TY - THES A1 - Zapf, Michael T1 - Oxidische Perovskite mit Hoher Massenzahl Z: Dünnfilmdeposition und Spektroskopische Untersuchungen T1 - High-Z Perovskite Oxides: Thin Film Deposition and Spectroscopic Investigations N2 - Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties. A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\). KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm. The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 %. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice. N2 - Komplexe Metalloxide mit Perowskitstruktur sind bekannt für ihre große Vielfalt einzigartiger physikalischer Eigenschaften. Eine interessante Untergruppe dieser Materialien sind Verbindungen von Elementen mit hoher Ordnungszahl \(Z\), in denen neue, durch Spin-Bahn Kopplung getriebene Phasen und anwendungsrelevante Funktionalitäten erwartet werden. Diese Arbeit handelt von der Präparation und Charakterisierung zweier Probensysteme, die auf eben solchen Materialien mit hoher \(Z\) basieren. KTaO\(_3\) ist ein Bandisolator, der im Grundzustand eine Ta 5\(d\)\(^0\) Valenz besitzt. Durch gepulste Laserdeposition von ungeordnetem LaAlO\(_3\) auf der KTaO\(_3\)(001) Oberfläche, werden die obersten Schichten des Substratkristalls durch die Erzeugung von Sauerstofffehlstellen dotiert. Es bildet sich ein quasi zweidimensionales metallisches Elektronensystem (q2DES) an der Grenzfläche der Heterostruktur aus. Messungen des Hall-Effekts ergeben Schichtladungsträgerdichten im Bereich von 0.1-1.2 10\(^{14}\) cm\(^2\), welche durch Anpassung des Sauerstoffhintergrunddrucks während der Deposition bzw. durch die Dicke der abgeschiedenen LaAlO\(_3\) Schicht beeinflusst werden können. Mit Werten von 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) bei Raumtemperatur (unter 10 K), besitzt das q2DES in LaAlO\(_3\)/KTaO\(_3\) im Vergleich zu ähnlichen Elektronensystemen in SrTiO\(_3\) bemerkenswert große Ladungsträgerbeweglichkeiten. Aus dem Tiefenprofil des Photoemissionspektrums des Ta 4\(f\) Rumpfniveaus ergibt sich, dass sich der Großteil der Ta 5\(d\) Ladungsträger, bestehend aus mobilen und lokalisierten Elektronen, innerhalb einer Schicht von 4 nm Dicke befindet. Die Vermessung der elektronischen Bandstruktur des vergrabenen q2DES mit Hilfe winkelaufgelöster Photoelektronenspektroskopie mit harter Röntgenstrahlung zeigt, dass das Elektronensystem, vermutlich wegen des starken Potentialgradients an der Grenzfläche, eine modifizierte elektronische Struktur gegenüber n-dotiertem Bulk-KTaO\(_3\) aufweist. Trotz der Einschränkung der Bewegung der Elektronen entlang einer Richtung, besitzt die Fermifläche des Systems eine dreidimensionale Struktur, woarus auf eine Tiefenausdehnung der metallischen Zustände von mindestens 1 nm geschlossen werden kann. Undotiertes BaBiO\(_3\) ist durch die Ausbildung einer Ladungsordnung isolierend. Unter Elektronendotierung gilt das Material als Kandidat für einen oxidischen topologischen Isolator. In dieser Studie wird die Deposition von BaBiO\(_3\) auf Nb:SrTiO\(_3\)(001) Substraten untersucht. Dabei wird der Mechanismus identifiziert, der epitaktisches Wachstum von BaBiO\(_3\), trotz einer Gitterfehlanpassung von 12 %, ermöglicht: Eine 1.7 nm dicke Lage mit abweichender Kristallstruktur an der Grenzfläche entkoppelt das Filmgitter vom Substrat, sodass darüber vollständig relaxiertes BaBiO\(_3\) aufwachsen kann. Dieses weist eine epitaktische Orientierung von BaBiO\(_3\)(001)||SrTiO\(_3\)(001) auf, die durch die Ausbildung von lateralen Gitterdomänen, bei denen 8 bzw. 9 BaBiO\(_3\) auf 9 bzw. 10 SrTiO\(_3\) Einheitszellen ausgerichtet sind, gewährleistet wird. Die Stoichiometrie und die strukturelle Qualität der BaBiO\(_3\) Filme werden durch eine systematische Anpassung der Depositionsbedingungen optimiert. Die Valenzbandstruktur der Proben stimmt gut mit Rechnungen der Dichtefunktionaltheorie überein, was darauf hindeutet, dass die Filme hinsichtlich der elektronischen Eigenschaften mit BaBiO\(_3\) Einkristallen vergleichbar sind. Eine abschließende Untersuchung eines schichtdickenabhängigen Phasenübergangs in BaBiO\(_3\) Dünnfilmen, von dem kürzlich in der Literatur berichtet wurde, belegt, dass dieser nicht allein auf die Ausdehnung des Kristallgitters, sondern auch auf strukturelle und stoichiometrische Modifikationen der untersten Filmlagen zurückzuführen ist. KW - Perowskit KW - Röntgen-Photoelektronenspektroskopie KW - Pulsed laser deposition KW - Übergangsmetalloxide KW - KTaO3 KW - BaBiO3 KW - Oxide Heterostructure KW - Interface Conductivity KW - oxidische Heterostruktur KW - Grenzflächenleitfähigkeit KW - Winkelaufgelöste Photoemission mit harten Röntgenstrahlen KW - Hard X-ray Angle Resolved Photoemission KW - High-Z Oxides KW - HARPES Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185370 ER - TY - THES A1 - Tuchscherer, Philip T1 - A Route to Optical Spectroscopy on the Nanoscale T1 - Über Optische Spektroskopie auf der Nanoskala N2 - Time-resolved optical spectroscopy has become an important tool to investigate the dynamics of quantum mechanical processes in matter. In typical applications, a first “pump” pulse excites the system under investigation from the thermal equilibrium to an excited state, and a second variable time-delayed “probe” pulse then maps the dynamics of the excited system. Although advanced nonlinear techniques have been developed to investigate, e.g., coherent quantum effects, all of these techniques are limited in their spatial resolution. The laser focus diameter has a lower bound given by Abbe’s diffraction limit, which is roughly half the optical excitation wavelength—corresponding to about 400nm in the presented experiments. In the time-resolved experiments that have been suggested so far, averaging over the sample volume within this focus cannot be avoided. In this thesis, two approaches were developed to overcome the diffraction limit in optical spectroscopy and to enable the investigation of coherent processes on the nanoscale. In the first approach, analytic solutions were found to calculate optimal polarizationshaped laser pulses that provide optical near-field pump–probe pulse sequences in the vicinity of a nanostructure. These near-field pulse sequences were designed to allow excitation of a quantum system at one specific position at a certain time and probing at a different position at a later time. In the second approach, the concept of coherent two-dimensional (2D) spectroscopy, which has had great impact on the investigation of coherent quantum effects in recent years, was combined with photoemission electron microscopy, which yields a spatial resolution well below the optical diffraction limit. Using the analytic solutions, optical near fields were investigated in terms of spectroscopic applications. Near fields that are excited with polarization-shaped femtosecond laser pulses in the vicinity of appropriate nanostructures feature two properties that are especially interesting in the view of spectroscopic applications: On the one hand, control of the spatial distribution of the optical fields is achieved on the order of nanometers. On the other hand, the temporal evolution of these fields can be adjusted on the order of femtoseconds. In this thesis, solutions were found to calculate the optimal polarizationshaped laser pulses that control the near field in a general manner. The main idea to achieve this deterministic control was to disentangle the spatial and temporal near-field control. First, the spatial distribution of the optical near field was controlled by assigning the correct state of polarization for each frequency within the polarization-shaped laser pulse independently. The remaining total phase—not employed for spatial control—was then used for temporal near-field compression, which, in experimental applications, would lead to an enhancement of the nonlinear signal at the respective location. In contrast to the use of optical near fields, where pump–probe sequences themselves are localized below the diffraction limit and the detection does not have to provide the spatial resolution, a different approach was suggested in this thesis to gain spectroscopic information on the nanoscale. The new method was termed “Coherent two-dimensional (2D) nanoscopy” and transfers the concept of “conventional” coherent 2D spectroscopy to photoemission electron microscopy. The pulse sequences used for the investigation of quantum systems in this method are still limited by diffraction. However, the new key concept is to detect locally generated photoelectrons instead of optical signals. This yields a spatial resolution that is well below the optical diffraction limit. In “conventional” 2D spectroscopy a triple-pulse sequence initiates a four wave mixing process that creates a coherence. In a quantum mechanical process, this coherence is converted into a population by emission of an electric field, which is measured in the experiment. Contrarily, in the developed 2D nanoscopy, four-wave mixing is initiated by a quadruple-pulse sequence, which leaves the quantum system in an electronic population. This electronic population carries coherent information about the investigated quantum system and can be mapped with a spatial resolution down to a few nanometers given by the spatial resolution of the photoemission electron microscope. Hence, 2D nanoscopy can be considered a generalization of time-resolved photoemission experiments. In the future, it may be of similar beneficial value for the field of photoemission research as “conventional” 2D spectroscopy has proven to be for optical spectroscopy and nuclear magnetic resonance experiments. In a first experimental implementation of coherent 2D nanoscopy coherent processes on a corrugated silver surface were measured and unexpected long coherence lifetimes could be determined. N2 - Zur Untersuchung von Dynamiken quantenmechanischer Prozesse in Materie hat sich die zeitaufgelöste optische Spektroskopie zu einem zentralen Werkzeug entwickelt. Eine Standardmethode ist hierbei die Anrege-Abfrage-Spektroskopie. Bei solch einem Experiment wird das zu untersuchende System zunächst mit einem Anregepuls aus dem thermischen Gleichgewicht in einen höheren Zustand angeregt. Anschließend untersucht man mit einem zweiten zeitverzögerten Abfragepuls die Dynamik des angeregten Systems. Obwohl fortgeschrittene experimentelle Methoden entwickelt wurden um kohärente Quanteneffekte zu untersuchen, sind all diese Experimente nach wie vor in ihrer räumlichen Auflösung begrenzt. Aufgrund von Beugung ist der Fokus eines Laserstrahls limitiert. Diese untere Grenze ist durch Abbe’s Auflösungsgrenze gegeben und entspricht etwa der Hälfte der optischen Anregungswellenlänge, d.h. etwa 400nm in den hier vorgestellten Experimenten. Daher kann eine Mittelung über das Probenvolumen, gegeben durch die Fokusgröße, in den bisher vorgestellten Experimenten nicht vermieden werden. In dieser Arbeit wurden zwei Ansätze verfolgt, um die Beugungsgrenze in der optischen Spektroskopie zu überwinden und die Untersuchung von kohärenten Prozessen auf der Nanometerskala zu ermöglichen. Im ersten Ansatz wurden analytische Lösungen gefunden, um optimal polarisationsgeformte Laserpulse zu berechnen, die optische Anrege-Abfrage-Nahfeld-Pulsfolgen in der Nähe einer Nanostruktur ermöglichen. Diese Nahfeld-Pulsfolgen wurden entwickelt, um ein quantenmechanisches System an einer bestimmten Position zu einem bestimmten Zeitpunkt anzuregen und an einer anderen Position zu einem späteren Zeitpunkt abzufragen. Im zweiten Ansatz wurde das Konzept der kohärenten zweidimensionalen (2D) Spektroskopie, die in den letzten Jahren großen Einfluss auf die Untersuchung von kohärenten Quanteneffekten gehabt hat, mit Photoelektronenmikroskopie kombiniert. Letztere ermöglicht eine räumliche Auflösung deutlich unter der optischen Auflösungsgrenze. Mit Hilfe der analytischen Lösungen wurden optische Nahfelder in Bezug auf spektroskopische Anwendungen untersucht. Nahfelder, die mit polarisationsgeformten Femtosekunden-Laserpulsen in der Nähe von entsprechenden Nanostrukturen angeregt werden, verfügen über zwei Eigenschaften, die besonders interessant für spektroskopische Anwendungen sind: Zum einen kann die räumliche Verteilung der optischen Felder auf der Größenordnung von Nanometern kontrolliert werden. Zum anderen kann die zeitliche Entwicklung dieser Felder in der Größenordnung von Femtosekunden manipuliert werden. In dieser Arbeit wurden Lösungen gefunden, um optimale polarisationsgeformte Laserpulse zu berechnen, die diese Nahfeld-Steuerung in einer allgemeinen Art und Weise erlauben. Die Hauptidee, um diese deterministische Steuerung zu erreichen, war die räumliche und zeitliche Nahfeld-Kontrolle zu entkoppeln. Zuerst wurde dafür die räumliche Verteilung der optischen Nahfelder durch die Zuordnung des korrekten Polarisationszustandes für jede Frequenz, innerhalb des polarisationsgeformten Laserpulses, unabhängig gesteuert. Die verbleibende totale Phase, die nicht für die räumliche Kontrolle benötigt wird, wurde dann verwendet um den nichtlinearen Fluss an den gewünschten Positionen durch zeitliche Nahfeldkomprimierung zu erhöhen. Im Gegensatz zur Verwendung von optischen Nahfeldern, in der die Anrege-Abfrage-Nahfeld-Pulsfolgen selbst unter dem Beugungslimit lokalisiert sind und die Detektion nicht räumlich aufgelöst sein muss, wurde in dieser Arbeit noch ein anderer Ansatz vorgeschlagen, um spektroskopische Informationen auf der Nanometerskala zu erhalten. Die neue Methode wurde als „kohärente zweidimensionale (2D) Nanoskopie“ beschrieben und überträgt das Konzept der „herkömmlichen“ kohärenten 2D Spektroskopie auf die Photoemissionselektronenmikroskopie. In dieser neuen Methode ist die räumliche Auflösung der zur Untersuchung des quantenmechanischen Sytems erforderlichen Pulssequenzen zwar durch Beugung begrenzt. Die wesentliche Neuerung ist allerdings, lokal erzeugte Photoelektronen anstelle von optischen Signalen zu messen. Daraus ergibt sich eine räumliche Auflösung, die weit unterhalb der optischen Beugungsgrenze liegt. Die photoemittierten Elektronen tragen dann kohärente Information über das untersuchte System und können mit einer räumlichen Auflösung von wenigen Nanometern abgebildet werden. Die Auflösung ist dabei durch das verwendete Photoemissionsmikroskop vorgegeben. Demzufolge kann 2D Nanoskopie als eine Verallgemeinerung der zeitaufgelösten Photoemissionsexperimente gesehen werden. In einer ersten experimentellen Umsetzung der kohärenten 2D Nanoskopie wurden kohärente Prozesse auf einer rauhen Silberoberfläche untersucht und dabei unerwartet langlebige Kohärenzen gemessen. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Ultrakurzzeit Spektroskopie KW - Kohärente 2D Spektroskopie KW - Coherent 2D Spectroscopy KW - Nanooptic KW - Ultrafast spectroscopy KW - Surface plasmons KW - Optische Spektroskopie KW - Nahfeldoptik KW - Oberflächenplasmonresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72228 ER - TY - THES A1 - Müller, Andreas T1 - Towards functional oxide heterostructures T1 - Funktionelle oxidische Heterostrukturen N2 - Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments. N2 - Oxidische Heterostrukturen besitzen verschiedenste physikalische Eigenschaften wie Leitfähigkeit, Magnetisums oder sogar Supraleitung. Diese Effekte, die meist von elektronischen Korrelationen verursacht werden, zu verstehen und ihren fundamentalen Ursprung zu erklären, machen diese Materialsysteme ebenso interessant wie ihr zukünftiges Anwendungspotential. Diese Arbeit beschäftigt sich mit verschiedenen prototypischen Schichtsystemen. Fe3O4 könnte zukünftig als Spinelektrode im Bereich der Spintronik dienen. ZnO ist ein Halbleiter, der durch seinen oxidischen Charakter und einer hinreichenden Spinkohärenzlänge gut zur Spininjektion geeignet ist. Das Wachstum von Fe3O4 auf ZnO wurde erfolgreich mittels gepulster Laserdeposition und Molekularstrahlepitaxie durchgeführt. Dabei ist der Sauerstoffpartialdruck entscheidend und eine Variation des Drucks während des Wachstums wirkt der Bildung einer FeO-artigen Grenzschicht entgegen. Die Filme wachsen inselartig und ihre Gitterstruktur ist fast vollständig relaxiert. Trotz einer Sauerstofffehlstöchiometrie wird die hohe Qualität der Filme durch einen Verwey-Phasenübergang bestätigt. Im Vergleich zu Einkristallen ist die Magnetisierung der Filme reduziert. Durch das Inselwachstum verursachte Antiphasengrenzen könnten zu dieser Reduzierung führen. Die leitfähige Grenzschicht, die in LaAlO3/SrTiO3 Heterostrukturen ab einer bestimmten LaAlO3 Filmdicke auftritt, kann höchstwahrscheinlich durch eine elektronische Rekonstruktion erklärt werden. Im entsprechenden Modell wird der Aufbau eines elektrischen Potentials auf Grund der Polarität des LaAlO3 Films durch eine Ladungsumordnung kompensiert. Die Eigenschaften dieser Heterostruktur sind jedoch von den Wachstumsparametern abhängig. Diese Studie zeigt erstmals, dass die makroskopischen Eigenschaften maßgeblich vom Gesamtdruck, die Anzahl der Ladungsträger dagegen stark vom Sauerstoffpartialdruck während des Wachstums abhängen. Leitfähigkeit auf Grund von Sauerstofffehlstellen wurde für sehr kleine Sauerstoffpartialdrücke beobachtet. Ein zu hoher Gesamtdruck hingegen verhindert die Leitfähigkeit der Grenzschicht. Dies ist vermutlich durch eine Änderung der Wachstumskinematik erklärbar. Ein Nachoxidieren der Proben führt überdies zu einem metastabilen Zustand, der die Vergleichbarkeit von Proben verschiedener Arbeitsgruppen gewährleistet. LaVO3/SrTiO3 zeigt ähnliches Verhalten wie LaAlO3/SrTiO3 und Leitfähigkeit tritt ab einer gewissen LaVO3 Schichtdicke auf. Im Gegensatz zu LaAlO3 ist LaVO3 ein Mottisolator, dass heißt, Korrelationseffekte spielen eine Rolle. LaVO3/SrTiO3 wurde mittels gepulster Laserdeposition hergestellt, Phasenreinheit und die strukturellen Eigenschaften mit verschiedenen Methoden überprüft. Zusätzliche Elektronen wurden für leitfähige Proben auf der LaVO3-Seite der Grenzfläche nachgewiesen. Eine Erklärung hierfür wäre eine elektronische Rekonstruktion im Film selbst. Dieses elektrostatische Dotieren führt zu einem bandfüllungsinduzierten Mott-Phasenübergang, der nicht durch chemische Verunreinigungen, die in konventionellen Dotierexperimenten unvermeidbar sind, beeinflusst ist. KW - Oxide KW - Epitaxieschicht KW - Heterostruktur KW - Physikalische Eigenschaft KW - Heterostrukturen KW - Oxid KW - Wachstum KW - MBE KW - PLD KW - Fe3O4 KW - LaAlO3 KW - LaVO3 KW - heterostructures KW - oxide KW - growth KW - MBE KW - PLD KW - Fe3O4 KW - LaAlO3 KW - LaVO3 KW - Röntgen-Photoelektronenspektroskopie KW - Photoelektronenspektroskopie KW - Kristallwachstum KW - Impulslaserbeschichten KW - Molekularstrahlepitaxie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72478 ER - TY - THES A1 - Bentmann, Hendrik T1 - Spin-Bahn-Kopplung in Grenzschichten: Mikroskopische Zusammenhänge und Strategien zur Manipulation T1 - Spin-Orbit-Coupling at Interfaces: Microscopic Mechanisms and Strategies for Manipulation N2 - Die vorliegende Arbeit befasst sich mit dem Einfluss der Spin-Bahn-Kopplung (SBK) auf die zweidimensionale elektronische Struktur von Festkörperoberflächen und -grenzflächen. Aufgrund der strukturellen Inversionsasymmetrie kann die SBK in derartigen Systemen eine Spinaufspaltung der elektronischen Zustände herbeiführen und eine charakteristische impulsabhängige Spinstruktur induzieren (Rashba-Effekt). Die Studien in dieser Arbeit sind zum einen darauf gerichtet, das physikalische Verständnis der mikroskopischen Zusammenhänge, die die Spinaufspaltung und die Spinorientierung elektronischer Zustände an Grenzflächen bestimmen, zu verbessern. Des Weiteren sollen Möglichkeiten zur Manipulation der SBK durch kontrollierte Variationen chemischer und struktureller Grenzflächenparameter erforscht werden. Als Modellsysteme für diese Fragestellungen dienen die isostrukturellen Oberflächenlegierungen BiCu2 und BiAg2, deren elektronische Struktur mittels winkelaufgelöster Photoelektronenspektroskopie (ARPES) und spinaufgelöster ARPES untersucht wird. Die Resultate der Experimente werden mithilfe von ab initio-Rechnungen und einfacheren Modellbetrachtungen interpretiert. Die Arbeit schließt mit einer ausblickenden Präsentation von Experimenten zu dem topologischen Isolator Bi2Se3(0001). Vergleichende ARPES-Messungen zu BiAg2/Ag(111) und BiCu2/Cu(111) zeigen, dass bereits geringe Unterschiede in der Grenzschichtmorphologie die Größe der Spinaufspaltung in der elektronischen Struktur um ein Vielfaches verändern können. Zudem belegen spinaufgelöste Experimente eine invertierte Spinorientierung der elektronischen Zustände in BiCu2 im Vergleich mit dem Referenzsystem Au(111). Beide Resultate können durch eine theoretische Analyse des Potentialprofils und der elektronischen Ladungsverteilung senkrecht zu der Grenzfläche in Kombination mit einfachen Modellbetrachtungen verstanden werden. Es stellt sich heraus, dass Asymmetrien in der Ladungsverteilung das direkte mikroskopische Bindeglied zwischen der Spinstruktur des elektronischen Systems und den strukturellen und chemischen Parametern der Grenzschicht bilden. Weitergehende ARPES-Experimente zeigen, dass die spinabhängige elektronische Struktur zudem signifikant durch die Symmetrie des Potentials parallel zu der Grenzflächenebene beeinflusst wird. Eine Manipulation der SBK wird in BiCu2 durch die Deposition von Adatomen erreicht. Hierdurch gelingt es, die Spinaufspaltung sowohl zu vergrößern (Na-Adsorption) als auch zu verringern (Xe-Adsorption). ARPES-Experimente an dem ternären Schichtsystem BiAg2/Ag/Au(111) belegen erstmalig eine Kopplung zwischen elektronischen Bändern mit entgegengesetztem Spincharakter in einem zweidimensionalen System mit Spinaufspaltung (Interband-Spin-Bahn-Kopplung). Der zugrundeliegende Kopplungsmechanismus steht in bemerkenswerter Analogie zu den Auswirkungen der SBK auf die spinpolarisierte elektronische Struktur in ferromagnetischen Systemen. Variationen in der Schichtdicke des Ag-Substratfilms erlauben es, die Stärke der Interband-SBK zu manipulieren. N2 - This thesis deals with the effects of the spin-orbit coupling (SOC) on the two-dimensional electronic structure of crystal surfaces and interfaces. Due to the structural inversion asymmetry the SOC can provoke a spin splitting of the electronic states in such systems and thereby induce a characteristic momentum-dependent spin structure (Rashba effect). The studies presented in this work are directed towards an improved understanding of the microscopic mechanisms that govern the size of the spin splitting and the spin orientation of two-dimensional electronic states. Furthermore, possibilities to manipulate the SOC via controlled variations of the chemical and structural interface properties shall be investigated. In order to address these issues the spin-dependent electronic structure of the two isostructural surface alloys BiCu2 and BiAg2 is scrutinized by angle-resolved photoelectron spectroscopy (ARPES) and spin-resolved ARPES experiments. The experimental results are interpreted using ab initio electronic structure theory as well as more simple free-electron-type models. The thesis closes with a forward-looking presentation of experimental results on the topological insulator surface Bi2Se3(0001). ARPES measurements for BiAg2/Ag(111) and BiCu2/Cu(111) reveal that already small changes in the interface morphology can result in sizeable differences of the spin splitting. Moreover, spin-resolved experiments provide evidence for an inverted spin orientation of the electronic states in BiCu2 when compared to the reference system Au(111). Both results can be understood through a careful theoretical analysis of the potential profile and the electronic charge distribution perpendicular to the interface in combination with simple model considerations. It turns out that asymmetries in the charge distribution represent the central microscopic link between the spin structure of the electronic system and the structural and chemical interface properties. Further ARPES experiments show that the spin-dependent electronic structure is also significantly influenced by the symmetry of the potential parallel to the interface. A manipulation of the SOC is achieved in BiCu2/Cu(111) by the deposition of adatoms. Thereby it is possible both to increase the spin splitting by the adsorption of Na and to decrease it by theadsorption of Xe. ARPES experiments for the ternary layer system BiAg2/Ag/Au(111) show for the first time a coupling between electronic bands of opposite spin character in a spin-orbit split electron system (interband-spin-orbit-coupling). The underlying coupling mechanism shows remarkable analogies with the effect of SOC on the spin-polarized electronic structure in ferromagnetic systems. Variations of the layer thickness of the Ag-film allow for a manipulation of the interband-SOC. KW - Spin-Bahn-Wechselwirkung KW - Grenzflächenphysik KW - Photoemission KW - Spin-orbit coupling KW - Electronic structure KW - Interface physics KW - Elektronenstruktur Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76963 ER -