TY - JOUR A1 - Philipp, Marius A1 - Wegmann, Martin A1 - Kübert-Flock, Carina T1 - Quantifying the Response of German Forests to Drought Events via Satellite Imagery JF - Remote Sensing N2 - Forest systems provide crucial ecosystem functions to our environment, such as balancing carbon stocks and influencing the local, regional and global climate. A trend towards an increasing frequency of climate change induced extreme weather events, including drought, is hereby a major challenge for forest management. Within this context, the application of remote sensing data provides a powerful means for fast, operational and inexpensive investigations over large spatial scales and time. This study was dedicated to explore the potential of satellite data in combination with harmonic analyses for quantifying the vegetation response to drought events in German forests. The harmonic modelling method was compared with a z-score standardization approach and correlated against both, meteorological and topographical data. Optical satellite imagery from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) was used in combination with three commonly applied vegetation indices. Highest correlation scores based on the harmonic modelling technique were computed for the 6th harmonic degree. MODIS imagery in combination with the Normalized Difference Vegetation Index (NDVI) generated hereby best results for measuring spectral response to drought conditions. Strongest correlation between remote sensing data and meteorological measures were observed for soil moisture and the self-calibrated Palmer Drought Severity Index (scPDSI). Furthermore, forests regions over sandy soils with pine as the dominant tree type were identified to be particularly vulnerable to drought. In addition, topographical analyses suggested mitigated drought affects along hill slopes. While the proposed approaches provide valuable information about vegetation dynamics as a response to meteorological weather conditions, standardized in-situ measurements over larger spatial scales and related to drought quantification are required for further in-depth quality assessment of the used methods and data. KW - time-series KW - harmonic analysis KW - z-score KW - scPDSI KW - drought KW - vegetation response KW - forest ecosystems KW - Google Earth Engine Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239575 SN - 2072-4292 VL - 13 IS - 9 ER - TY - JOUR A1 - Rai, P. A1 - Ziegler, K. A1 - Abel, D. A1 - Pollinger, F. A1 - Paeth, H. T1 - Performance of a regional climate model with interactive vegetation (REMO-iMOVE) over Central Asia JF - Theoretical and Applied Climatology N2 - The current study evaluates the regional climate model REMO (v2015) and its new version REMO-iMOVE, including interactive vegetation and plant functional types (PFTs), over two Central Asian domains for the period of 2000–2015 at two different horizontal resolutions (0.44° and 0.11°). Various statistical metrices along with mean bias patterns for precipitation, temperature, and leaf area index have been used for the model evaluation. A better representation of the spatial pattern of precipitation is found at 0.11° resolution over most of Central Asia. Regarding the mean temperature, both model versions show a high level of agreement with the validation data, especially at the higher resolution. This also reduces the biases in maximum and minimum temperature. Generally, REMO-iMOVE shows an improvement regarding the temperature bias but produces a larger precipitation bias compared to the REMO conventional version with interannually static vegetation. Since the coupled version is capable to simulate the mean climate of Central Asia like its parent version, both can be used for impact studies and future projections. However, regarding the new vegetation scheme and its spatiotemporal representation exemplified by the leaf area index, REMO-iMOVE shows a clear advantage over REMO. This better simulation is caused by the implementation of more realistic and interactive vegetation and related atmospheric processes which consequently add value to the regional climate model. KW - regional climate model (RCM) KW - interactive vegetation KW - REMO-iMOVE KW - Central Asia KW - evaluation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324155 SN - 0177-798X VL - 150 IS - 3-4 ER - TY - JOUR A1 - Reichmuth, Anne A1 - Henning, Lea A1 - Pinnel, Nicole A1 - Bachmann, Martin A1 - Rogge, Derek T1 - Early detection of vitality changes of multi-temporal Norway spruce laboratory needle measurements—the ring-barking experiment JF - Remote Sensing N2 - The focus of this analysis is on the early detection of forest health changes, specifically that of Norway spruce (Picea abies L. Karst.). In this analysis, we planned to examine the time (degree of early detection), spectral wavelengths and appropriate method for detecting vitality changes. To accomplish this, a ring-barking experiment with seven subsequent laboratory needle measurements was carried out in 2013 and 2014 in an area in southeastern Germany near Altötting. The experiment was also accompanied by visual crown condition assessment. In total, 140 spruce trees in groups of five were ring-barked with the same number of control trees in groups of five that were selected as reference trees in order to compare their development. The laboratory measurements were analysed regarding the separability of ring-barked and control samples using spectral reflectance, vegetation indices and derivative analysis. Subsequently, a random forest classifier for determining important spectral wavelength regions was applied. Results from the methods are consistent and showed a high importance of the visible (VIS) spectral region, very low importance of the near-infrared (NIR) and minor importance of the shortwave infrared (SWIR) spectral region. Using spectral reflectance data as well as indices, the earliest separation time was found to be 292 days after ring-barking. The derivative analysis showed that a significant separation was observed 152 days after ring-barking for six spectral features spread through VIS and SWIR. A significant separation was detected using a random forest classifier 292 days after ring-barking with 58% separability. The visual crown condition assessment was analysed regarding obvious changes of vitality and the first indication was observed 302 days after ring-barking as bark beetle infestation and yellowing of foliage in the ring-barked trees only. This experiment shows that an early detection, compared with visual crown assessment, is possible using the proposed methods for this specific data set. This study will contribute to ongoing research for early detection of vitality changes that will support foresters and decision makers. KW - laboratory measurements KW - derivatives KW - spectroscopy KW - forest health KW - ring-barking KW - random forest KW - index analysis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159253 VL - 10 IS - 1 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Asam, Sarah A1 - Gessner, Ursula A1 - Ullmann, Tobias A1 - Kuenzer, Claudia T1 - Multi-annual grassland mowing dynamics in Germany BT - spatio-temporal patterns and the influence of climate, topographic and socio-political conditions JF - Frontiers in Environmental Science N2 - Introduction: Grasslands cover one third of the agricultural area in Germany and are mainly used for fodder production. However, grasslands fulfill many other ecosystem functions, like carbon storage, water filtration and the provision of habitats. In Germany, grasslands are mown and/or grazed multiple times during the year. The type and timing of management activities and the use intensity vary strongly, however co-determine grassland functions. Large-scale spatial information on grassland activities and use intensity in Germany is limited and not openly provided. In addition, the cause for patterns of varying mowing intensity are usually not known on a spatial scale as data on the incentives of farmers behind grassland management decisions is not available. Methods: We applied an algorithm based on a thresholding approach utilizing Sentinel-2 time series to detect grassland mowing events to investigate mowing dynamics in Germany in 2018–2021. The detected mowing events were validated with an independent dataset based on the examination of public webcam images. We analyzed spatial and temporal patterns of the mowing dynamics and relationships to climatic, topographic, soil or socio-political conditions. Results: We found that most intensively used grasslands can be found in southern/south-eastern Germany, followed by areas in northern Germany. This pattern stays the same among the investigated years, but we found variations on smaller scales. The mowing event detection shows higher accuracies in 2019 and 2020 (F1 = 0.64 and 0.63) compared to 2018 and 2021 (F1 = 0.52 and 0.50). We found a significant but weak (R2 of 0–0.13) relationship for a spatial correlation of mowing frequency and climate as well as topographic variables for the grassland areas in Germany. Further results indicate a clear value range of topographic and climatic conditions, characteristic for intensive grassland use. Extensive grassland use takes place everywhere in Germany and on the entire spectrum of topographic and climatic conditions in Germany. Natura 2000 grasslands are used less intensive but this pattern is not consistent among all sites. Discussion: Our findings on mowing dynamics and relationships to abiotic and socio-political conditions in Germany reveal important aspects of grassland management, including incentives of farmers. KW - remote sensing KW - Sentinel-2 KW - time series KW - cutting KW - management KW - pasture KW - meadow KW - Earth observation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320700 SN - 2296-665X VL - 11 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Asam, Sarah A1 - Kuenzer, Claudia T1 - Remote Sensing of Grassland Production and Management - A Review JF - Remote Sensing N2 - Grasslands cover one third of the earth’s terrestrial surface and are mainly used for livestock production. The usage type, use intensity and condition of grasslands are often unclear. Remote sensing enables the analysis of grassland production and management on large spatial scales and with high temporal resolution. Despite growing numbers of studies in the field, remote sensing applications in grassland biomes are underrepresented in literature and less streamlined compared to other vegetation types. By reviewing articles within research on satellite-based remote sensing of grassland production traits and management, we describe and evaluate methods and results and reveal spatial and temporal patterns of existing work. In addition, we highlight research gaps and suggest research opportunities. The focus is on managed grasslands and pastures and special emphasize is given to the assessment of studies on grazing intensity and mowing detection based on earth observation data. Grazing and mowing highly influence the production and ecology of grassland and are major grassland management types. In total, 253 research articles were reviewed. The majority of these studies focused on grassland production traits and only 80 articles were about grassland management and use intensity. While the remote sensing-based analysis of grassland production heavily relied on empirical relationships between ground-truth and satellite data or radiation transfer models, the used methods to detect and investigate grassland management differed. In addition, this review identified that studies on grassland production traits with satellite data often lacked including spatial management information into the analyses. Studies focusing on grassland management and use intensity mostly investigated rather small study areas with homogeneous intensity levels among the grassland parcels. Combining grassland production estimations with management information, while accounting for the variability among grasslands, is recommended to facilitate the development of large-scale continuous monitoring and remote sensing grassland products, which have been rare thus far. KW - pasture KW - use intensity KW - grazing KW - mowing KW - productivity KW - biomass KW - yield KW - satellite data KW - optical KW - SAR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207799 SN - 2072-4292 VL - 12 IS - 12 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Gessner, Ursula A1 - Asam, Sarah A1 - Ullmann, Tobias A1 - Schucknecht, Anne A1 - Kuenzer, Claudia T1 - Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series JF - Remote Sensing N2 - Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany. KW - earth observation KW - remote sensing KW - harvests KW - cutting events KW - grazing KW - pasture KW - meadow KW - optical KW - SAR KW - PolSAR KW - InSAR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267164 SN - 2072-4292 VL - 14 IS - 7 ER - TY - JOUR A1 - Reiners, Philipp A1 - Asam, Sarah A1 - Frey, Corinne A1 - Holzwarth, Stefanie A1 - Bachmann, Martin A1 - Sobrino, Jose A1 - Göttsche, Frank-M. A1 - Bendix, Jörg A1 - Kuenzer, Claudia T1 - Validation of AVHRR Land Surface Temperature with MODIS and in situ LST — a TIMELINE thematic processor JF - Remote Sensing N2 - Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed. KW - Land Surface Temperature KW - AVHRR KW - MODIS KW - time series KW - Europe KW - validation KW - TIMELINE Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246051 SN - 2072-4292 VL - 13 IS - 17 ER - TY - JOUR A1 - Reiners, Philipp A1 - Sobrino, José A1 - Kuenzer, Claudia T1 - Satellite-derived land surface temperature dynamics in the context of global change — a review JF - Remote Sensing N2 - Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites. KW - remote sensing KW - land surface temperature KW - temperature KW - dynamics KW - global change KW - climate change KW - global warming KW - earth observation KW - review Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311120 SN - 2072-4292 VL - 15 IS - 7 ER - TY - JOUR A1 - Richard, Kyalo A1 - Abdel-Rahman, Elfatih M. A1 - Subramanian, Sevgan A1 - Nyasani, Johnson O. A1 - Thiel, Michael A1 - Jozani, Hosein A1 - Borgemeister, Christian A1 - Landmann, Tobias T1 - Maize cropping systems mapping using RapidEye observations in agro-ecological landscapes in Kenya JF - Sensors N2 - Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models. KW - remote sensing KW - RapidEye KW - bi-temporal KW - cropping systems KW - random forest KW - Kenya Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173285 VL - 17 IS - 11 ER - TY - JOUR A1 - Rieser, Jakob A1 - Veste, Maik A1 - Thiel, Michael A1 - Schönbrodt-Stitt, Sarah T1 - Coverage and Rainfall Response of Biological Soil Crusts Using Multi-Temporal Sentinel-2 Data in a Central European Temperate Dry Acid Grassland JF - Remote Sensing N2 - Biological soil crusts (BSCs) are thin microbiological vegetation layers that naturally develop in unfavorable higher plant conditions (i.e., low precipitation rates and high temperatures) in global drylands. They consist of poikilohydric organisms capable of adjusting their metabolic activities depending on the water availability. However, they, and with them, their ecosystem functions, are endangered by climate change and land-use intensification. Remote sensing (RS)-based studies estimated the BSC cover in global drylands through various multispectral indices, and few of them correlated the BSCs’ activity response to rainfall. However, the allocation of BSCs is not limited to drylands only as there are areas beyond where smaller patches have developed under intense human impact and frequent disturbance. Yet, those areas were not addressed in RS-based studies, raising the question of whether the methods developed in extensive drylands can be transferred easily. Our temperate climate study area, the ‘Lieberoser Heide’ in northeastern Germany, is home to the country’s largest BSC-covered area. We applied a Random Forest (RF) classification model incorporating multispectral Sentinel-2 (S2) data, indices derived from them, and topographic information to spatiotemporally map the BSC cover for the first time in Central Europe. We further monitored the BSC response to rainfall events over a period of around five years (June 2015 to end of December 2020). Therefore, we combined datasets of gridded NDVI as a measure of photosynthetic activity with daily precipitation data and conducted a change detection analysis. With an overall accuracy of 98.9%, our classification proved satisfactory. Detected changes in BSC activity between dry and wet conditions were found to be significant. Our study emphasizes a high transferability of established methods from extensive drylands to BSC-covered areas in the temperate climate. Therefore, we consider our study to provide essential impulses so that RS-based biocrust mapping in the future will be applied beyond the global drylands. KW - biocrusts activity KW - random forest classification KW - rainfall response KW - Sentinel-2 multispectral indices KW - change detection KW - Lieberoser Heide Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245006 SN - 2072-4292 VL - 13 IS - 16 ER -