TY - INPR A1 - Stennett, Tom E. A1 - Bissinger, Philipp A1 - Griesbeck, Stefanie A1 - Ullrich, Stefan A1 - Krummenacher, Ivo A1 - Auth, Michael A1 - Sperlich, Andreas A1 - Stolte, Matthias A1 - Radacki, Krzysztof A1 - Yao, Chang-Jiang A1 - Würthner, Frank A1 - Steffen, Andreas A1 - Marder, Todd B. A1 - Braunschweig, Holger T1 - Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units T2 - Angewandte Chemie, International Edition N2 - In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts. KW - boron KW - near-IR chromophores KW - conjugation KW - low-valent compounds KW - synthesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180391 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, P. Bissinger, S. Griesbeck, S. Ullrich, I. Krummenacher, M. Auth, A. Sperlich, M. Stolte, K. Radacki, C.-J. Yao, F. Wuerthner, A. Steffen, T. B. Marder, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 6449. , which has been published in final form at https://doi.org/10.1002/anie.201900889. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Wu, Zhu A1 - Dinkelbach, Fabian A1 - Kerner, Florian A1 - Friedrich, Alexandra A1 - Ji, Lei A1 - Stepanenko, Vladimir A1 - Würthner, Frank A1 - Marian, Christel M. A1 - Marder, Todd B. T1 - Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature JF - Chemistry—A European Journal N2 - Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently. KW - AIE KW - luminescence KW - phosphorescence KW - triarylborane KW - triplet Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318297 VL - 28 IS - 30 ER - TY - JOUR A1 - Wu, Zhu A1 - Roldao, Juan Carlos A1 - Rauch, Florian A1 - Friedrich, Alexandra A1 - Ferger, Matthias A1 - Würthner, Frank A1 - Gierschner, Johannes A1 - Marder, Todd B. T1 - Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP) JF - Angewandte Chemie N2 - Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250–400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP. KW - boric acid KW - room-temperature phosphorescence (RTP) KW - optical materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318308 VL - 61 IS - 15 ER - TY - JOUR A1 - Merz, Julia A1 - Dietz, Maximilian A1 - Vonhausen, Yvonne A1 - Wöber, Frederik A1 - Friedrich, Alexandra A1 - Sieh, Daniel A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Moos, Michael A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Marder, Todd B. T1 - Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor-Acceptor Pyrene Derivatives JF - Chemistry - A European Journal N2 - We synthesized new pyrene derivatives with strong bis(para ‐methoxyphenyl)amine donors at the 2,7‐positions and n ‐azaacene acceptors at the K‐region of pyrene. The compounds possess a strong intramolecular charge transfer, leading to unusual properties such as emission in the red to NIR region (700 nm), which has not been reported before for monomeric pyrenes. Detailed photophysical studies reveal very long intrinsic lifetimes of >100 ns for the new compounds, which is typical for 2,7‐substituted pyrenes but not for K‐region substituted pyrenes. The incorporation of strong donors and acceptors leads to very low reduction and oxidation potentials, and spectroelectrochemical studies show that the compounds are on the borderline between localized Robin‐Day class‐II and delocalized Robin‐Day class‐III species. KW - orylation KW - K-region KW - luminescence KW - polycyclic aromatic hydrocarbons KW - redox Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207486 VL - 26 IS - 2 ER - TY - JOUR A1 - Neitz, Hermann A1 - Bessi, Irene A1 - Kachler, Valentin A1 - Michel, Manuela A1 - Höbartner, Claudia T1 - Tailored tolane‐perfluorotolane assembly as supramolecular base pair replacement in DNA JF - Angewandte Chemie International Edition N2 - Arene‐fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane‐perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π‐stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene‐fluoroarene‐programmed assembly of DNA. KW - arene-fluoroarene KW - artificial base pair KW - DNA KW - sSupramolecular interaction KW - XNA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312575 VL - 62 IS - 1 ER -