TY - INPR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Bissinger, Philipp A1 - Braunschweig, Holger A1 - Dellermann, Theresa A1 - Kupfer, Thomas A1 - Lenczyk, Carsten A1 - Roy, Dipak A1 - Schäfer, Marius A1 - Schneider, Christoph T1 - Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups T2 - Chemistry, A European Journal N2 - A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes. KW - diborenes KW - N-heterocyclic carbenes KW - electron donors KW - structural analysis KW - spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155419 N1 - This is the pre-peer reviewed version of the following article: Auerhammer, D., Arrowsmith, M., Bissinger, P., Braunschweig, H., Dellermann, T., Kupfer, T., Lenczyk, C., Roy, D. K., Schäfer, M. and Schneider, C. (2017), Increasing the Reactivity of Diborenes: Derivatization of NHC-Supported Dithienyldiborenes with Electron-Donor Groups. Chem. Eur. J.. doi:10.1002/chem.201704669, which has been published in final form at doi:10.1002/chem.201704669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - INPR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+. KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds KW - Diborane KW - Cycloaddition Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142500 ER - TY - INPR A1 - Braunschweig, Holger A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin A1 - Mattock, James A1 - Schäfer, Marius A1 - Schmidt, Uwe A1 - Schneider, Christoph A1 - Steffenhagen, Thomas A1 - Ullrich, Stefan A1 - Vargas, Alfredo T1 - Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration T2 - Angewandte Chemie, International Edition N2 - Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions. KW - Boron KW - Metallocenes KW - Metallocene KW - Bor KW - Diborane KW - density functional calculations KW - strained molecules KW - diborenes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141981 N1 - This is the pre-peer reviewed version of the following article: Angewandte Chemie, International Edition, Volume 56, Issue 3, 889–892, which has been published in final form at doi:10.1002/anie.201609601. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition JF - Angewandte Chemie, International Edition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\). KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138226 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 11271–11275, which has been published in final form at 10.1002/anie.201602384. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 55 ER - TY - JOUR A1 - Braunschweig, Holger A1 - Constantinidis, Philipp A1 - Dellermann, Theresa A1 - Ewing, William A1 - Fischer, Ingo A1 - Hess, Merlin A1 - Knight, Fergus A1 - Rempel, Anna A1 - Schneider, Christoph A1 - Ullrich, Stefan A1 - Vargas, Alfredo A1 - Woolins, Derek T1 - Highly Strained Heterocycles Constructed from Boron–Boron Multiple Bonds and Heavy Chalcogens JF - Angewandte Chemie, International Edition N2 - The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions. KW - Boron KW - Heterocycles KW - Multiple bonds KW - Selenium KW - Tellurium KW - Bor KW - Heterocyclische Verbindungen KW - Selen KW - Tellur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138237 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 5606–5609, which has been published in final form at 10.1002/anie.201601691. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. N1 - Accepted Version VL - 55 IS - 18 SP - 5606 EP - 5609 ER - TY - THES A1 - Schneider, Christoph T1 - Synthese und Reaktivität von Lewis-basischen Carbonylkomplexen der Gruppe 8 T1 - Synthesis and reactivity of Lewis basic group 8 carbonyle complexes N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizität von Carbonylkomplexen der Gruppe 8 durchgeführt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-Säure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizität dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-Säure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie Röntgenstruktur- und Elementaranalyse vollständig charakterisiert. Während die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformationsänderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungslängen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend für die Lewis-Basizität in Abhängigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die höchste Lewis-Basizität auf. Zudem konnte belegt werden, dass die Lewis-Basizität auch durch die Anzahl an σ-Donorliganden im Komplex erhöht wird. Die schrittweise Erhöhung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und äußert sich auch in der trans-ständigen Anordnung der Lewis-Säure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-Säure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizität und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-Säure GaCl3 umgesetzt. Hierbei wurde die Ligandensphäre im Vergleich zu den Eisencarbonylen nicht verändert. Um die M-Ga-Bindungsabstände untereinander vergleichen zu können, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizitäten abgeschätzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizität erhöht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle Übertragung der Lewis-Säure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-Säure GaCl3 jeweils erfolgreich auf die Komplexe mit der höheren Anzahl an σ-Donorliganden übertragen wird, was deren höhere Lewis-Basizität belegt. Zudem konnte bestätigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensphäre jedoch kaum Unterschiede in der Lewis-Basizität vorgefunden werden. Zusätzlich wurden auch ausgewählte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen Fällen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die stärkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-Säure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 führte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit Übergangsmetallen zugänglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbrückenden Liganden dargestellt und deren Reaktivität gegenüber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen möglich sind, während diese bei Verwendung eines Brückenliganden verhindert werden. Ausgewählte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivität in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen höheren Umsatz ermöglichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivität bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer höheren Lewis-Basizität. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbrückt. Im Gegensatz dazu führte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbrückung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden. N2 - This work describes a detailed study on the Lewis basicity of group 8 carbonyl complexes. Thus, a variety of carbonyl complexes was treated with GaCl3 as Lewis acid to afford the corresponding Lewis adducts. Based on the analysis of spectroscopic and structural parameters of these adducts as well as on transfer experiments it was possible to evaluate the relative Lewis basicities of the metal carbonyl complexes. The reaction of iron penta-, tetra- and tricarbonyl complexes with the sterically less demanding ligands PMe3, IMe and tBuNC with the Lewis acid GaCl3 yielded a series of GaCl3 adducts, which could be fully characterized by NMR- and IR-spectroscopy, as well as X-ray diffraction and elemental analysis. While the three iron tetracarbonyl adducts 36-38 adopt the same cis geometry, adduct formation of the iron carbonyl complexes 43-45 entails a conformational change in the adducts 46, 48 and 49. Here, different geometries were observed. Comparison of the Fe-Ga bond lengths and the sum of the Cl-Ga-Cl angles of the adducts revealed a clear trend for the Lewis basicity depending on the nature of the σ-donor ligand. Thus, IMe substituted complexes showed the greatest Lewis basicity as compared to their PMe3 and tBuNC substituted analogs. In addition, the more σ-donor ligands are present in the iron carbonyls, the higher their Lewis basicity. Stepwise increase of the steric demand of the σ-donor ligands makes the adduct formation more difficult, which is illustrated in a trans position of the GaCl3. The presence of two bulky ligands fully hampered the formation of simpler GaCl3 adducts. Instead disproportion reactions of the Lewis acid into cationic [GaCl2]+ and anionic [GaCl4]- unit took place, with the [GaCl2]+ fragment coordinated to the iron center and [GaCl4]- as counterion. In addition to the electronic and steric influences of the ligands on the Lewis basicity and the adduct formation process of iron carbonyl complexes, the influence of the central atom was also investigated. To this end, analogous ruthenium- and osmium carbonyl complexes were prepared and treated with GaCl3, while the ligand sphere was retained with respect to the iron carbonyl complexes. To enable a direct comparison of the M-Ga bond distances, the relative distance (drel) was employed, which accounts for the different covalent radii of the metal centers. Accordingly, the relative Lewis basicity of the different complexes could be evaluated. Here, the same trend as observed for the iron carbonyl complexes was revealed: the more σ-donor ligands are present, the higher the Lewis basicity. Also, the relativly small drel-values of the ruthenium- and osmium carbonyl complexes suggested a higher Lewis basicity as compared to the corresponding iron carbonyl complexes. These results were clearly validated by transfer experiments. In general, several GaCl3 adducts were reacted with carbonyl complexes in CD2Cl2 while a possible transfer of the Lewis acid GaCl3 was monitored by NMR spectroscopy. The results showed that the Lewis acid GaCl3 is transfered always to the complex with a higher number of σ-donor ligands, thus verifying the higher Lewis basictiy of the latter complexes. In addition, the experiments also showed that ruthenium- and osmium carbonyl complexes are more Lewis basic than analogous iron carbonyl complexes while ruthenium and osmium feature a similar Lewis basicity. Additionally, transfer experiments between group 8 carbonyl adducts and the well-known Lewis base [(Cy3P)2Pt] (7) were carried out, which highlighted the strong Lewis basic character of the platinum compound 7. In addition to these mononuclear GaCl3 adducts, several dinuclear group 8 carbonyl complexes were prepared. Therefore, Ag+ was used as Lewis acid instead of GaCl3, which resulted in the generation of the dinuclear adducts 83-86. These results demonstrated that not only main group metals as gallium, but also transition metals can be employed in the syntheses of group 8 carbonyl adducts. It was also possible to prepare the dinuclear complexes 87-89 featuring either chelating or bridging ligands and to study their reactivity towards GaCl3. The main difference between these two classes of ligands is provided by the fact that the M-M disctance is much smaller in complexes bearing chelating ligands for which reason M-M communication remains possible here. By contrast, employing bridging ligands such an interaction can be ruled out completely. Selected group 8 carbonyl complexes were also used in catalysis experiments to evaluate their catalytic activity in the hydrosilylation of benzaldehyde (90) with phenylsilan (91). The study showed that NHC substituted carbonyl complexes enable a significantly higher turnover than phosphine- or isocyanid substituted complexes. In addition, ruthenium- and osmium carbonyl complexes are far less active catalysts in hydrosilylation reactions than corresponding iron carbonyl complexes, despite their higher Lewis basicity. Addition of one equivalent of GaCl3 to the adducts 46, 66 und 76 resulted in chloride abstraction reactions to afford the cationic and dimeric complexes 104-106. Here, two [(Me3P)2(OC)3M-GaCl2]+ units are bridged by Ga-Cl interactions. By contrast, treatment of 46, 66 und 76 with Na[BArCl4] (101) did not result in chloride abstraction reactions. Instead, the dimeric complexes 107-109 were isolated, in which two GaCl3 adducts are connected by two sodium cations. KW - Lewis-Addukt KW - Metallcarbonyle KW - Carbonyladdukte der Gruppe 8 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134211 ER -