TY - THES A1 - Drisch, Michael T1 - Beiträge zur Chemie schwach koordinierender Cyanoborat- und Fluorophosphat-Anionen T1 - Chemistry of weakly coordinating cyanoborate and fluorophosphate anions N2 - Zusammenfassung Synthetisch einfach zugängliche, thermisch und chemisch robuste schwach oder mittelstark wechselwirkende Anionen sind wichtige Bausteine für neue Materialien wie zum Beispiel ionische Flüssigkeiten und Li-Leitsalze. Im Rahmen der vorliegenden Arbeit wurden zum einen neue schwach koordinierende Borat- und Pentafluorophosphat-Anionen entwickelt und zum anderen effiziente Synthesen zu bereits bekannten Cyanoborat-Anionen ausgearbeitet. Aufgrund ihrer interessanten Eigenschaften wie niedriger Viskosität und elektrochemischer Stabilität wird der Einsatz von ionischen Flüssigkeiten mit dem [BH(CN)3]−-Anion seit längerer Zeit intensiv untersucht. Ausgehend von Na[BH4] wurde eine äußerst effiziente Synthese zu K[BH(CN)3], die auch für den molaren Maßstab geeignet ist, entwickelt. Die Synthese verläuft über Tricarboxylatohydridoborate als Zwischenstufen, welche sich bei vergleichsweise niedrigen Temperaturen von 60 °C weiter mit TMSCN und TMSCl (Kat.) zum [BH(CN)3]−-Anion cyanieren lassen. Durch schrittweise Cyanierung mit TMSCN, ohne den Einsatz eines Lewis-Säure-Katalysators wie TMSCl, wurden die Carboxylatocyanoborate M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) und M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) synthetisiert und zum Teil strukturell charakterisiert. [EMIm][BH(CN)2(OC(O)Et)] ist eine bei Raumtemperatur flüssige ionische Flüssigkeit mit einem Schmelzpunkt von −78 °C. Die dynamische Viskosität ist mit 44.81 mPa∙s bei 20 °C etwa vier Mal so hoch wie die von [EMIm][BH(CN)3] mit 12.36 mPa∙s. Ausgehend von den nun in sehr guten Ausbeuten und in hohen Reinheiten zugänglichen Cyanohydridoboraten wurden verschiedene Fluorierungsmethoden untersucht, um daraus Cyanofluoroborate zu synthetisieren. So wurde K[BF(CN)3] ausgehend von K[BH(CN)3] über direkte Fluorierung mit F2 in aHF oder F-TEDA, XeF2 sowie (Et2N)SF3 in Acetonitril synthetisiert. K[BH(CN)3] reagiert in aHF in Gegenwart von Fluor jedoch nicht selektiv zu K[BF(CN)3]. Es kommt zur teilweisen Addition eines HF-Moleküls an eine Cyanogruppe, welche nach wässriger Aufarbeitung K[BF(CN)2(C(O)NH2)] liefert. Die Säureamid-Gruppe lässt sich aber anschließend mit COCl2 leicht entwässern, sodass K[BF(CN)3] selektiv erhalten wird. Ebenfalls ist eine indirekte Fluorierung durch vorheriges Umsetzen eines entsprechenden [BH(CN)3]− Borats mit Cl2 oder Br2 und nachfolgender Fluorierung mit Et3N∙3HF möglich. Die gezeigten Fluorierungen wurden ebenfalls auf weitere Hydridoborate übertragen. Na[BH(CN)2(OC(O)Et)] wurde unter Erhalt der Propoxylato-Gruppe in einer Eintopfsynthese mit Br2 und Et3N∙3HF zu Na[BF(CN)2(OC(O)Et)] fluoriert. K[BF(CN)3] konnte ausgehend von K[BH(CN)3] ebenfalls mit Hilfe der elektrochemischen Fluorierung (ECF, Simons-Prozess) im Gramm-Maßstab hergestellt werden. Dabei gelang die erste Fluorierung einer B−H-Spezies mit dem Simons-Prozess überhaupt. Bei der ECF von K[BF(CN)3] wurden bei fortschreitender Reaktionsdauer NMR-spektroskopisch verschiedene CF3-Borate beobachtet. Während der ECF kommt es also teilweise zu einer C≡N-Bindungsspaltung. Die Fluorierung von CN-Gruppen mit ClF zu CF3-Gruppen wurde ebenfalls auf eine Reihe weiterer Borate angewendet. So wurden K[(C2F5)B(CF3)3] und K[(C2F5)BF(CF3)2] ausgehend von K[(C2F5)B(CN)3] und K[(C2F5)BF(CN)2] synthetisiert und mit einigen Zwischenstufen NMR-spektroskopisch charakterisiert. Neben Boraten sind besonders Salze von schwach koordinierende Phosphat-Anionen wie Li[PF6] für elektrochemische Anwendungen von Interesse. Auf Basis von verschiedenen aminverbrückten Phosphonsäuren wurden neuartige Salze mit mehrfach negativ geladenen Oligo-Phosphat-Anionen synthetisiert. {((HO)2(O)PCH2)2NCH2}2 und ((HO)2(O)PCH2)3N reagieren mit wasserfreiem Fluorwasserstoff zu den entsprechenden Oligo-Pentafluorophosphat-Anionen [{(F5PCH2)2NHCH2}2]2− und [(F5PCH2)2NH]2−. Die verbrückenden Stickstoffatome werden dabei protoniert, was zu zweifach negativ geladenen Phosphat-Anionen führt. Unterschiedliche Salze mit organischen und anorganischen Kationen wurde so isoliert. Weitere Salze, wie das [Ph3C]-, [EMIm]- oder das Li-Salz, wurden durch Metathesereaktionen erhalten. Das Stickstoffatom in -Position zum Phosphoratom scheint essenziel für die Fluorierung der Phosphonsäure-Gruppe mit aHF zu einer PF5-Gruppe zu sein. Dies wurde durch die Umsetzung anderer funktionalisierter Phosphonsäuren wie z.B. (HO)2(O)PMe bestätigt, da es dabei nur zu einer Teilfluorierung zum F2(O)PMe kam. Die Kalium-Salze K2[{(F5PCH2)2NHCH2}2] und K2[(F5PCH2)3NH] lassen sich mit KH in DMF deprotonieren und so Salze mit den dreifach bzw. vierfach negativ geladenen Anionen [{(F5PCH2)2NCH2}2]4− und [(F5PCH2)3N]3− erhalten. K4[{(F5PCH2)2NCH2}2] und K3[(F5PCH2)2N] sind hydrolyseempfindlich und werden leicht protoniert. Die deprotonierten Anionen können jedoch mit Methyliodid oder Allyliodid weiter umgesetzt und so funktionalisiert werden. Das methylierte bzw. allylierte Stickstoffatom sorgt für eine deutliche Stabilisierung der Anionen. So steigt zum Beispiel die Zersetzungstemperatur von K2[{(F5PCH2)2N(CH3)CH2}2] im Vergleich zu K2[{(F5PCH2)2NHCH2}2] um über 100 °C auf 300 °C. Des Weiteren steigt auch die Stabilität gegenüber Hydrolyse bei Salzen mit den methylierten Phosphat-Anionen deutlich an. K2[{(F5PCH2)2NHCH2}2] wird nach einigen Minuten in H2O langsam hydrolisiert. Dagegen ist K2[{(F5PCH2)2N(CH3)CH2}2] mehrere Tage sowohl wasser- als auch basenstabil. Das durch eine Metathesereaktion von Li[BF4] mit K2[{(F5PCH2)2N(CH3)CH2}2] erhaltene Li2[{(F5PCH2)2N(CH3)CH2}2] hat in -Butyrolacton eine Leitfähigkeit von 2.67 mS∙cm−1 (c = 0.1 mol∙L−1). Einige Oligo-Pentafluorophosphate wurden ebenfalls strukturanalytisch charakterisiert. N2 - Summary Weakly or moderately coordinating anions which are synthetically easily accessible and thermally and chemically robust are important building blocks for new materials such as ionic liquids or Li-conducting salts. Within the scope of the present work, new weakly coordinating borate and pentafluorophosphate anions were developed and efficient syntheses for already known cyanoborate anions were developed. Due to their interesting properties such as low viscosity and electrochemical stability, the use of ionic liquids with the [BH(CN)3]− anion has been extensively investigated for a long time. Starting from Na[BH4], a very efficient synthesis for K[BH(CN)3], which is also suitable for the molar scale, has been developed. The synthesis proceeds via tricarboxylatohydridoborates as intermediates, which can be cyanated with TMSCN and TMSCl (cat.) to the [BH(CN)3]− anion at a relatively low temperature of 60 °C. The carboxylatocyanoborates M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) and M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) were synthesized by stepwise cyanation with TMSCN of the tricarboxylatohydridoborates without using a Lewis acid catalyst. Some of the carboxylatocyanoborates were structurally characterized. [EMIm][BH(CN)2(OC(O)Et)] is an ionic liquid and liquid at room temperature with a melting point of −78 °C. Its dynamic viscosity at 20 °C is 44.81 mPa∙s, which is about four times higher than the one of [EMIm][BH(CN)3] with 12.36 mPa∙s. Various fluorination methods were investigated in order to synthesize cyanofluoroborates starting from the cyanohydridoborates which are now available in very good yields and in high purities. K[BF(CN)3] was obtained by direct fluorination with F2 in aHF or F-TEDA, XeF2, and (Et2N)SF3 in acetonitrile. K[BH(CN)3] reacts in aHF in the presence of fluorine non-selectively to K[BF(CN)3], and one HF molecule adds to single cyano group, which provides K[BF(CN)2(C(O)NH2)] after aqueous work-up. The carboxamide group can be easily dehydrated with COCl2 to give K[BF(CN)3] selectively. An indirect fluorination is possible as well. In the first step the the [BH(CN)3]− borate is reacted with Cl2 or Br2 and subsequent fluorination with Et3N∙3HF yields [BF(CN)3]−. The new fluorination reactions were applied to other hydridoborates. Na[BH(CN)2(OC(O)Et)] was fluorinated while retaining the propoxylato group in a one pot synthesis with Br2 and Et3N∙3HF to give Na[BF(CN)2(OC(O)Et)]. Starting from K[BH(CN)3], K[BF(CN)3] was also prepared by means of electrochemical fluorination (ECF, Simons process) on a gram scale. With this process the first fluorination of a B−H species according to the Simons process was achieved. The ECF of K[BF(CN)3] gives several CF3 borates when longer reaction times were applied as shown by NMR spectroscopy. Thus the ECF leads to a partial C≡N bond cleavage. Similar transformation have been reported for M[B(CN)4] (M = Li+, Na+, K+) and ClF or ClF3 to give M[B(CF3)4].[24] The fluorination of CN groups with ClF to CF3 groups has also been adopted for a range of other borates. For example, K[(C2F5)B(CF3)3] and K[(C2F5)BF(CF3)2] were synthesized from K[(C2F5)B(CN)3] and K[(C2F5)BF(CN)2] and together with some intermediates these borate anions were characterized by NMR spectroscopy. In addition to borates, salts of weakly coordinating phosphate anions such as Li[PF6] are of particular interest for electrochemical applications. On the basis of various amine-bridged phosphonic acids, novel salts were synthesized with multiple negatively charged oligo-phosphate anions. {((HO)2(O)PCH2)2NCH2}2 and ((HO)2(O)PCH2)3N react with anhydrous hydrogen fluoride to the corresponding oligo-pentafluorophosphate anions [{(F5PCH2)2NHCH2}2]2− and [(F5PCH2)2NH]2−. The bridging nitrogen atoms are protonated, during the reaction, which leads to double negatively charged phosphate anions. Different salts with organic- and inorganic cations were isolated. Other salts such like the [Ph3C], [EMIm], or the Li salt were obtained by metathesis reactions. The nitrogen atom in -position to the phosphorus atom seems to be essential for the fluorination of the phosphonic acid group with aHF to a PF5 group. This assumption was proven by reacting other functionalized phosphonic acids, e.g. (HO)2(O)PMe, that showed only partial fluorination to F2(O)PMe. The poassium salts K2[{(F5PCH2)2NHCH2}2] and K2[(F5PCH2)3NH] were deprotonated with KH in DMF to obtain salts with the triple or quadruple negatively charged anions [{(F5PCH2)2NCH2}2]4− and [(F5PCH2)3N]3−. K4[{(F5PCH2)2NCH2}2] and K3[(F5PCH2)2N] are sensitive to hydrolysis and were easily protonated. However the deprotonated anions can be further reacted with methyl iodide or allyl iodide and thus functionalized. The methylated or allylated nitrogen atom ensures a significant stabilization of the anions. For example, the decomposition temperature of K2[{(F5PCH2)2N(CH3)CH2}2] increases by 100 °C to 300 °C compared to K2[{(F5PCH2)2NHCH2}2]. Furthermore, the stability of salts with the methylated phosphate anions towards hydrolysis increases significantly, also K2[{(F5PCH2)2NHCH2}2] is slowly hydrolyzed after a few minutes in H2O. On the other hand, K2[{(F5PCH2)2N(CH3)CH2}2] is water- and base-stable for several days. During a methatesis reaction of Li[BF4] with K2[{(F5PCH2)2N(CH3)CH2}2] the obtained Li2[{(F5PCH2)2N(CH3)CH2}2] has a conductivity of 2.67 mS∙cm−1 in -Butyrolacton (c = 0.1 mol∙L−1). Some oligo-pentafluorophosphates were also characterized by X-ray crystallography. KW - Anion KW - Phosphate KW - Borate KW - schwach koordinierende Anionen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146802 ER - TY - JOUR A1 - Bélanger-Chabot, Guillaume A1 - Braunschweig, Holger T1 - Hexahalogendiborat‐Dianionen: Eine neue Klasse binärer Borhalogenide JF - Angewandte Chemie N2 - Die elektronenpräzisen binären Borsubhalogenide [B\(_2\)X\(_6\)]\(^{2−}\) (X=F, Br, I) wurden synthetisiert und strukturell im Festkörper untersucht. Zudem konnte die vermutete Existenz von [B\(_2\)Cl\(_6\)]\(^{2−}\) mittels Röntgendiffraktometrie nachgewiesen werden. Diese Dianionen sind isoelektronisch zu den Hexahalogeniden des Ethans und können als Homologe des Tetrahalogenborat‐Anions BX\(_4\)\(^−\) betrachtet werden. Darüber hinaus gehören sie zu den seltenen Beispielen von elektronenpräzisen binären Borverbindungen (B\(_2\)X\(_4\), BX\(_3\), [BX\(_4\)]\(^−\)). KW - Binäre Verbindungen KW - Bor KW - Elektronenpräzise Diborate KW - Halogene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212605 VL - 131 IS - 40 ER - TY - THES A1 - Feizy, Nilab T1 - iClick-Reaktionen von Palladium(II)azid- und Platin(II)azid-Komplexen mit tridentaten N,N,N-Chelatliganden und elektronenarmen Alkinen T1 - iclick-reaction of palldium(II) and Platinum(II) azid komplexes with N,N,N-chelators and electron-poor alkynes N2 - Katalysatorfreie [3+2]-Cycloadditionen von Aziden mit Alkinen werden in der bioorthogonalen Chemie häufig verwendet und haben großes Potential zur milden Synthese von Biokonjugaten. Während solche Reaktionen in der Ligandenperipherie von Metallkomplexen häufiger angewendet werden ist, sind solche Reaktionen direkt in der inneren Koordinationssphäre von Metallzentren bisher nur wenig erforscht. Die neue Beispiele dafür sind die Synthese und Untersuchungen der Kinetik und Reaktivität einer Reihe von Rhodium(III)azid-Halbsandwichkomplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ oder von isoelektronische und isostrukturelle Molybdän(II)azid- und Wolfram(II)azid-Komplexe mit verschiedenen elektronenarme Alkine. Das Ziel der vorliegenden Arbeit waren daher iClick-Reaktionen (engl. inorganic click, „iClick“) von Palladium(II)azid- und Platin(II)azid-Komplexen der allgemeinen Formel [M(N3)(L)]+ und [M(N3)(L)] mit elektronenarmen Alkinen Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-insäureethylester. Als Liganden kamen die N,N,N-Chelatoren 1,3-Bis(arylimino)isoindolin (HL1-4) die sich nur im Bezug auf die Position der Methylgruppen in den Pyridinringen unterscheiden, 6',6"-Dimethyl-2',2:6,2"-terpyridin (L5) und 2,6-Bis(3-pyridazinyl)pyridin (L6) zum Einsatz. Die Reaktionen von L1-L4 mit [MCl2(cod)] (M = Pd, Pt) liefert neutrale Komplexe [MCl(L1-3)] und für L5 einfach geladene [MCl(L5)]+. Das koordinierte Chlorid wurde dann mit Natriumazid substituiert. Im abschließenden Teil der Arbeit wurde die zwei Alkinen in iClick-Reaktion verwendet um Palladium(II)- und Platin-Triazolat-Komplexe zu synthetisieren. Für die resultierenden Triazolat-Komplexe wurde eine N2-koordinierten des Triazolat-Liganden durch Röntgenstrukturanalyse für baii-Triazolat-Komplexe bestätigt. Besonderes Merkmal dieser Verbindungen ist, dass der Triazolat-Ligand aus Platzmangel senkrecht zum 1,3-Bis(arylimino)isoindolin-Ligand steht. In verwandten Terpyridin-Komplexen sind der mono- und tridentate Ligand dagegen coplanar. Mit 1,3-Bis(6-methyl-2-pyridylimino)isoindolin als Ligand konnten man keine Metall-Komplexe hergestellt werden, da die zusätzlichen Methylgruppem in 6',6"-Positionen aus sterische Gründen eine Reaktion mit [MCl2(cod)] verhindern. Auch der in drei Stufen synthetisierte Ligand 6',6"-Dimethyl-2',2:6,2"-terpyridin der im Vergleich zu Terpyridin zwei zusätzliche Methylgruppen in 6',6"-Position besitzen reagiert nur mit [PdCl2(cod)] nicht aber mit [PtCl2(cod)], da der Ionenradius von Pt(II) größer als der von Pd(II) ist. Die hergestellte Chlorid-, Azid- und Triazolat-Komplexe mit L5 als N,N,N-Chelator waren nur in DMSO Löslich. Darin zersetzt es sich jedoch teilweise wieder in den freien Liganden. Die zusätzlichen Methylgruppem in 6',6"-Positionen verhindern aus sterische Gründen die Chlorid-, Azid- und Triazolat-Komplexe stabil zu bleiben. Ligand L6 konnte nur in sehr niedrige Ausbeute isoliert werden, da in der letzten Stufe bzw. bei Stille-Kupplung zwischen 2,6-Bis(trimethylstannyl)pyridin und 3-Iodopyridazin die Homokupplungsprodukte von 3-Iodopyridazin entsteht, sodass die nicht getrennt werden konnten. Aufgrund der niedrigen Ausbeute wurden dann mit L6 keine Metall-Komplexe hergestellt. Die Kinetik der iClick-Reaktion ist ein entscheidender Faktor, wenn diese für die Markierung von Bio(makro)molekülen eingesetzt werden soll, da die Markierungsreaktion schneller als der interessierende biologische Prozess ablaufen muss. Daher wurden mit IR- und UV/Vis-Spektroskopie die Geschwindigkeitskonstanten pseudoerster Ordnung für die iClick-Reaktion der verschiedenen baii-Palladium(II)azid- und baii-Platin(II)azid-Komplexe mit Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-insäureethylester bestimmt. Hier sollte insbesondere der Einfluss der zusätzlichen Methylgruppen in 4',4"- bzw. 5',5"-Positionen am 1,3-Bis(arylimino)isoindolin-Liganden sowie die Variation des Metallzentrums und Alkins auf die Geschwindigkeit der iClick-Reaktionen untersucht werden. Mit IR-Spektroskopie wurden Geschwindigkeitskonstanten um (2.8-4.9)⋅10-4 s-1 an Alkinen erhalten. Die Einführung elektronenschiebender Methylgruppen in 4',4"- bzw. 5',5"-Positionen am 1,3-Bis(arylimino)isoindolin-Liganden führt zu einer Erhöhung der Geschwindigkeitskonstant einem Faktor von 1.3 bzw. 1.2 gegenüber 1,3-Bis(2-pyridylimino)isoindolin. Die iClick-Reaktion mit Platin als Metall ist 1.3-mal schneller als mit Palladium. Elektronenarme Alkine wie 4,4,4-Trifluorobut-2-insäureethylester führen im Vergleich zu Dimethylacetylendicarboxylat (DMAD) zu einer 1.8-fachen Erhöhung der Reaktionsgeschwindigkeit. Mit UV/Vis-Spektroskopie wurden niedrigere Geschwindigkeitskonstanten um 8.9·10-6 - 3.3·10-5 s-1 nur für die iClick-Reaktion der 1,3-Bis(arylimino)isoindolinplatin(II)azid-Komplexe mit Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-insäureethylester bestimmt, weil die Spektralen Unterschiede zwischen Azid-Vorstufe und Triazolat-Produkt mit Palladium als Metallzentren zu gering sind. Auch hier konnte die Erhöhung der Geschwindigkeitskonstanten durch Verwendung elektronenärmerer Alkine bestätigt werden. Hier sollte die iClick-Reaktion in Zukunft für größere Auswahlmöglichkeiten an Chelatoren optimiert und außerdem die Geschwindigkeitskonstanten der Bildung von iClick-Produkten mit anderen Methoden untersucht werden, bevor biologische Tests durchgeführt werden. N2 - Catalyst-free [3+2] cycloadditions of azides with alkynes are widely used in bioorthogonal chemistry and have great potential for the mild synthesis of bioconjugates. While such reactions are commonly applied in the ligand periphery of metal complexes, little has been explored about then taking place directly in the inner coordination sphere of metal centers. Recent examples include the synthesis and study of the kinetics and reactivity of a series of rhodium(III) azide half-sandwich complexes of the general formula [Rh(Cp*)(N3)(bpyR, R)]+ oder the investigation and comparison kinetics of both isoelectronic and isostructural molybdenum(II) and tungsten(II) azide complexes with different alkynes.. The aim of the present work was the exploration of inorganic click ("iClick") reactions of neutral and monocationic palladium(II) and platinum(II) azide complexes of the general formula [M(N3)(L)] and [M(N3)(L)]+ with electron-poor alkynes dimethylacetylenedicarboxylate (DMAD) and ethyl 4,4,4-trifluoro-2-butynoate. As ligands, the N, N, N-chelators 1,3-bis(arylimino)isoindoline (HL1-4) which differ only in the position of the methyl groups on the outer pyridine rings, 6',6"-dimethyl-2',2:6,2"-terpyridine (L5) and 2,6-bis(3-pyridazinyl)pyridine (L6) were used. The reaction of L1-L4 with [MCl2(cod)] (M= Pd, Pt) gave the neutral complexes [MCl(L1-3)] and singly charged [MCl(L5)]+ for L5. The coordinated chloride was then replaced by reaction with sodium azide. In the final part of the work, the two alkynes were used in the iClick reaction to synthesize palladium(II) and platinum(II) triazolate complexes. N2-coordination of the triazolate was confirmed by X-ray crystallography for baii-palladium(II) and baii-platinum(II) triazolate complexes. A special feature of these compounds is the congest space between the methyl groups leading to the triazolate ligand in a perpendicular arrangement relative to the 1,3-bis(arylimino)isoindoline mean plane ligand. In contraction related terpyridine complexes, the mono dentate triazolate and tridentate terpyridin ligands are coplanar. Metal complexes with the sterically demanding 1,3-bis(6-methyl-2-pyridylimino)isoindoline were not accessible, since the additional methyl groups in 6',6"-positions prevent a reaction with [MCl2(cod)]. Likewise 6',6"-Dimethyl-2',2:6,2"-terpyridine, which has two additional methyl groups in the 6',6"-position of terpyridine reacts only with [PdCl2(cod)] but not with [PtCl2(cod)], since the ionic radius of Pt(II) is largest than that of Pd(II). The chloride, azide, and triazolate complexes of L5 were only soluble in DMSO. However in this solution, they partially decompose back to the free ligand. This is due to the sterically demanding methyl grupps in 6',6"-positions which prevent formation for stable metal complexes. Ligand L6 could only be isolated in very low yield, as the last stage of the synthesis, the stille coupling between 2,6-bis(trimethylstannyl)pyridine and 3-iodopyridazine also lend homo coupling products which could not be separated. Due to the low yield, no metal complexes could be prepared with L6. The kinetics of the iClick reaction is a critical factor when used to label bio(macro)molecules since the labeling reaction must proceed faster than the biological process of interest. Therefore, IR and UV/Vis spectroscopy were used to determine the pseudo-first-order rate constants of the iClick reaction of the various 1,3-bis(arylimino)isoindoline palladium(II) and platinum(II) azide complexes with dimethyl acetylenedicarboxylate (DMAD) and ethyl 4,4,4-trifluoro-2-butynoate. In particular, the influence of the additional methyl groups in 4',4" and 5',5"-position on the 1,3-bis(arylimino)isoindoline ligand as well as variation of the metal center and alkyne on the rate of the iClick reactions was examined. With IR spectroscopy, rate constants of (2.8 - 4.9)⋅10-4 s-1 were obtained. The introduction of electron-donating methyl groups in 4',4" and 5',5"-positions, respectively, on the 1,3-bis(arylimino)isoindoline ligand lead to an increase of the rate constant by a factor of 1.3 or 1.2 compared to the 1,3-bis(2-pyridylimino)isoindoline parent compound. The iClick reaction with platinum as the central metal is 1.3-times faster than with palladium. Electron-poor alkynes such as ethyl 4,4,4-trifluoro-2-butynoate lead to a 1.8-fold increase in the rate of the reaction compared to dimethyl acetylenedicarboxylate (DMAD). With UV/Vis spectroscopy, lower rate constants of 8.9⋅10-6 - 3.3⋅10-5 s-1 were determined for the iClick reaction of the 1,3-bis(arylimino)isoindolinplatin(II) azide complexes with dimethylacetylenedicarboxylate (DMAD) and ethyl 4,4,4-trifluoro-2-butynoate. The analogous palladium complexes could not be studied with this method as there was only a negligible difference in the absorption spectra of azide precursor and triazolate products. With this method an increase in the rate constants could also be observed of electron-poor alkynes. The iClick reaction should be further for greater choice of chelators optimized in the future and also the rate constants of the formation of iClick products be investigated with other methods before biological tests are carried out. KW - Alkine KW - iClick KW - Palladium(II)azid KW - Alkine KW - Palladiumkomplexe KW - Azide Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178938 ER - TY - JOUR A1 - Liu, Xiaocui A1 - Ming, Wenbo A1 - Zhang, Yixiao A1 - Friedrich, Alexandra A1 - Marder, Todd B. T1 - Kupferkatalysierte Triborierung: Einfache, atomökonomische Synthese von 1,1,1‐Triborylalkanen aus terminalen Alkinen und HBpin JF - Angewandte Chemie N2 - Eine effiziente, einstufige Synthese von 1,1,1‐Trialkylalkanen durch die sequenzielle, dehydrierende Borylierung und zweifache Hydroborierung von terminalen Alkinen mit Pinakolboran (HBpin) wurde unter Verwendung des kostengünstigen und einfach zugänglichen Kupfersalzes Cu(OAc)2 als Katalysator realisiert. Das Verfahren zeichnet sich durch ein breites Substratspektrum, eine außerordentliche Selektivität und eine hohe Toleranz gegenüber funktionellen Gruppen aus. Zudem kann die Reaktion ohne Ausbeuteverlust im Gramm‐Maßstab durchgeführt werden. Die somit erhaltenen 1,1,1‐Trialkylalkane können Anwendungen in der Herstellung von synthetisch wertvollen und bislang schwer zugänglichen α‐Vinylboronaten und zyklischen Boryl‐Verbindungen finden. Verschiedene Alkylgruppen können stufenweise über eine basenvermittelte deborylierende Alkylierung eingeführt werden, um racemische, tertiäre Alkylboronate herzustellen, die einfach in nützliche tertiäre Alkohole umgewandelt werden können. KW - Boronsäure KW - Dehydrierende Borylierung KW - Geminaler Bisboronat KW - Hydroborierung KW - Kreuzkupplung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212189 VL - 131 IS - 52 ER - TY - THES A1 - Schuster, Julia Katharina T1 - Lewis-Basen-Stabilisierte Mono- und Dinukleare Verbindungen des Galliums und Niedervalente Verbindungen des Berylliums - Darstellung und Reaktivitätsstudien T1 - Lewis-Base-Stabilized Mono- and Dinuclear Gallium Compounds and Low-Valent Beryllium Compounds - Synthesis Reactivity Studies N2 - The present work is divided into two parts, the first of which is concerned with the synthesis and reactivity of carbene-stabilized gallium compounds. The second part of this thesis adresses the synthesis of novel, beryllium-containing compounds, whereby, in addition to investigations into new structural motifs of linear, sp-hybridized beryllium compounds, the stabilization of low valent beryllium complexes by the use of carbene ligands is a central part of this thesis. 1 Lewis-base-stabilized gallium compounds In this chapter, two different synthetic routes towards carbene stabilized, low-valent gallium compounds were investigated. By the use of CAAC ligands, four different [GaCl3(RCAAC)]-species (R = Me, Cy, Et, Menth) were realized, and investigated in terms of their reactivity towards reducing agents. However, all experimental approaches led to either decomposition products or renewed isolation of the starting materials and the synthesis of dinuclear gallium compounds via reductive coupling of two CAAC-Ga fragments was found not to be feasible. A different approach towards low-valent gallium compounds was the chemical reduction of Lewis-base-stabilized digallanes(4), in which the two gallium atoms are already connected via a σ bond. The synthesis of such compounds by reaction of either the subhalide ´GaI` or the mixed-valent salt [Ga]+[GaCl4]– with two equivalents of the free MeCAAC did not afford the double Lewis-base-stabilized [Ga2X4(MeCAAC)2] species (X = I, Cl). However, [Ga2Cl4(MeCAAC)2] was accessible through ligand exchange reaction of [Ga2Cl4(1,4-dioxane)2] with two equivalents of MeCAAC, due to the relatively weakly-coordinating nature of 1,4-dioxane. In an analogous fashion, three additional Lewis-base-stabilized digallanes(4) could be realized when the carbenes CyCAAC, SIDep und IDipp were used. The reactivity of the Lewis-base-stabilized digalliumtetrachlorides was tested towards different reducing agents. However, none of the reactions led to a distinct product formation and the synthesis of neutral, Ga-Ga multiple bond systems could not be realized in this manner. However, treatment of [Ga2Cl4(MeCAAC)2] with two equivalents of 1,3,2 diazaborolyllithium induced Ga-Ga bond cleavage and [GaCl2{B(NDippCH)2}(MeCAAC)] was isolated as the only boron-containing compound. The halide exchange reactions of the double Lewis-base adducts of digalliumtetrachloride were also investigated. Treatment of [Ga2Cl4(MeCAAC)2] and [Ga2Cl4(CyCAAC)2] with 1.3 molar equivalents of either BBr3 or BI3, well established reagents for halide exchange at other Group 13 elements, yielded the corresponding [Ga2X4(MeCAAC)2] (X = Br, I ) and [Ga2X4(CyCAAC)2] (X = Br, I), with retention of the carbene ligands. Also, the reaction of [Ga2Br4(CyCAAC)2] with BI3 afforded the fully iodinated species. In contrast to the MeCAAC-stabilized compounds, which feature extreme insolubility in common organic solvents, the CyCAAC-stabilized compounds could be characterized by NMR spectroscopy and X-ray diffraction. 2 Lewis-base-stabilized beryllium compounds The reaction of BeCl2 with two equivalents 1,3,2-diazaborolyllithium provided the homoleptic, linear Be{B(NDippCH)2}2. In its 9Be NMR spectrum, the compound shows a chemical shift of δ = 45 ppm, significantly outside the normal range of two-coordinate beryllium compounds. The electrophilic nature of the beryllium center in Be{B(NDippCH)2}2 was calculated by quantum chemical calculations and demonstrated by its reactivity towards different substrates: methanolysis of Be{B(NDippCH)2}2 induced a Be-B bond cleavage, and, along with insoluble materials presumed to be the polymeric beryllium methanolate, cleanly afforded the protonated 1,3,2 diazaborole. The use of deuterated MeOD in the reaction confirmed methanol as the proton source. Treatment of Be{B(NDippCH)2}2 with one equivalent of the small carbene IMe effected addition at the beryllium center to yield the trigonal mixed Lewis-base adduct. The heteroleptic BeCl{B(NDippCH)2} could not be synthesized by the reaction of BeCl2 with equimolar amounts of 1,3,2-diazaborolyllithium. Therefore, [BeClCp*] was used as starting material for the synthesis of novel, heteroleptic sp-hybridized beryllium species. Treatment of [BeClCp*] with various NHCs did not lead to the expected adduct formation, but yielded, only in the case of IiPr, the metallocene [BeCp*2] and the double Lewis-base adduct [BeCl2(IiPr)2] in a ligand exchange reaction. The reaction of [BeClCp*] with equimolar amounts of 1,3,2 diazaborolyllithium formed the linear coordinated [BeCp*{B(NDippCH)2}] in a salt elimination reaction. A central part of this work was the monomerization of BeCl2 by the use of CAAC ligands. Four differerent [BeCl2(RCAAC)] species (R = Me, Cy, Et, Menth) were synthesized via reaction of the corresponding free carbenes and BeCl2. Furthermore, the reactivity of these kinds of compounds towards different substrates was investigated. Treatment of [BeCl2(MeCAAC)] with equimolar amounts of 1,3,2-diazaborolyllithium afforded the trigonal mixed Lewis-base adduct [BeCl{B(NDippCH)2}(MeCAAC)] in a salt elimination reaction. This compound showed limited stability under reduced pressure, in solution as well as in the solid state, and subsequently formed the protonated 1,3,2 diazaborole and a beryllium containing compound that could not be further identified. The reaction of [BeCl2(MeCAAC)] with Bogdanović-Magnesium ([Mg(C14H10)(thf)3]) provided the CAAC-stabilized berylliumanthracendiyl [Be(C14H10)(MeCAAC)], which was isolated as a red solid. The mechanism of this reaction might be described as a nucleophilic addition of the dianionic anthracene unit to the beryllium center with concomitant loss of MgCl2. [Be(C14H10)(MeCAAC)] shows structural similarities to the magnesium containing species [Mg(C14H10)(thf)3], as both compounds show a non-planar anthracene moiety in their solid-state structures, due to the loss of aromaticity of the substituent. None of the attempts to chemically reduce the various [BeCl2(RCAAC)] compounds with a range of one-electron reducing agents afforded a selective reaction product, and either decomposition products or starting materials were isolated. However, treatment of the Lewis-base adducts [BeCl2(MeCAAC)] and [BeCl2(CyCAAC)] with potassium graphite in the presence of an additional equivalent of RCAAC (R = Me, Cy) yielded the homoleptic and heteroleptic compounds [Be(CyCAAC)2], [Be(MeCAAC)2] and [Be(MeCAAC)(CyCAAC)]. The solid-state structures of the double Lewis-base stabilized beryllium compounds show linear geometries around the beryllium center and significant differences to their beryllium-containing starting materials. A contraction of the Be1-C1 bonds as well as an elongation of the ligand-centered C1-N1 bonds was observed, indicative of strong Be-C bonding. Whereas the beryllium atom is usually found in its +II oxidation state, the central atom in the linear [Be(CAAC)] compounds is formally in its elemental form. Therefore, these compounds represent the first neutral complexes with a formally zerovalent CAAC-stabilized s-block element. The unusual electronic structure of these compounds is emphasized by their deep violet color (λmax (THF) = 575/579 nm). Quantum chemical calculations describe the bonding situation in [Be(CAAC)2] with a combination of donor-acceptor interactions between two ground-state singlet CAAC ligands and Be(0) in a 1s22s02p2 electronic configuration, resulting in a 3c 2e− π bond stretching over the C Be C core. Furthermore, the stabilization arising from π backdonation from Be to the CAAC ligands was found to significantly predominate over that from σ-donation from CAAC to the beryllium center. The NHC-stabilized compounds [Be(IDipp)2] and [Be(IDipp)(IMes)] and the mixed NHC/CAAC-stabilized species [Be(MeCAAC)(NHC)] (NHC = IDipp, IMes, SIDep) could not be synthesized. This might be explained by the different electronic properties of the carbenes. On the one hand, the π-accepting abilities of the NHCs are likely insufficient to form a 3c 2e− π bond. On the other hand, the stability of the mixed CAAC/NHC stabilized Be(0) compounds might not be sufficient due to differences in the σ-donating and π accepting properties of the ligands, which limits the formation of a symmetrical 3c 2e− π bond across the C-Be-C unit. N2 - Die vorliegende Arbeit ist in zwei Abschnitte gegliedert und befasst sich im ersten Teil mit der Darstellung und Reaktivität neuartiger, Carben-stabilisierter Galliumverbindungen. Der zweite Teil wurde den Untersuchungen zur Darstellung von berylliumhaltigen Verbindungen gewidmet, wobei, neben der Synthese von neuartigen, monomeren, sp-hybridisierten Berylliumverbindungen, die Stabilisierung niedervalenter Berylliumverbindungen durch die Verwendung von Carbenen einen zentralen Teil der Arbeit darstellt. 1 Lewis-Basen-stabilisierte Galliumverbindungen Zur Darstellung von Carben-stabilisierten, niedervalenten Galliumverbindungen wurden zwei unterschiedliche Syntheserouten herangezogen. Dabei konnten zum einen vier [GaCl3(RCAAC)]-Spezies (R = Me, Cy, Et, Menth) dargestellt werden, deren Verhalten unter reduktiven Bedingungen untersucht wurde. Jedoch führte keiner der Versuche zur chemischen Reduktion dieser Systeme zu einheitlichen Produkten und die Darstellung von dinuklearen Galliumverbindungen durch eine reduktive Kupplung zweier CAAC-Ga-Fragmente war auf diesem Weg nicht realisierbar. Ein weiterer Ansatz zur Darstellung von niedervalenten Digalliumverbindungen war die Reduktion Lewis-Basen-stabilisierter Digallan(4)-Verbindungen, bei welchen die beiden Galliumatome bereits über eine σ Einfachbindung verknüpft vorliegen. Die Synthese solcher Verbindungen durch die direkte Umsetzung des Galliumsubhalogenids ´GaI` bzw. des gemischt-valenten Salzes [Ga]+[GaCl4]– mit zwei Äquivalenten des freien Carbens MeCAAC führte nicht zu den doppelt Carben stabilisierten [Ga2X4(MeCAAC)2]-Spezies (X = I, Cl). Jedoch konnte [Ga2Cl4(MeCAAC)2] ausgehend von [Ga2Cl4(1,4 Dioxan)2], auf Basis der relativ schwach koordinierenden 1,4-Dioxan-Liganden, mittels Ligandaustauschreaktion dargestellt werden. In analoger Weise waren drei zusätzliche Vertreter realisierbar, wobei die Carbene CyCAAC, SIDep und IDipp verwendet wurden. Die Reaktivität der Lewis-Basen-stabilisierten Digalliumtetrachloride wurde gegenüber unterschiedlicher Reduktionsmittel getestet, wobei bei keiner der Umsetzungen ein einheitliches Produkt isoliert werden konnte. Die Darstellung von neutralen, Ga-Ga-Mehrfachbindungssystemen war folglich auf diese Weise nicht möglich. Die Umsetzung von [Ga2Cl4(MeCAAC)2] mit zwei Äquivalenten 1,3,2-Diazaborolyllithium führte zu einem Ga-Ga-Bindungsbruch und [GaCl2{B(NDippCH)2}(MeCAAC)] konnte als einziges Bor-haltiges Produkt isoliert werden. Ein weiterer zentraler Bestandteil dieser Arbeit beschreibt die Halogenaustauschreaktionen der doppelt Lewis-Basen-stabilisierten Digalliumtetrachloride. Die Verbindungen [Ga2Cl4(MeCAAC)2] und [Ga2Cl4(CyCAAC)2] wurden jeweils mit BBr3 oder BI3 umgesetzt, welche gängigerweise zum Halogenaustausch weiterer Gruppe-13-Verbindungen eingesetzt werden. Alle Reaktionen führten zu einem vollständigen Halogenaustausch der Digalliumtetrachloride unter Retention der Liganden und die Produkte [Ga2X4(MeCAAC)2] (X = Br, I) und [Ga2X4(CyCAAC)2] (X = Br, I) konnten isoliert werden. Auch die Umsetzung von [Ga2Br4(CyCAAC)2] mit BI3 lieferte die iodierte Spezies. Die CyCAAC-stabilisierten Vertreter weisen im Gegensatz zu den MeCAAC-stabilisierten Spezies eine bessere Löslichkeit in gängigen organischen Lösungsmitteln auf und konnten anhand von NMR-spektroskopischen Methoden charakterisiert werden. 2 Lewis-Basen-stabilisierte Berylliumverbindungen Durch die Umsetzung von BeCl2 mit zwei Äquivalenten 1,3,2-Diazaborolyllithium konnte das homoleptisch substituierte, lineare Be{B(NDippCH)2}2 dargestellt werden. Dieses zeigt im 9Be NMR-Spektrum eine Resonanz bei δ = 45 ppm, welche im Vergleich zu anderen linear-koordinierten Berylliumverbindungen weit zu tiefem Feld verschoben ist und bis dato das erste Beispiel dieses Frequenzbereichs darstellt. Der elektrophile Charakter des Berylliumatoms in Be{B(NDippCH)2}2 wurde anhand quantenchemischer Rechnungen postuliert und durch die Reaktivität der Verbindung gegenüber unterschiedlichen Substraten bestätigt. Die Methanolyse von Be{B(NDippCH)2}2 führt zu einem Be-B Bindungsbruch und neben dem, in gängigen Lösungsmitteln unlöslichen, Feststoff (Ben(OMe)m), wurde das protonierte 1,3,2 Diazaborol isoliert. Anhand von Deuterierungsexperimenten konnte Methanol als Protonenquelle identifiziert werden. Die Reaktion mit äquimolaren Mengen IMe lieferte ein trigonal planares Lewis-Basenaddukt. Durch die Umsetzung von BeCl2 mit stöchiometrischen Mengen des 1,3,2 Diazaborolyllithiums konnte die einfach borylierte Verbindung BeCl{B(NDippCH)2} nicht realisiert werden. Um heteroleptisch substituierte, lineare Berylliumverbindungen darzustellen, wurde [BeClCp*] als Edukt eingesetzt. Die Umsetzung mit NHCs führte lediglich im Fall des sterisch weniger anspruchsvollen IiPr zu einer Reaktion, welche nicht unter Adduktbildung verlief, sondern unter Ligandaustausch [BeCp*2] und das zweifach IiPr-stabilisierte Berylliumdichlorid lieferte. Die Umsetzung von [BeClCp*] mit äquimolaren Mengen 1,3,2 Diazaborolyllithium verlief in einer Salzeliminierung und das linear koordinierte [BeCp*{B(NDippCH)2}] wurde isoliert. Ein zentraler Bestandteil dieser Arbeit war die Monomerisierung von BeCl2 durch die Verwendung von CAAC-Liganden. Vier unterschiedlich substituierte Vertreter dieser [BeCl2(RCAAC)]-Spezies (R = Me, Cy, Et, Menth) konnten durch Umsetzung von BeCl2 mit dem entsprechenden freien Carben realisiert werden. Weiterhin erfolgte eine Untersuchung dieser Verbindungen gegenüber unterschiedlicher Substrate. Die Reaktion von [BeCl2(MeCAAC)] mit 1,3,2-Diazaborolyllithium verlief in einer Salzeliminierungsreaktion zu dem verzerrt trigonal planar koordinierten [BeCl{B(NDippCH)2}(MeCAAC)]. Die Verbindung konnte als Feststoff isoliert werden, wies jedoch eine limitierte Stabilität auf und zerfiel, sowohl in Lösung als auch in fester Form, unter Vakuum in das protonierte 1,3,2-Diazaborol und eine berylliumhaltige Verbindung, dessen Struktur nicht aufgeklärt werden konnte. Bei der Umsetzung von [BeCl2(MeCAAC)] mit Bogdanović-Magnesium ([Mg(C14H10)(thf)3]) konnte das CAAC-stabilisierte Berylliumanthracendiyl [Be(C14H10)(MeCAAC)] als roter, kristalliner Feststoff isoliert werden. Der Reaktionsmechanismus dieser Umsetzung ist bislang nicht vollständig geklärt, jedoch wird eine nukleophile Addition des Dianions des Anthracens an das Berylliumzentrum postuliert, welche eine Salzeliminierung zur Folge hat. Die Verbindung weist strukturelle Ähnlichkeiten zu der Magnesium-haltigen Spezies im Festkörper auf und für beide Verbindungen wird, durch den Verlust der Aromatizität des Anthracenylsubstituenten, eine Aufhebung der Planarität des Ringsystems beobachtet. Versuche zur Reduktion der unterschiedlich substituierten [BeCl2(RCAAC)]-Verbindungen mit einer Reihe an Einelektronen-Reduktionsmitteln führten nicht zum Erfolg und es konnte in keinem der Fälle ein einheitliches Produkt isoliert werden. Hingegen lieferte die Reaktion der Lewis-Basenaddukte [BeCl2(MeCAAC)] und [BeCl2(CyCAAC)] mit Kaliumgraphit und einem zusätzlichen Äquivalent RCAAC (R = Me, Cy) die homoleptisch- und heteroleptisch-substituierten Verbindungen [Be(CyCAAC)2], [Be(MeCAAC)2] und [Be(MeCAAC)(CyCAAC)]. Die Festkörperstrukturen der doppelt Lewis-Basen-stabilisierten Berylliumverbindungen zeigen deutliche Unterschiede zu denen der Edukte. Sowohl eine Kontraktion der Be1-C1-Bindungslängen, als auch eine Verlängerung der ligandzentrierten C1-N1-Bindungslängen ist zu beobachten, womit die Be-C-Bindungen der [BeL2] Verbindungen mit einem partiellen Doppelbindungscharakter beschrieben werden können. Im Gegensatz zu anderen, zweifach koordinierten Berylliumverbindungen, welche gewöhnlich in der formalen Oxidationsstufe +II vorliegen, wird in [Be(CAAC)2] das Berylliumatom formal in seiner elementaren Form stabilisiert. Die Verbindungen stellen somit bis dato die ersten neutralen Komplexe dar, bei welchen ein s-Block-Element in der formalen Oxidationsstufe 0 stabilisiert wird. Die ungewöhnliche elekronische Struktur dieser Spezies wird bereits an der tief-violetten Färbung der Verbindungen deutlich (λmax (THF) = 575/579 nm). Quantenmechanische Berechnungen beschreiben die Bindungssituation in [Be(CAAC)2] mit einer Kombination aus Donor-Akzeptor-Wechselwirkungen zwischen zwei CAAC-Liganden im Singulett-Grundzustand und einem neutralen Be(0) im doppelt angeregten Zustand (1s22s02p2). Daraus resultiert eine 3c-2e−-π-Bindung, welche sich über den CCarben Be CCarben-Kern erstreckt und im Vergleich zur σ Hinbindung einen größeren Anteil zur Stabilisierung des Systems beiträgt. Die analogen NHC-stabilisierten Vertreter [Be(IDipp)2] bzw. [Be(IDipp)(IMes)] als auch die heteroleptisch substituierten Spezies [Be(MeCAAC)(NHC)] (NHC = IDipp, IMes, SIDep) konnten nicht realisiert werden. Eine Erklärung hierfür könnten die elektronischen Unterschiede der Carbene liefern. Zum einen reicht vermutlich die Akzeptorfähigkeit der NHCs nicht aus, um eine 3c-2e−-π-Bindung auszubilden und zum anderen ist auch die Stabilität von gemischten CAAC/NHC-stabilisierten Be(0)-Komplexen nicht gegeben, wenn durch die unterschiedliche σ-Donor bzw. π-Akzeptorfähigkeit der Liganden keine symmetrische π-Bindung ausgebildet werden kann. KW - Beryllium KW - Beryllium(0)-Verbindungen KW - Gallium KW - Lewis-Basen Addukte KW - niedervalente Verbindungen KW - Lewis-Basen-stabilisierte Galliumverbindungen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166381 ER - TY - THES A1 - Wehner, Tobias T1 - Multifunktionale Kompositmaterialien auf Basis lanthanidhaltiger Verbindungen mit lumineszierenden Nanopartikeln und superparamagnetischen Mikropartikeln T1 - Multifunctional composite materials based on lanthanide containing compounds with luminescent nanoparticles and superparamagnetic microparticles N2 - Die vorliegende Arbeit umfasst die Synthese und Charakterisierung 23 neuartiger, multifunktionaler Kompositmaterialien basierend auf lanthanidhaltigen Verbindungen sowie verschiedenen Nano- und Mikropartikeln. Die dargestellten Materialien konnten als Core/Shell-Systeme mit einem nano- bzw. mikropartikelhaltigen Kern und einer lanthanidhaltigen Hülle charakterisiert werden und vereinen aufgrund ihres Kompositcharakters die spezifischen Eigenschaften der Einzelkomponenten wie Lumineszenz, Superparamagnetismus oder Reflexionseigen-schaften miteinander. Zur Synthese multifunktionaler, lumineszierender Materialien wurden zirconylbasierte, lumineszierende Nanopartikel mit Lanthanidchloriden und lanthanidhaltigen MOFs funktionalisiert. Die Kompositsysteme LnCl3@ZrO(FMN) (FMN = Flavinmononukleotid, Ln = Y, Sc, La, Eu, Tb, Ho) ermöglichen eine Modifizierung der Lumineszenzeigenschaf-ten der Materialien abhängig von der Reaktionstemperatur sowie dem verwendeten Selten-Erd-Ion. Durch Variation der Nanopartikelkomponente konnte mittels der Kom-posite LnCl3@ZrO(MFP) (MFP = Methylfluoresceinphosphat) ein zusätzlicher sol-vatochromer Effekt der Systeme eingeführt werden, während das Kompositmaterial YCl3@ZrO(RP) (RP = Resorufinphosphat) eine andere Chromatizität zugänglich macht. Durch Modifizierung von ZrO(FMN)- und ZrO(MFP)-Nanopartikeln mit 3∞[Eu2(BDC)3]· 2DMF·2H2O (BDC2- = Benzol-1,4-dicarboxylat) wurden Kompositmaterialien dargestellt, die zwei Lumineszenzprozesse mit unterschiedlicher Chromatizität und unterschiedli-cher Anregbarkeit miteinander kombinieren und somit eine reversible Schaltbarkeit zwischen beiden Prozessen durch Variation der Anregungswellenlänge ermöglichen. Zur Synthese luminomagnetischer Materialien wurden superparamagnetische Fe3O4/SiO2-Mikropartikel mit einer Vielzahl lanthanidhaltiger MOFs, die sich hinsichtlich ihrer Lumineszenzeigenschaften und ihrer Stabilität gegenüber Luft und Wasser unterscheiden, modifiziert. Als MOFs wurden hierbei 2∞[Ln2Cl6(Bipy)3]·2Bipy (Bipy = 4,4‘-Bipyridin, Ln = Nd, Sm, Eu, Tb, Er), 3∞[Eu(Im)2], 3∞[Ba0.95Eu0.05(Im)2] (Im = Imidazolat) und 3∞[Eu2(BDC)3]·2DMF·2H2O eingesetzt. Die Variation der zur Funktionalisierung verwendeten Komponente oder eine Kombination mehrerer MOFs ermöglicht eine Anpassung der Lumineszenz der Kompositmaterialien innerhalb des kompletten sichtbaren Spektralbereichs sowie im NIR-Bereich. Die dargestellten luminomagnetische Kompositmaterialien mit wasserempfindlichen MOFs können zur Detektion von Wasser in verschiedenen organischen Lösungsmitteln verwendet werden und stellen somit eine mobile und einfach anwendbare Alternative zur Karl-Fischer-Titration mit einer vergleichbaren Sensitivität dar. So eignen sich die Kompositsysteme 2∞[Eu2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 und 2∞[Eu2Cl6(Bipy)3]·2Bipy, 2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als optische turn-off-Sensoren, während das Kom-posit 3∞[Eu2(BDC)3]·2DMF·2H2O,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 als ratiometrischer Sensor verwendet werden kann. Als Alternative zu sphärischen Partikeln wurden auch anisotrope, stäbchenförmige Fe3O4/SiO2-Mikropartikel mittels 3∞[Eu2(BDC)3]·2DMF·2H2O modifiziert. Das resul-tierende Kompositmaterial vereint die isotropen Lumineszenzeigenschaften der MOF-Hülle mit der anisotropen Reflexion von sichtbarem Licht der. Durch die Wahl der Anregungswellenlänge und Richtung eines externen Magnetfelds wird eine stufenlose und reversible Schaltbarkeit zwischen isotropen und anisotropen Eigenschaften ermöglicht. Durch mechanochemische Umsetzung der MOF-Edukte [LnCl3(Py)4]·0.5Py (Ln = Eu, Ho) und 4,4‘-Bipyridin konnte eine Vielzahl von literaturbekannten lanthanidhaltigen Komplexen und Koordinationspolymeren mittels einer neuen und zeiteffizienten Syntheseroute dargestellt werden. Hierbei kann die Verknüpfungsdimension der resultierenden Produkte abhängig von verschiedenen Reaktionsparametern, die den Energieeintrags der Kugelmühle beeinflussen, gesteuert werden. N2 - The thesis at hand deals with the synthesis and characterization of 23 novel multi-functional composite materials that are based on lanthanide containing compounds as well as different nano- and microparticles. The synthesized compounds can be described as core/shell systems with a nanoparticle and microparticle containing core, respectively, and a lanthanide containing shell. Due to their composite character, the materials combine the specific properties of their single constituents such as luminescence, superparamagnetism or reflection properties. For the synthesis of multifunctional luminescent materials, zirconyl containing, lumines-cent nanoparticles were modified with lanthanide chlorides as well as lanthanide con-taining MOFs. The composite materials LnCl3@ZrO(FMN) (FMN = flavin mononucleo-tide, Ln = Y, Sc, La, Eu, Tb, Ho) enable a modification of the materials’ luminescence properties in dependence on the reaction temperature and the particular rare earth ion. Variation of the nanoparticle component leads on the one hand to formation of the sys-tem LnCl3@ZrO(MFP) (MFP = methylfluorescein phosphate), which exhibits a strong solvatochromic effect, and on the other hand to the composite YCl3@ZrO(RP) (RP = resorufin phosphate), which makes another chromaticity of the luminescence ac-cessible. The modification of ZrO(FMN) and ZrO(MFP) nanoparticles with 3∞[Eu2(BDC)3]· 2DMF·2H2O (BDC2- = benzene-1,4-dicarboxylate) results in composite materials that combine two luminescence processes with a different chromaticity and a diverse excita-tion range. Therefore, a continuous and reversible switching between both processes can be executed by variation of the excitation wavelength. For the synthesis of luminomagnetic materials, superparamagnetic Fe3O4/SiO2 micro-particles were modified with a variety of lanthanide containing MOFs that differ in terms of their luminescence properties and their water and air stability. For this purpose, the MOFs 2∞[Ln2Cl6(Bipy)3]·2Bipy (Bipy = 4,4’-Bipyridine, Ln = Nd, Sm, Eu, Tb, Er), 3∞[Eu(Im)2], 3∞[Ba0.95Eu0.05(Im)2] (Im- = imidazolate) and 3∞[Eu2(BDC)3]·2DMF·2H2O were employed for microparticle functionalization. By variation of the selected MOF or a combination of two different compounds, the luminescence properties of the composite materials could be adjusted in the whole visible spectral region as well as in the NIR region. The synthesized luminomagnetic composite materials with water sensitive MOFs can be applied for the detection of water in various organic solvents. Therefore, such compo-sites can be used as alternative to the Karl-Fischer titration that is easy applicable, mo-bile and exhibits similar detection limits. The composite materials 2∞[Eu2Cl6(Bipy)3]· 2Bipy@Fe3O4/SiO2 and 2∞[Eu2Cl6(Bipy)3]·2Bipy,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 can be deployed as optical turn-off sensors, while the composite system 3∞[Eu2(BDC)3]· 2DMF·2H2O,2∞[Tb2Cl6(Bipy)3]·2Bipy@Fe3O4/SiO2 is suitable for a ratiometric determina-tion of the water content. As alternative to spherical particles, anisotropic rod-like Fe3O4/SiO2 microparticles were functionalized with 3∞[Eu2(BDC)3]·2DMF·2H2O. The resulting composite material com-bines the isotropic luminescence of the MOF shell with the anisotropic reflection of visible light of the microparticle component. A continuous and reversible switching between both optical properties is enabled by the variation of the excitation wavelength and the direction of an external magnetic field. The mechanochemical reaction of the MOF precursors [LnCl3(Py)4]·0.5Py (Ln = Eu, Ho) and 4,4’-bipyridine leads to a variety of lanthanide containing complexes and coordina-tion polymers that have already been reported in literature. Thus, a novel and time effi-cient synthesis route could be described for an alternative preparation of these com-pounds. The dimensionality of the resulting substances can be influenced in dependence on different reaction parameters that have an influence on the application of energy by the ball mill. KW - Photolumineszenz KW - Metallorganisches Netzwerk KW - Superparamagnetismus KW - Mikropartikel KW - Nanopartikel KW - Kompositmaterialien KW - Lumineszenzsensor KW - Luminomagnetische Partikel Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158186 ER - TY - THES A1 - Böhnke, Julian T1 - Reaktivität niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme T1 - Reactivity of low-valent, carbene-stabilized boron-boron multiple bonds N2 - Im Rahmen dieser Arbeit war es möglich, vielfältige Reaktivitäten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. Häufig begründet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungewöhnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-Fähigkeiten und der hohen π-Acidität der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivitätsstudien mit den entsprechenden NHC-stabilisierten Bor–Bor-Mehrfachbindungssystemen wider. Zunächst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgeführt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungslängen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zugänglichkeit für die Reaktivitätsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollständige, oxidative Spaltung der Bor–Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten größeren Teilbereich dieser Arbeit dar. Durch die enorme π-Rückbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Im weiteren Verlauf konnte ein Mechanismus für die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) – einer Spezies, die für die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde – unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei Äquivalenten tert-Butylisocyanid führte zur Bildung eines Bis(boraketenimins). Ähnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-Rückbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Die Thermolyse der Verbindung führte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: Während ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung führt und potentiell hochinteressante Reaktivitäten ermöglicht. So führte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B–B-Bindung und Insertion eines µ2-gebundenen CO-Moleküls in die BB-Einheit. Die Tatsache, dass ein ähnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten Fähigkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivität des Diborakumulens 7 gegenüber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das Rühren von 7 unter einer H2-Atmosphäre führte zur 1,2-Addition des H2-Moleküls an die B2-Einheit unter Ausbildung eines trans-ständigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidität der CAAC-Liganden über das gesamte C–B–B–C-Grundgerüst delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgeführt, um eine Hydridabstraktion aus dem Lösungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielfältige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu begünstigen, führte zur Ausbildung verschiedener Tautomere. Während das Produkt aus der formalen Addition und Insertion von zwei CO-Molekülen (24) lediglich unter CO-Atmosphäre stabil war, konnte unter Argonatmosphäre ein Tautomerengemisch von 25 mit intakter Bor–Bor-Bindung und einer Boraketeneinheit isoliert werden. Während dieser Prozess vollständig reversibel war, führte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Darüber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollständigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosphären, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen ermöglichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen führte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchgängig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark ähnelte. Eine weitere Umsetzung von 22 mit zwei Äquivalenten Diphenyldisulfid führte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivitätsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molekülen führte zur Ausbildung einer Spezies mit einer Boraketenfunktionalität und einem Borsäureesterderivat (30). Für die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion über eine ungewöhnliche, sukzessive [2+1]-Cycloaddition an die koordinativ ungesättigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton führte zur Ausbildung eines fünfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbrückter Bor–Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Brückner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsführung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. Während das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, führten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. Für 31 konnte darüber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander überführt werden konnte. Die Reaktion des Diborakumulens mit Münzmetallhalogeniden ergab für die Umsetzung von 7 mit drei Äquivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-förmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem Äquivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilität, sodass sich nach einem Zeitraum von 24 Stunden bei erhöhter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-Säure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren Äquivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zunächst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor–Bor-Bindung besitzt. Die Reaktion von 34 gegenüber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments führt hier zu einer erheblichen π-Rückbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen für die CO-Schwingung in einer derartigen Funktionalität aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff führte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor–Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verhältnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor–Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundgerüst, C–C- und B–C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols ähneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der Übergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor–Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen ermöglichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an Übergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 möglich war. Die Ausbildung eines quinoiden Systems führte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 Äquivalenten Zirkoniumtetrachlorid führte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang darüber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen für [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche Rückbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant höhere Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als überaus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivitätsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit beschäftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid führte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor–Bor-Mehrfachbindung. Während die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor–Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben für 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten darüber hinaus zeigen, dass die Singulett-Zustände der synthetisierten Diborene stabiler als die Triplett-Zustände sind und dass die Triplett-Zustände der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zustände sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verständnis dieser Verbindungsklasse. N2 - Within the scope of this work, various reactivities of the diboracumulene 7 and derivatives thereof were investigated. Induced by the exceptional electronic properties of the applied CAAC ligands, unprecedented and exceptional binding modes of low-valent boron species have been observed. The influence of the strong σ-donor properties and the pronounced π-acidity of the cyclic (alkyl)(amino)carbenes is reflected in comparative reactivity studies with the respective NHC-stabilized boron–boron multiple bonded systems. Initially the synthesis of further diboracumulenes was attempted and realized with a bis(CAACCy)-stabilized B2 unit (12). With comparable 11B NMR shifts and similar bond lengths, the compound does not significantly differ in terms of its electronic properties from B2(CAAC)2 (7), which was used in the reactivity studies due to its superior accessibility. Fundamental studies on the redox properties of B2(CAAC)2 showed the complete oxidative cleavage of the boron–boron bond with chlorine gas while forming a CAAC-stabilized boron trichloride fragment. Research on the bis(boraketene) 17 and the synthesis of the bis(boraketeneimine) 18 through the treatment of the diboracumulene 7 with carbon monoxide and suitable isocyanides represents the first major section of this work. Due to the strong π-backbonding into the CAAC ligands and the CO ligands from the electron rich B2 unit, the B–B bond of 17 is significantly elongated and the π-frameworks are mutually orthogonal. By means of DFT calculations the reaction pathway could be investigated, which shows high energetic barriers for the conversion of 17 to the bis(boralactone), a species that was observed for the NHC-stabilized boron–boron multiple bonds. In this way the electronic and structural differences between diborynes and the diboracumulene 7 could be evaluated under defined reaction conditions for the first time. The reaction of 7 with two equivalents of tert-butyl isocyanide led to the formation of a bis(boraketeneimine). Comparable to the bis(boraketene), 18 shows strong π-backbonding into the isocyanide ligands, which is concomitant with an elongated B–B bond and orthogonally oriented boraketeneimine moieties. Thermolysis of the compound led to the elimination of two tert-butyl radicals and formation of the first structurally characterized dicyanodiborene (20). The dicyanodiborene shows a structural peculiarity: While one CAAC ligand is in conjugation with the π-system of the B2 unit, the second one shows an orthogonal orientation to the π-framework, which presumably results in polarization of the B=B double bond and potentially enables highly interesting reactivity. Thus, the addition of carbon monoxide to 20 led to the splitting of the B–B bond and the insertion of a µ2-bound CO molecule into the B2 unit. The fact that similar reactivity is only known from the CAAC-stabilized dihydrodiborene 22 (vide infra) clearly demonstrates the exceptional properties of CAACs to stabilize highly reactive, low-valent main group compounds. The reactivity of the diboracumulene 7 towards dihydrogen represents another major section of this work. When 7 was stirred under a H2 atmosphere the H2 molecule was added across the B2 unit in a 1,2-addition, leading to the formation of a base-stabilized trans dihydrodiborene. In contrast to the dicyanodiborene, 22 is C2 symmetric and the π-system in the HOMO is delocalized over the whole C–B–B–C framework due to the π-acidity of the CAAC ligands. The hydrogenation was also carried out with pure D2 to rule out hydrogen abstraction from the solvent. DFT calculations also classified the boron-bound hydrogens as hydrides and determined the mechanism of the dihydrogen addition to the B2 unit. With a calculated exothermic reaction pathway, the reaction from 7 to 22 represents the first example of an uncatalyzed hydrogenation of a homodinuclear multiple bond of the second row. In this work the CAAC-stabilized dihydrodiborene 22 showed diverse binding modes when treated with carbon monoxide. Among other outcomes, the propensity to promote 1,2-hydrogen shifts from adjacent BH-moieties to the carbene carbon atom led to the formation of various tautomers. While the product of the formal addition and insertion of two CO molecules was only stable under a CO atmosphere (24), under argon atmosphere two tautomers of 25 with a boron–boron bond and boraketene unit could be isolated. This process was found to be completely reversible. However, heating of 25 led to the formation of an alkylidene borane 26 which also exists in two tautomers. Furthermore, the formation of another species in low yields from the complete splitting of a CO fragment and the formation of an intramolecular C≡C triple bond could be observed. VT-NMR and correlation experiments, crystallizations under different atmospheres, vibrational spectroscopy, as well as determination of the reaction pathway by means of DFT calculations, enabled a deep and detailed insight into the underlying processes. The reaction of the dihydrodiborene 22 with acetylene under thermal conditions did not lead to the expected cycloaddition across the B=B double bond but to the insertion of acetylene into it. The obtained product 28 showed a C2 symmetric structure with sp2-hybridized carbon and boron centers along the major axis. A DFT study showed a conjugated π-system which closely resembles the of 1,3,5-hexatriene. Another reaction of 22 with two equivalents of diphenyl disulfide yielded the splitting of the B=B double bond and the formation of a CAAC-stabilized sp3-hybridized monoborane. In two other reactivity studies the diboracumulene could be selectively reacted with carbon dioxide and acetone. The reaction of B2(CAAC)2 with two CO2 molecules led to the formation of a species with a boraketene functionality and a boronic ester group (30). There are no reported examples of the activation of carbon dioxide with apolar multiple bonds, which is why the reaction pathway was investigated by DFT calculations. The reaction proceeds via an unusual successive [2+1] cycloaddition to the coordinatively unsaturated boron atoms with the whole process being strongly exergonic. The reaction of 7 with acetone led to the formation of a five-membered heterocycle with a C=C double bond and an unsymmetrically bridged boron–boron bond with a µ2 hydride orthogonal to the heterocycle. Interestingly, a comparative study from Tobias Brückner with a SIDep-stabilized diboryne and analogous reactions conditions resulted in the 1,2-enol addition product so that the underlying reaction pathway was also investigated. While the 1,2-enol addition product can be described as an intermediate on the way towards 31, moderate energetic barriers and a noticeably exergonic reaction pathway led to a double acetone activation when using the diboracumulene. 31 also showed a mixture of two isomers that could not be interconverted after formation. The reaction of B2(CAAC)2 with (Me2S)CuCl led to a T-shaped coordination of three CuCl fragments to the B2 unit. If treated with one equivalent IMeMe, the diboracumulene showed the formation of the heteroleptic substituted mono base adduct 34. Due to its thermal lability, after 24 hours at elevated temperature the selective formation of a C–H activation product was observed. The same product (35) could be obtained within minutes after addition of a Lewis acid (gallium trichloride) to 34 at room temperature. The addition of another equivalent of IMeMe to 34 led to the formation of the bis(IMeMe) adduct of the diboracumulene 36, which was reminiscent of the bis(CO) adduct 17 and features a strongly elongated B–B bond due to the steric strain in the system. The reaction of 34 towards carbon monoxide resulted in the formation of the heteroleptic base adduct 37. The electron rich boron atom of the boraketene fragment induces strong π-backdonation into the CO ligand, resulting in the lowest observed CO stretch for such a functionality. A final reactivity test of the monobase adduct 34 was carried out with dihydrogen, which led to the spontaneous hydrogenation of both boron atoms and the splitting of the boron–boron bond. The reaction mixture showed two species in a 1:1 ratio: a CAAC-stabilized BH3 fragment 39 and a twofold base-stabilized BH-borylene 38. The splitting of a boron–boron (multiple) bond to access heteroleptic Lewis-base-stabilized borylenes provides a novel approach towards this class of compounds. A large part of this work concerns with the synthesis and reactivity of diborabenzene derivatives. When treating the diboracumulene 7 with acetylene, the formation of a CAAC-stabilized 1,4-diborabenzene could be observed. The planar framework, C–C and B–C bonds within the area of (partial) double bonds, strongly deshielded protons of the central B2C4H4 heterocycle, frontier orbitals that resemble those of benzene as well as negative NICS values represent 42 as a 6π-aromatic system. Due to its tremendously energetically destabilized HOMO, the compound was capable to be used as an electron rich ligand in transition metal chemistry (vide infra). The reactions of B2(CAAC)2 with propyne and 2-butyne led to the formation of 2π-aromatic, paramagnetic compounds with a butterfly shape from the [2+2] cycloaddition to the boron–boron-bond followed by a rearrangement to the thermodynamically more stable 1,3-diboretes. The thermally induced reaction of 40 and 41 with acetylene enabled the formation of the methyl-substituted 1,4-diborabenzene derivatives 43 and 44. To evaluate the properties of the CAAC-stabilized 1,4-diborabenzene 42, the redox properties as well as the potential application as a η6-ligand for transition metals of the chromium triad, were investigated. The reduction of 42 with elemental lithium led to the formation of the two-electron reduction product 45. The formation of a quinoidal system led to an isomeric mixture of cis/trans configured CAAC ligands. Treatment of the compound with 0.5 equivalents of zirconium tetrachloride led to the quantitative formation of 42 and thereby demonstrating the high reduction potential of the dilithiated species. Furthermore, the reaction of 42 with [(MeCN)3M(CO)3] (M = Cr, Mo, W) enabled the synthesis of 18-valence-electron half-sandwich complexes. The coordination of the electron rich heteroarene to the metal tricarbonyl fragments resulted in the lowest ever observed carbonyl stretches for [(η6-arene)M(CO)3] complexes due to the strong electron donation of the ligand to the metal and the resulting backdonation into the antibonding π*-orbitals of the CO ligands. DFT calculations revealed (in contrast to [(η6-C6H6)Cr(CO)3]) significantly higher binding energies between the metal fragment and the 1,4-diborabenzene and together with further spectroscopic and theoretical analyses underline the remarkable ability of 42 to act as an exceedingly electron donating ligand. Ultimately in a reactivity study with the tungsten complex 48, it was possible to obtain the radical monoanion 49, which is the first example of a monoanionic arene metal tricarbonyl complex of group 6 metals. A final topic of this work concerned the synthesis of biradicals from twisted double bonds and the comparison with their diamagnetic congeners, diborenes. The reaction of the diboracumulene with differently substituted disulfides and one diselenide led to the formation of persistent, paramagnetic biradicals through 1,2 additions across the boron–boron multiple bond. While the addition of the reagents to the IDip-stabilized diboryne provided closed-shell, diamagnetic diborenes with a coplanar orientation of the substituents, the addition to the diboracumulene 7 led to the formation of a boron–boron single bond with mutually orthogonal ligands. EPR spectroscopy as well as magnetic measurements of the samples showed a triplet ground state for 51e at room temperature with a strong delocalization of the unpaired electrons into the ligands due to the captodative effect of the π-donor nitrogen atoms and π-acceptor boron atoms. Furthermore, detailed theoretical studies showed that the singlet states of the synthesized diborenes are always more stable than the triplet states and that the triplet states of the paramagnetic compounds 51a,b,e are always more stable than the respective singlet states. All compounds exist in their ground states and therefore represent highly interesting model systems for a deeper understanding of this class of compounds. KW - Bor KW - Mehrfachbindung KW - Reaktivität KW - CAAC KW - Diborakumulen KW - Diborin KW - Diboren KW - Carben Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163335 ER - TY - THES A1 - Stauch, Claudia T1 - Synthese und Charakterisierung nanostrukturierter Mikropartikel mit einstellbarem Zerfallsverhalten als Additive für Elastomerkomposite T1 - Synthesis and characterization of nanostructured micro-particles with adjustable decomposition behavior as additives for elastomer composites N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von nanostrukturierten Mikropartikelpulvern mit einstellbarem Zerfalls- und Dispergierungsverhalten und deren Anwendung als verstärkender Füllstoff sowie deren Eignung für Sensoranwendungen. Sie ist in drei Teilbereiche gegliedert: Der erste Teil beschreibt die Synthese der nanostrukturierten Mikropartikelpulvern durch Sprühtrocknung von kolloidalen oxidischen (silicatischen und eisenoxidischen) Nanopartikeln. Es wird ausgeführt, wie durch Variation der Art und Größe der Primärpartikel und deren mengenanteiligen Kombination Mikropartikel unterschiedlichster nanostruktureller Maserung und Ausprägung erhalten wurden. Das Spektrum dieser Partikel reichte von homogen verteilten Strukturen bis hin zu Kern-Satellit-Struktur, von kontrollierter Aggregierung bis hin zur vollständigen Dispergierbarkeit. Im zweiten Teil der Arbeit wurden die Partikel im Hinblick auf ihre Eignung und Verwendung als Füllstoffe für Elastomer-Matrices untersucht. Im Fokus stand die Verstärkungswirkung und die Korrelation mit dem Dispergierverhalten in PDMS. Im dritten Teil der Arbeit wurde das Syntheseprinzip der Herstellung nanostrukturierter Mikropartikel auf Hydroxid-basierte Systeme wie LDHs erweitert. Teil I: Von Silica-NP zu nanostrukturierten Mikropartikeln mit einstellbarem Zerfallsverhalten Um nanostrukturierte Mikropartikel mit einem integrierten Zerfallsverhalten zu erzeugen, wurden zunächst kolloidale Silica-NP mit einer Größe von 20 nm abgestuft mit unterschiedlichen Mengen (0, 1/10, 1/5, 1/3, 1/2, 2/3, 1) eines hydrophobierend wirkenden Silans (Triethoxyoctylsilan, OCTEO) modifiziert. Neben den beiden Extremen der vollständigen und unmodifizierten Varianten (1 und 0) wurden teilweise modifizierte Zwischenstufen erhalten, indem die Silanmenge auf 2/3, 1/2, 1/3, 1/5 und 1/10 im Vergleich zu den vollmodifizierten Silica-NP verringert wurde. Die modifizierten Nanopartikel zeigten beim Dispergieren in verschiedenen Flüssigkeiten (Wasser, Toluol) eindeutige und graduell klar differenzierbare Unterschiede in Abhängigkeit vom Bedeckungsgrad der Partikeloberfläche mit dem Silan. Wie erwartet nahm das hydrophobe Verhalten der Nanopartikel mit zunehmendem Bedeckungs- und damit Modifizierungsgrad zu und die Nanopartikel waren in unpolaren Flüssigkeiten wie Toluol gut dispergierbar, während sie in polaren Flüssigkeiten wie Wasser zur Agglomeration und Sedimentation neigten. In einem nächsten Schritt wurden die zu unterschiedlichen Graden mit OCTEO modifizierten kolloidalen Silica-NP mittels Sprühtrocknung in mikroskalige Pulver überführt. Die nanostrukturierten Mikropartikelpulver wurden mit verschiedenen Analysemethoden wie REM-Aufnahmen, BET-, FTIR- und TG-Messungen untersucht, und die Eigenschaften der gebildeten Partikel charakterisiert. Die nanostrukturierten Mikropartikel zeigten auf den REM-Aufnahmen abhängig vom Modifizierungsgrad der Nanopartikel ein sehr unterschiedliches Aussehen. Während die Mikropartikel aus vollständig modifizierten Nanopartikeln eine eher raue Oberfläche besaßen, hatten die aus unmodifizierten Nanopartiklen gebildeten eine sehr glatte, kompakt erscheinende Oberfläche, was als Hinweis auf eine Kondensation und eine damit verbundene Aggregation der Nanopartikel gewertet wurde. Da sich diese Hypothese anhand der Aufnahmen aber nicht beweisen ließ, wurden in einer nächsten weiterführenden Testreihe Nano-Indenter-Experimente unter dem REM mit den aus voll- und unmodifizierten Nanopartikeln aufgebauten Mikropartikeln durchgeführt. Die Ergebnisse bestätigten den ersten Eindruck der REM-Aufnahmen insofern, als das sich die sehr kompakt wirkenden unmodifizierten Partikel nicht mit einer Wolfram-Spitze eindrücken ließen und damit die Hypothese mechanisch stabiler Aggregate untermauerten. Ganz anders verhielten sich die vollmodifizierten Partikel, die mithilfe der Wolfram-Spitze so eingedrückt werden konnten, dass die Nanopartikel aus dem Mikropartikelverbund herausgelöst wurden und teilweise vereinzelt vorlagen. Hier handelte es sich mit hoher Wahrscheinlichkeit um Agglomerate, die unter der Einwirkung einer Scherkraft wieder vereinzelt werden konnten. Da es mit mikroskopischen Verfahren wie REM nicht möglich war, unmittelbare Aussagen bezüglich der Wechselwirkung der Nanopartikel im Mikropartikel zu treffen, wurden zunächst die Oberflächeneigenschaften mittels BET-, FTIR- und TG-Messungen untersucht. Im Hinblick auf die spätere Anwendung war es sehr wichtig, die Oberflächeneigenschaften der Mikropartikel möglichst umfassend zu charakterisieren, da diese entscheidend zur Dispergierbarkeit der Partikel in einem Matrixsystem beitragen. Mithilfe der FTIR- und TG-Messungen konnte die Anwesenheit und Menge von Silan auf der Partikeloberfläche bestimmt werden. Es zeigte sich ein klarer Trend für die zu verschiedenen Graden mit OCTEO modifizierten Silica-NP. Mit zunehmender Silanmenge nahm sowohl die Intensität der FTIR-Bande für die CH2- und CH3-Streckschwingung als auch der Masseverlust zu. Im Gegensatz zu diesen Messungen zeigte sich bei den BET-Messungen kein klarer Trend in Abhängigkeit vom Bedeckungsgrad der Silica-NP. Die höchsten Werte für die spezifische Oberfläche hatten Mikropartikel, die aus 1/5- und 1/3-modifizierten Silica-NP bestanden. Eine schlüssige Erklärung wird darin gesehen, dass durch die Alkylgruppen auf der Oberfläche ein Kondensieren der Silica-NP weitestgehend verhindert wurde und gleichzeitig noch genügend Mikroporen vorhanden blieben, die mit den Stickstoffmolekülen wechselwirken konnten. Neben den Standard-Analysemethoden wurden Dispergierbarkeitsuntersuchungen durchgeführt sowie die Hansen-Dispergierbarkeitsparameter (HDP) und die ET (30)-Werte mit dem Reichardt-Farbstoff bestimmt. Anhand der Dispergierbarkeitsuntersuchungen konnten erste qualitative Aussagen getroffen werden, ob es sich um hydrophile oder hydrophobe Partikel handelt. Diese ersten Ergebnisse und Trends konnten anschließend mit den HDP und dem RD quantitativ untermauert werden. Die Polarität der Mikropartikel, die aus zu unterschiedlichen Graden mit OCTEO modifizierten Silica-NP aufgebaut waren, nahm mit zunehmender Oberflächenbedeckung ab. Dieser Trend korrelierte mit den aus den FTIR- und TG-Messungen erhaltenen Werten. Da es mit den Silica-basierten Mikropartikeln nicht möglich war, unmittelbare Aussagen zum Agglomerations- bzw. Aggregationsgrad der Nanopartikel im Mikropartikel zu treffen, wurde das Prinzip der Agglomerations/Aggregationssteuerung über Oberflächenmodifikation auf magnetische Nanopartikel übertragen und so ein Modell geschaffen, das die Wechselwirkung auf nanopartikulärer Ebene sichtbar und messbar macht. Diese Informationen zum Agglomerationsgrad der Nanopartikel lieferten wertvolle Hinweise im Hinblick auf die Dispergierbarkeit der Partikel in einer Matrix: Handelte es sich bei den Partikeln um lose Agglomerate, könnten diese zum Beispiel in einem Elastomer wieder auf Primärpartikelgröße dispergiert werden, während Aggregate nur in undefinierte Sekundärstrukturen zerfallen. Gleichzeitig wurde mit dieser Systemübertragung die Frage beantwortet, ob es sich bei den teilmodifizierten Partikeln um eine Mischung aus voll- und unmodifizierten Partikeln handelte oder ob das Silan statistisch über die komplette Oberfläche verteilt war. Wie auch schon beim Silica-System wurden die Nanopartikel zunächst abgestuft mit OCTEO modifiziert (0, 1/10, 1/3, 1/2, 2/3, 1) und anschließend sprühgetrocknet. Aufgrund ihrer magnetischen Eigenschaften konnten die Eisenoxid-Partikel mittels ZFC- und FC-Messungen untersucht werden. Diese spezielle Analysemethode erlaubte es, Aussagen über den Grad der magnetischen Wechselwirkung der Partikel zu treffen und somit indirekt auch über den Grad der Agglomeration/ Aggregation der Nanopartikel im Mikropartikel. Es zeigten sich klare Unterschiede in den Werten für die Blocking-Temperatur (TB) zwischen den voll- und unmodifizierten Partikeln. TB ist die Temperatur, ab welcher die Magnetisierungsrichtung der Partikel aufgrund der thermischen Energie frei fluktuieren kann. Die vollmodifizierten Partikeln hatten einen sehr niedrigen Wert für TB, was auf eine schwache Dipol-Dipol- Wechselwirkung zwischen den einzelnen Eisenoxid-NP schließen ließ, während die unmodifizierten Eisenoxid-Partikel einen hohen TB-Wert hatten, woraus zu schließen war, dass es sich um Aggregate mit einem sehr geringen Partikel-Partikel-Abstand handelte und einer deshalb höheren Wechselwirkung. Die Werte der teilmodifizierten Partikel folgten dem Trend, dass mit zunehmender Silan-Bedeckung der TB-Wert abnahm. Um die Frage der Silan-Verteilung zu beantworten, wurde zusätzlich ein Mischsystem aus voll- und unmodifizierten Eisenoxid-NP versprüht. Sollte es sich bei den teilmodifizierten Partikeln (als Beispiel 1/2) nicht um eine statistische Verteilung der Octylgruppen auf der Oberfläche handeln, müssten die beiden Messungen Übereinstimmungen aufweisen. Dies war allerdings nicht der Fall, was mithilfe der ZFC- und FC-Messungen gezeigt werden konnte. Der TB-Wert des Mischsystems lag zwischen dem der voll- und zu 2/3-modifizierten Partikel, während der Tir-Wert dem der unmodifizierten Partikel entsprach. Die Breite der Aufspaltung zwischen TB undTir konnte als breite Partikelverteilung (Mischung aus Agglomeraten und Aggregaten) interpretiert werden. Im Hinblick auf die Anwendung als Füllstoff wurden die Mikropartikel in eine PDMS-Matrix eingearbeitet und erneut ZFC- und FC-Messungen durchgeführt, wobei die gleichen Trends wie bei den reinen nanostrukturierten Mikropartikeln erhalten wurden. Das bedeutete, dass sich die vollmodifizierten Eisenoxid-NP gut im Elastomer verteilt hatten und somit eine nur sehr geringe Dipol-Dipol-Wechselwirkung vorhanden war. Mit dem entwickelten System der nanostrukturierten Mikropartikel lässt sich der Agglomerations- bzw. Aggregationsgrad der Nanopartikel mehr oder weniger gezielt einstellen, und es können zusätzlich Voraussagen über die Redispergierbarkeit des Partikelpulvers in einer geeigneten Matrix gemacht werden. Basierend auf den gewonnen Erkenntnissen, die zum Verständnis der nanostrukturierten Mikropartikel beitrugen, wurden in einem nächsten Schritt gezielt komplexe Strukturen aufgebaut. Für eine gezielte Strukturierung von Nanopartikeln in Kern-Satellit-Partikel wurde zunächst große 100 nm Silica-NP mit einem PCE funktionalisiert und anschließend mit kleinen und großen unmodifizierten Silica-NP versprüht. Wurden die geeigneten Verhältnisse (70:20:10; 100 nm Mel : 100 nm blank : 20 nm blank) der Partikel zueinander gewählt, konnten Kern-Satellit-Strukturen auf der Mikropartikeloberfläche erzeugt werden. Beim Dispergieren der Mikropartikel in einer Flüssigkeit und in einem Elastomer (PDMS) konnten vereinzelte Kern-Satellit-Strukturen erhalten werden. Um zu bestätigen, dass es sich bei den dispergierten Kern-Satellit-Partikeln nicht um durch Trocknungseffekte entstandene Strukturen handelte, wurden in-situ-Flüssigkeitszellen- TEM-Aufnahmen gemacht. Die Aufnahmen konnten zeigen, dass sich die Kern-Satellit- Partikel in Abhängigkeit zueinander bewegen und nicht jeder Nanopartikel für sich, was auf eine Bindung der Partikel untereinander hindeutete. Neben den Silica-basierten Kern-Satellit-Partikeln konnten auch welche erzeugt werden, deren Satellit-Partikel aus Eisenoxid bestanden. Mit diesem System ist es möglich, multifunktionelle Partikel mit verschiedensten Eigenschaften und Strukturen herzustellen. Teil II: Anwendungspotential nanostrukturierter Mikropartikel Im zweiten Teil der Arbeit wurde zunächst die Anwendung der nanostrukturierten Mikropartikel als Füllstoff in IR und PDMS untersucht. Dafür wurde ein weiteres Silan, Si69TM, zur abgestuften Modifizierung der Silica-NP eingesetzt. Es handelt sich um ein multifunktionelles Silan, welches sowohl an die Partikeloberfläche als auch an das Elastomer binden kann. Bei den mechanischen Untersuchungen der IR-Silica-Komposite zeigte sich, dass das Silan einen entscheidenden Einfluss auf die Verstärkung bei kleinen Deformationen hatte. Während bei dem monofunktionellen Silan (OCTEO) eine direkte Korrelation zwischen Bedeckungsgrad und mechanischer Verstärkung (G‘) bei gleichbleibendem Füllstoffgehalt beobachtet werden konnte, hatte der Bedeckungsgrad beim multifunktionellen Silan (Si69TM) keinen Einfluss. Anders als bei kleinen Deformationen zeigte sich bei großen Deformationen ein gegenteiliges Bild. Die Verschleißrate der IR-Silica-Komposite nahm bei beiden Silantypen mit zunehmendem Modifizierungsgrad ab, wobei die mit Si69TM modifizierten Partikel-Komposite wesentlich beständiger gegen Verschleiß waren als die mit OCTEO modifizierten Partikel-Komposite, was auf die zusätzliche Matrixanbindung des Si69TM zurückzuführen war. Wurden die IR-Silica- Komposite mit den PDMS-Silica-Kompositen verglichen, konnten keine übereinstimmenden Trends gefunden werden. Im PDMS-System war die mechanische Verstärkung für Mikropartikel aus 2/3 mit OCTEO modifizierten Silica-NP maximal. Diese Unterschiede könnten sowohl auf die unterschiedliche Einarbeitung als auch auf die sehr unterschiedlichen Matrices zurückgeführt werden. Als weitere Anwendung wurden die nanostrukturierten Mikropartikel als Schersensoren für den 3D-Druck untersucht. Hierfür wurden die Silica-NP mit einem PCE modifiziert und anschließend sprühgetrocknet. Um die entstandenen Mikropartikel vollständig in einer Matrix zu dispergieren, waren hohe Scherkräfte und lange Scherzeiten erforderlich, was eine mögliche Anwendung als Schersensor nur schwer realisierbar macht. Teil III: Erweiterung des Ansatzes zur Herstellung nanostrukturierter Mikropartikel auf Hydroxid-basierte Systeme Im dritten Teil dieser Arbeit wurde das System zur Modifizierung von oxidischen Silicaund Eisenoxid-Partikeln auf ein hydroxidisches Systeme übertragen. Hierfür wurden mittels Fällungsprozess LDH-Partikel hergestellt, die anschließend mit OCTEO modifiziert und abschließend sprühgetrocknet wurden. In gleicher Weise wie bei den Mikropartikeln aus Silica-NP nahm der hydrophobe Charakter der LDH-Mikropartikel mit zunehmendem Modifizierungsgrad der Ausgangspartikel zu, was sich anhand von Untersuchungen zur Dispergierbarkeit in Flüssigkeiten unterschiedlicher Polarität zeigte. Zudem ließen sich die aus vollmodifizierten LDHs aufgebauten Mikropartikel in einer PDMS-Matrix wieder in vereinzelte Partikel dispergieren. Die Verstärkung der Komposite war für die teilmodifizierten Partikel (2/3) maximal, da es sich hier, wie auch bei den anderen Partikelsystemen (Silica und Eisenoxid), um eine Mischung aus vereinzelten LDHs und kleineren Aggregate handelte, was aufgrund der starken Füllstoff-Füllstoff-Wechselwirkung zu einer mechanischen Verstärkung bei kleinen Deformationen/Dehnungen führte. Die Eigenschaften der Polymer-Partikel-Komposite ließen sich über den Modifizierungsgrad der Primärpartikel einstellen. Dies konnte für alle drei Partikelsysteme (Silica, Eisenoxid und LDH) beobachtet werden. Ausblick In der vorliegenden Arbeit konnte die Synthese von verschiedenen nanostrukturierten Mikropartikeln und deren einstellbaren Zerfall gezeigt werden. Um den Zerfall der Mikropartikel noch gezielter einstellen zu können, sollte in weiterführenden Arbeiten vor allem die Modifizierung der Nanopartikel noch eingehender untersucht werden. Mithilfe der magnetischen Messungen konnte zwar zwischen einer Mischung aus un- und vollmodifizierten Partikel im Vergleich zu teilmodifizierten Partikel unterschieden werden, es konnten jedoch keine konkreten Aussagen zur Verteilung der Silanmoleküle auf der Partikeloberfläche getroffen werden. Hierfür sollten weitere Charakterisierungsmethoden hinzugezogen werden, die die Modifizierung auf molekularer Ebene analysieren. Zusätzlich sollte die Verteilung/Anordnung der teilmodifizierten Nanopartikel im Mikropartikel untersucht werden. Gerade für Nanopartikel mit einem geringen Modifizierungsgrad (1/10, 1/5 und 1/3) sind verschiedene Anordnungen möglich. Die Nanopartikel können sich während der Sprühtrocknung so anordnen, dass sich die Alkylketten entweder nach außen oder in die Mitte des Mikropartikels orientieren/ausrichten. Die Anordnung der Nanopartikel hat einen großen Einfluss auf die Polarität der entstehenden Mikropartikel- pulver. Darüber hinaus hat sie einen Einfluss auf die Aggregation der Nanopartikel untereinander und somit auf die Bildung von komplexen Unterstrukturen wie zum Beispiel Kern-Satellit-Partikel. Neben der Modifizierung der Nanopartikel sollte die Herstellung der komplexen Strukturen/Suprapartikel weiter optimiert werden. Mit einem detaillierten Verständnis der physikalischen Prozesse während der Sprühtrocknung könnte die Anzahl der Satelliten auf den Kernpartikel kontrollierter eingestellt werden. Grundsätzlich kann das hier entwickelte System der nanostrukturierten Mikropartikel mit einstellbarem Zerfallsverhalten an eine Vielzahl von Anwendungen angepasst werden. Da das System für zahlreiche Partikeltypen (Silica-, Eisenoxid-NP und LDH) geeignet ist, könnten verschiedene Partikel ko-versprüht und so Suprapartikel mit ganz neuen Funktionalitäten und Eigenschaften erzeugt werden. Diese können als verstärkende Füllstoffe in Elastomere oder zur Stabilisierung von Dispersionen eingesetzt werden. Mischpartikel aus Silica- und Eisenoxid-Partikel hätten zum Beispiel den Vorteil, dass sie eine Dispersion stabilisieren und gleichzeitig wieder magnetisch abgetrennt werden können. Diese Mischpartikel könnten auch als Füllstoffe in komplexe Kunststoffbauteile eingearbeitet werden, in denen sie zum einen als mechanisch verstärkender Füllstoff wirken und gleichzeitig durch induktive Erwärmung das Bauteil vernetzt. Beim induktiven Erwärmen handelt es sich um eine schonende Methode Bauteile gezielt zu vernetzen, indem die Wärme im Bauteil selbst, über magnetische Verluste der Magnetpartikel in einem magnetischen Wechselfeld, erzeugt wird und nicht über seine Oberfläche eingebracht werden muss. Eine weitere interessante Anwendung für Mischpartikel ist die als magnetooptisch aktiver Marker oder Tracer in der medizinischen Diagnostik. Aufgrund von Quenching-Effekten (Auslöschungseffekte) ist es schwierig magnetische Nanopartikel mit einer Farbigkeit oder Fluoreszenz auszustatten.[385] Mischt man jedoch die magnetischen Nanopartikel mit einem weiteren Partikelsystem wie zum Beispiel Silica-NP oder LDHs, können magnetooptische Eigenschaften erhalten werden N2 - The herein presented work deals with the synthesis and characterization of nanostructured microparticle powders with adjustable burst behavior and their application as reinforcing fillers as well as their application as a shear sensors. For this purpose, the work was structured into three parts. The first part was dedicated to the synthesis of nanostructured microparticle powders produced by spray-drying colloidal nanoparticles. Depending on the composition of the particles during the spray-drying process, it was possible to produce nanoparticulate structures such as core-satellites. In the second part of the work, these nanostructured microparticles could be redispersed in a suitable matrix such as polydimethylsiloxane (PDMS) and then tested for a potential application as reinforcing fillers. In the third and final part of the work, the synthesis approach was extended to hydroxide-based systems such as layered double hydroxides particles (LDHs). Part I: From silica nanoparticles to nanostructured microparticles with adjustable burst behavior To generate nanostructured microparticles with an integrated burst behavior, colloidal silica nanoparticles with a size of 20 nm were either partially or completely (1/10, 1/5, 1/3, 1/2, 2/3, 1) modified with triethoxyoctylsilane (OCTEO), which makes the nanoparticle surfaces hydrophobic or semi-hydrophobic, or the nanoparticles were left blank (0). To achieve the part-modification„ the amount of silane was reduced accordingly to 2/3, 1/2, 1/3, 1/5 and 1/10 compared to the completely modified silica nanoparticles. The modified nanoparticles showed clear differences when dispersed in different liquids (water, toluene) depending on the silanization degree of the particle surface. As expected, the hydrophobic behavior of the nanoparticles increased with increasing silane coverage and the nanoparticles were redispersible in non-polar liquids such as toluene while they tended to agglomerate and sediment in polar liquids such as water. In a next step, the colloidal silica nanoparticles, which were modified to different degrees with OCTEO, were spray-dried to yield a powder. The obtained nanostructured microparticle powders were then characterized by various analysis methods such as scanning electron microscope (SEM), specific surface area measurement by nitrogen adsorption according the Brunauer, Emmett and Teller theory (BET), FTIR measurements and thermogravimetric analysis (TGA) to examine the properties of the formed particles in more detail. SEM revealed that the nanostructured microparticles showed a very different appearance depending on the degree of modification of the nanoparticles. The microparticles consisting of completely modified nanoparticles had a rather rough surface, while the ones consisting of non-modified nanoparticles had a very smooth and compact surface, which could be due to possible condensation and associated hard agglomeration of the nanoparticles. Since based on SEM images alone it was not possible to confirm this assumption, in a next series of tests, in situ nano-indenter experiments were carried out in the SEM with microparticles composed of completely and non-modified nanoparticles. These results finally confirmed the first impression gained by SEM, as the very compact non-modified particles could not be indented with a tungsten tip which is possibly a good indication that hard agglomerates prevail in this case. The completely modified particles could be indented with the tungsten tip, thus behaved quite differently. The microparticles showed a ductile/plastic behavior and the nanoparticles could be separated from each other. This suggests that these particles probably consist of soft agglomerates of nanoparticles which can be separated again by force. Since it was not possible to make substantiated statements regarding the interaction of the nanoparticles within the microparticle with microscopy methods such as SEM, the surface properties of the particles were studied using BET, FTIR measurements and TGA. With a view to later applications, it it was important to characterize the surface properties of the microparticles in detail, since these are essential for the dispersibility of the particles in a matrix system. Using FTIR measurements and TGA the presence and amount of silane on the particle surface was determined. There was a clear trend for the silica nanoparticles which were modified to different degrees with OCTEO. As the amount of silane increased, both the intensity of the FTIR band for CH2 and CH3 stretching and mass loss increased. In contrast to these measurements, the BET measurements showed no clear trend depending on the surface coverage of the silica nanoparticles. The highest values for the specific surface area were found for microparticles consisting of 1/5- and 1/3-modified silica nanoparticles. In these cases, the condensation of the silica nanoparticles was largely prevented by the surface alkyl groups, and at the same time, there were still enough micropores that were able to interact with the nitrogen molecules which may explain the higher values. In addition to the standard analytical methods, liquid tests were performed and Hansen dispersibility parameters (HDP) and ET (30) values with Reichardt‘s dye (RD) were determined. Based on the liquid tests, first qualitative statements, concerning the hydro- philicity or hydrophobicity of the particles, modified to a different extend with silane, were made. These results and trends were then quantitatively substantiated with the HDP and the RD experiments. The polarity of the microparticles which were built up to different degrees with OCTEO modified silica nanoparticles decreased with increasing surface coverage. This tendency correlated with the values obtained from the FTIR and TG measurements. Since it had not been possible so far to determine the degree of soft and hard agglomeration of the silica nanoparticles in the microparticles, the system was transferred to iron oxide nanoparticles. The degree of agglomeration of the nanoparticles was crucial for subsequent dispersion in a matrix: If the particles were loose, soft agglomerates, they could be redispersed into primary nanoparticles in an elastomer, while hard agglomerates would only disintegrate into undefined secondary structures. At the same time, this system transfer was intended to answer the question whether the partially modified particles are a mixture of completely and non-modified particles or whether the silane is statistically distributed over the entire surface of all nanoparticles, i.e. whether all nanoparticles are modified to the same extend with silane. Similar to the silica system, the iron oxid nanoparticles were modified to different degrees with OCTEO (0, 1/10, 1/3, 1/2, 2/3, 1) and then spray-dried. Due to their magnetic properties, the iron oxide particles could be analyzed by Zero-Field-Cooled (ZFC) and Field-Cooled (FC) measurements. This special analysis method made it possible to deduce statements on the degree of the magnetic interaction of the particles and thus indirectly on the degree of soft and hard agglomeration of the nanoparticles in the microparticle. There were significant differences in the blocking temperature (TB) between the completely and the non-modified particles. TB is the temperature at which the magnetization direction of the particles can freely fluctuate due to thermal energy. The completely modified particles had very low TB value, suggesting a weak dipole-dipole interaction between the individual iron oxide nanoparticles. In contrary to this, the non-modified iron oxide particles had a high TB value, suggesting that the nanoparticles form hard agglomerates , coming with a very small particle-particle distance and therefore a higher interaction. The values of the partially modified particles followed the trend that the TB value decreased with increasing silane coverage. In order to answer the question of the silane distribution, a mixed system consisting of completely and non-modified iron oxide nanoparticles was also spray-dried. If the partially modified particles (as example 1/2) were a mixture of non-modified and modified nanoparticles and therefore the silane was not statically distributed on the nanoparticle surface, the TB value should be the same as for the mixed system. This was not the case however, as demonstrated by the ZFC and FC measurements. The TB value of the mixed system was between the one of the completely and 2/3-modified particles, while the irreversible temperature (Tir) value corresponded to that of the non-modified particles. The width of the splitting between TB and Tir could be interpreted as a broad particle distribution (mixture of soft and hard agglomerates). For the use as fillers, the microparticles were incorporated in a PDMS matrix and ZFC and FC measurements were again performed, and the same trends were observed as for the pure nanostructured microparticles. From this it could be concluded that the completely modified iron oxide nanoparticles had been well distributed in the elastomer and thus had very little dipole-dipole interaction. With the developed system of nanostructured microparticles, the degree of soft and hard agglomeration of the nanoparticles can be adjusted more or less specifically, and additional predictions can be made about the redispersibility of the particle powder in a suitable matrix. Based on the insights gained to understand the system, more complex structures were built up. For the adjustable structuring of nanoparticles in core-satellite particles, large 100 nm silica nanoparticles were firstly functionalized with a polycarboxylate ether (PCE) and afterwards spray-dried with small and large non-modified silica nanoparticles. By choosing a suitable ratio (70:20:10, 100 nm Mel : 100 nm blank : 20 nm blank) of the particles composition was chosen, core-satellite structures were generated on the microparticle surface. The dispersion of microparticles in a liquid or in an elastomer (PDMS) resulted in isolated core-satellite structures. In situ liquid cell TEM was carried out to confirm that the dispersed core-satellite particles were not only structures created by drying-effects. It was possible to record core-satellite particles moving/rotating in relation to each other which was an indication that the small particles were bound to the larger ones. In addition to the silica-based core-satellite particles, core-satellite particles were synthesized whose satellite particles consisted of iron oxide. This proved the approach being suitable to produce multifunctional particles with different properties and structures. Part II: Application potential of nanostructured microparticles In the second part of the work, the application of the nanostructured microparticles as reinforcing fillers in isopren rubber (IR) and PDMS, as well as shear sensor in 3D printing was examined. For this purpose, the silica nanoparticles were modified with the silane bis(triethoxysilylpropyl)tetrasulfide (Si69TM) in addition to OCTEO. Si69TM is a multifunctional silane capable of covalently binding to both, the particle surface via the ethoxy groups and the elastomer via the sulphur. The mechanical investigations of the IR-silica composites demonstrated that the silane modification of the silica nanoparticles had a significant influence on the reinforcement at small strain amplitudes. While the monofunctional silane (OCTEO) revelaed a direct correlation between the degree of coverage and mechanical reinforcement (G‘) at a constant filler content, the degree of coverage of the multifunctional silane (Si69TM) had no effect. In contrast to small strain amplitudes, a completely different behavior was found for large strain amplitudes. The wear rate of the IR-silica composites decreased with increasing modification degree for both silane types. The Si69TM modified particle composites were much more resistant to wear than the OCTEO modified particle composites due to the additional matrix binding of the Si69TM. When comparing the IR-silica composites to the PDMS-silica composites, no consistent trends were found. In the PDMS system, the mechanical reinforcement by the particles was at maximum for particles being modified on their surface to an extend of 2/3 by OCTEO. These differences could be attributed to the different incorporation processes as well as the different matrices. Another potential application for the nanostructured microparticles as shear sensor in 3D printing was tested. For this purpose, the silica nanoparticles were modified with a PCE and then spray-dried. In order to completely disperse the resulting microparticles in a matrix, high shear forces and long shear rates were required, which makes a potential application as shear sensor for the current system rather challenging to be realized in practice. Part III: Extension of the approach for the preparation of nanostructured microparticles to hydroxide-based systems In the third part of this work, the system of silica particle modification was transferred to hydroxide-based particles. For this purpose, LDHs were produced by a precipitation process and then modified with OCTEO and finally spray-dried. LDHs are an interesting material due to the broad application potential like as adsorbers for gases, drug containers, and flame-retardants. Exactly as with the silica particles, the hydrophobic character of the LDH microparticles increased with increasing modification degree of the primary LDHs which could be shown by liquid tests. In addition, the microparticles consisting of completely modified LDHs could be dispersed into isolated particles in a PDMS matrix. Similar to the silica particle systems, the reinforcement of the composites was the highest for the partially modified particles (2/3). The partly modified particles consisted of a mixture of isolated LDH particles and small hard agglomerates, which lead to a mechanical reinforcement at small strain amplitudes due to the strong filler-filler interaction. The properties of the polymer-particle composites could be adjusted by the modification degree of the primary LDHs. Outlook In the present work, the synthesis of different nanostructured microparticles and their adjustable burst was shown. In order to be able to carefully adjust the disintegration of the microparticles, the modification of the nanoparticles in particular should be investigated in more detail in future woks. Although it was possible to differentiate between a mixtures of non-modified and completely modified particles compared to partially modified particles, it was not possible to make any specific statements about the distribution of the silane molecules on the particle surface. For this purpose, further characterization methods should be consulted, which analyze the modification at the molecular level. In addition, the distribution/arrangement of the partially modified nanoparticles in the microparticle should be investigated. Especially for nanoparticles with a low degree of modification (1/10, 1/5 and 1/3) different arrangements are possible. During spraydrying, the nanoparticles can either be arranged in such a way that the silane molecules orient themselves in the direction of the particle surface or in the center of the particle. The arrangement of the nanoparticles has a great influence on the polarity of the resulting microparticle powders. In addition, it has an influence on the hard agglomeration of nanoparticles and thus on the formation of complex substructures, such as core-satellite particles. In addition to the modification of the nanoparticles, the production of complex structures/supraparticles should be further optimized. With a detailed understanding of the physical processes during spray-drying, the number of satellites on the core particles could be more controlled. In principle, the system of nanostructured microparticles with adjustable burst behavior, which has been developed herein, can be adapted to a large number of applications. Since the system is suitable for many types of particles (silica, iron oxide and LDH), different nanoparticle building blocks particles could be spray-dried together to create supraparticles with completely new functionalities and properties. These can be used as reinforcing fillers in elastomers or for the stabilization of dispersions. For example, mixed particles of silica and iron oxide particles would have the advantage to stabilize a dispersion and at the same time may be magnetically recovered again. These mixed particles could also be incorporated as fillers into complex plastic components in which they act as mechanically reinforcing fillers on the one hand and, at the same time, crosslink the components by inductive heating. The inductive heating is a gentle method to selectively crosslink components, since the heat produced by the magnetic particles in the component itself and does not have to be introduced over its surface KW - Mikropartikel KW - Nanostrukturierte Mikropartikel KW - nanostructured micro-particles KW - kolloidale Silica-Nanopartikel KW - Elastomerkomposite KW - Schersensoren KW - colloidal silica-nanoparticles KW - elastomer composites KW - shear sensor KW - Nanostrukturiertes Material KW - Elastomer KW - Nanotechnologies Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176154 ER - TY - THES A1 - Berthel, Johannes H. J. T1 - Synthese und Charakterisierung neuer NHC-stabilisierter Nickelkomplexe für die Gasphasenabscheidung T1 - Synthesis and characterization of new NHC-stabilized nickel complexes for the vapor deposition N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung NHC-stabilisierter Nickelkomplexe, die durch weitere Co-Liganden wie Carbonyle, Olefine, Alkine, Alkyle, Cyanide oder Allylliganden koordiniert sind. Ferner gibt diese Arbeit einen Überblick über die thermischen Eigenschaften dieser Verbindungen, um deren Potenzial für den Einsatz zur Abscheidung elementaren Nickels in CVD- bzw. ALD-Prozessen abschätzen zu können. Dabei konnten vor allem die Substanzklassen der Carbonyl- und Alkylkomplexe als geeignete Präkursoren für die Gasphasenabscheidung elementaren Nickels identifiziert werden, von denen einige ausgewählte Vertreter bereits erfolgreich in CVD-Prozessen getestet wurden. N2 - The present work is about the synthesis and characterization of NHC-stabilized nickel complexes, which are coordinated by further co-ligands like carbonyls, olefins, alkynes, alkyls, cyanides or allylic ligands. This work presents an overview of the thermical properties of these nickel compounds, which gives an insight in their potential for using them to deposit elemental nickel in CVD and ALD processes. It was found the carbonyl and alkyl complexes were identified as useful precursors for vapor depositing elemental nickel. Some of these compounds have already been tested successfully in CVD processes. KW - Nickelkomplexe KW - Heterocyclische Carbene <-N> KW - CVD-Verfahren KW - NHC KW - Nickel KW - Gasphasenabscheidung KW - Carbene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147571 ER - TY - THES A1 - Seufert, Jens T1 - Synthese und Reduktionsverhalten neuer Lewis-Basen-Addukte des Bors sowie Redox-aktiver Ligandentransfer durch Silylene T1 - Synthesis and reduction of novel Lewis-base adducts of boron and redox-active Ligand Transfer through silylenes N2 - Im Rahmen dieser Arbeit war es möglich, diverse Lewis-Basen für deren Einsatz zur Stabilisierung niedervalenter Borverbindungen zu testen. Dabei wurden neuartige Mono- und Diboran(4)-Addukte mit mesoionischen Carbenen, Phosphanen und Alkyl-verbrückten Carbenen synthetisiert, charakterisiert und deren Reduktionsverhalten getestet. Des Weiteren konnte gezeigt werden, dass elektronenreiche Bis(amidinato)- und Bis(guanidinato)silylene eine diverse Vielfalt an Reaktionstypen induzieren und dabei zu Redox-Reaktionen und Ligandenübertrag neigen. N2 - Within the scope of this work, a variety of Lewis-bases were tested for their capability to stabilize low-valent boron compounds. Thereby, novel adducts of mono- and diboranes with mesoionic carbenes, phosphines and alkyl-bridged carbenes were synthesized, characterized and their reduction behavior was tested. Furthermore, it was shown that electron-rich bis(amidinato)- and bis(guanidinato)silylenes induce a range of interesting reactions and are prone to ligand transfer as well as redox reactions. KW - Bor KW - Reaktivität KW - Silylen KW - Carbene KW - Ligandentransfer KW - verbrückende Carbene KW - mesoionische Carbene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173987 ER -