzung der 3d-Zustände durch die Substratwechselwirkung nicht nennenswert verändert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Veränderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates führt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfläche durch die Ausbildung von hybridisierten Zuständen minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen. N2 - The present thesis presents investigations on the magnetism and the electronic structure of deposited 3d transition metal clusters. Clusters are being deposited into thin argon layers in order to avoid fragmentation. At the same time the argon is used as a matrix providing an environment of weak interaction. Under suitably chosen stable experimental conditions the atomic absorption multiplet is observed and the magnetic moments of Fe and Co clusters determined by XMCD compare well to those observed in gas phase experiments. Thus intrinsic magnetic cluster properties can be probed from rare gas matrix isolated clusters. At elevated x-ray photon flux densities mobility of both, rare gas atoms and clusters, is generated by the synchrotron beam and leads to noticeable changes in spectroscopic line shapes and the reduction of the magnetic moments. Besides suitable experimental conditions it is important to ascertain the applicability of the XMCD sum rules in the case of the clusters. Due to the reduced symmetry in the clusters the magnetic dipole contribution to the spin sum rule deserves particular attention. From the comparison of the total magnetic moment determined by XMCD to the one following from superparamagnetic magnetisation curves an upper limit of 10% for this contribution can be determined. As expected the spin magnetic moments in Fe and Co clusters exceed those of the corresponding bulk materials. They do not, however, reach the values of the total magnetic moments determined from Stern-Gerlach deflection experiments. The electronic structure of Ni clusters proves to be particulary sensitive with respect to the interaction with foreign atoms. Therefore the gas phase magnetic moments cannot be reproduced in the present experiments. Common to all clusters within the argon film is a strong enhancement of the orbital contribution to the total magnetic moment, generally above 20%. This observation of strong orbital moments bridges the gap between calculated spin magnetic moments an experimental total moments. In particular we find good agreement of the total magnetic moments determined in the present work compared to those of Stern-Gerlach experiments. When the clusters interact with the graphite surface noticeable changes occur in both, the spectral shape and the energy positions of the L edge resonance profiles, respectively. All clusters investigated undergo a strong reduction of their magnetic moments under these conditions. It is therefore appropriate to consider the cluster substrate interaction to be considerable. This finding is further substantiated by the experimental results obtained by photoelectron spectroscopy. The substrate interaction leads to visible changes in the core level as well as the valence band spectra. For Ni clusters the latter reveal the formation of a hybridised electronic structure with a reduced density of states in the vicinity of the Fermi level. Such an electronic configuration favors the formation of low spin states which are indeed observed for the clusters interacting with graphite. The strong coupling of cluster an substrate electronic states is also reflected by the loss of the fano line shape in the 3p resonant photoemission signal. This observation does not hold for the RESPES at the 2p-threshold, however. This apparent discrepancy is attributed to a strongly localised core excited intermediate state at the 2p edge. While the detailed analysis of the resonant raman regime could yield useful complementary information it is prevented by the strong emission from the argon valence states. Nevertheless it can be inferred from the RESPES data that the 3d occupation number in Ni clusters is not substantially altered by the substrate interaction. The experiments of this work does provide the characterisation of the cluster magnetic moments in terms of their spin and orbital contributions. In addition they provide an inside into the modifications of the electronic properties emanating from the cluster substrate interaction. The hybridisation with graphite electronic structure leads to a strong reduction of the magnetic moments. Obviously, the interfacial total energy is minimised by adopting an electronic level structure with little density of states near the Fermi level. KW - Übergangsmetall KW - Metallcluster KW - Elektronenspektroskopie KW - Cluster KW - Magnetismus KW - XMCD KW - Übergangsmetall KW - cluster KW - magnetism KW - XMCD KW - transition metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18689 ER - TY - THES A1 - Grimm, Michael T1 - Aufladungsexperimente an gespeicherten Nanopartikeln mit Synchrotronstrahlung T1 - Charging experiments on trapped nano-particles using synchrotron radiation N2 - Gegenstand dieser Arbeit ist die Untersuchung von gespeicherten Nanopartikeln mit weicher Röntgenstrahlung. Dafür wurde eine neue Apparatur aufgebaut. In dieser befindet sich ein dreidimensionaler elektrodynamischer Quadrupolspeicher, mit dem die positiv geladenen Nanopartikel berührungsfrei und ortsfest gespeichert werden. Mit Hilfe eines Streulichtnachweises werden die Eigenbewegungen der Partikel gemessen und daraus das Ladungs- zu Masseverhältnis ermittelt. Durch gezielte Umladung können die absolute Ladung und die Masse der Partikel mit hoher Genauigkeit bestimmt werden. Die gespeicherten Partikel wurden mit Synchrotronstrahlung am Elektronenspeicherring BESSY II untersucht. Bei niedrig geladenen Partikeln wurden Aufladungsexperimente mit variabler Photonenenergie durchgeführt. Dabei kann die Emission von einzelnen Elektronen beobachtet werden. Die totale Sekundärelektronenausbeute wurde für verschiedene Photonenenergien ermittelt. Sie gleicht den Werten, die durch Messungen mit Elektronenbeschuss bekannt sind. Die Partikel wurden weiterhin bis zum maximal erreichbaren Ladungszustand aufgeladen. Dieser Gleichgewichtszustand liegt unterhalb der theoretischen Erwartungen. Bei den hochgeladenen Partikeln wurden nach Abschalten der Synchrotronstrahlung Entladevorgänge beobachtet, die für das verminderte Ladungsgleichgewicht verantwortlich sind. Die Entladung wird als Ionen-Feldemission interpretiert, möglicherweise hervorgerufen durch den elektrischen Durchschlag im Teilchenmaterial. Das Aufladungsverhalten der Partikel bei verschiedenen Ladungszuständen wurde mit Hilfe von Messungen an der O 1s-Kante untersucht. Bei niedrigen Ladungszuständen liefert der Ladestrom die bekannten Röntgenabsorbtionsstrukturen von Siliziumdioxid. Stark geladene Partikel werden dagegen vor allem im Bereich der resonanten O 1s-Anregung durch schnelle Augerelektronen aufgeladen, während Photoelektronen aus dem O 1s-Kontinuum nicht mehr zur Aufladung beitragen. Deren kinetische Energie ist zu gering, um dem Coulombfeld des Partikels zu entkommen. N2 - Subject of this thesis is the investigation of single trapped nanoparticles using soft X-rays. For this purpose a new apparatus has been developed and characterized. The heart of this apparatus is a three-dimensional electrodynamic quadrupole trap that allows us to store charged nanoparticles well located and without any contact to a substrate. The detection of scattered light, which is modulated by the secular motion frequencies of the stored particle, is used to derive the charge-to-mass ratio. The determination of changes in the charge state due to electron emission is used to determine the absolute charge and mass with high accuracy. The particles were studied using synchrotron radiation at the electron storage ring BESSY II. A set of charging experiments were performed, where particles at low charge state were irradiated with different photon energies in the soft X-ray regime. In these experiments the emission of single electrons is observed. The total secondary-electron emission yield is determined at several photon energies. The values are comparable to the secondary emission after electron impact. Other experiments were performed at highest achievable charge state of the particles. This equilibrium state was found to be far below theoretical predictions. For highly charged particles we found a discharge current after the illumination with synchrotron radiation is terminated. This current is responsible for the low equilibrium charge state. The discharge is assumed to result from ion field emission potentially due to the electric breakdown in the particle material. Charging curves at different charges states of the particle in the regime of the oxygen 1s-edge were recorded. At low charge states the characteristic X-ray absorption fine structure of silicon dioxide is observed. Highly charged particles are efficiently charged by resonant Auger processes in the regime of the resonant O 1s-excitation, whereas there is no charging in the regime of the O 1s-continuum. Evidently, the kinetic energy of these electrons is too small to escape from the attractive Coulomb field of the particle. KW - Nanopartikel KW - Aufladung KW - Synchrotronstrahlung KW - Aufladung KW - Entladung KW - Falle KW - Nanopartikel KW - Synchrotronstrahlung KW - charging KW - discharge KW - trap KW - nano-particle KW - synchrotron radiation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13188 ER -